
AN INTERACTIVE MUSIC COMPOSITION SYSTEM BASED ON
AUTONOMOUS MAINTENANCE OF MUSICAL CONSISTENCY

Tetsuro Kitahara
Nihon University
kitahara@chs.
nihon-u.ac.jp

Satoru Fukayama, Shigeki Sagayama
The University of Tokyo

{fukayama,sagayama}@
hil.t.u-tokyo.ac.jp

Haruhiro Katayose, Noriko Nagata
Kwansei Gakuin University
{katayose,nagata}@

kwansei.ac.jp

ABSTRACT

Various attempts at automatic music composition systems
have been made, but they have not addressed the issue of
how the user can edit a composed piece. In this paper, we
propose a human-in-the-loop music composition system,
in which the manual editing stage is integrated into the
composition process. This system first generates a musical
piece based on the lyric input by the user. Then, the user
can edit the melody and/or chord progression. The advan-
tage of this system is that once the user edits the melody or
chord progression of the generated piece, the system can
regenerate the remaining part so that this part musically
matches the edited part. With this feature, users can create
various melodies and arrangements and avoid the musical
inconsistency between the melody and the chord progres-
sion. We confirmed that this feature facilitates the trial and
error process of users who edit music.

1. INTRODUCTION

Automatic music composition (AMC) is an important task
in sound and music computing, from both an academic and
an industrial point of view. From an academic point of
view, AMC involves constructing a computational model
of human creative activities. From an industrial point of
view, AMC provides a means for musically unskilled peo-
ple to obtain original songs. Therefore, various researchers
have developed AMC systems [1, 2, 3, 4, 5, 6].

There are two major approaches used in the existing
AMC systems. The first is the fully automatic approach, in
which AMC systems generate musical pieces based on the
user’s input, such as lyrics and styles [1, 2, 3, 4]. Because
the main focus in those studies is the exploration of new
models and/or algorithms for creating musically superior
or novel melodies, they do not address the issue of what
the system should do when the generated melody does not
match that desired or expected by the user.

The second is a semi-automatic approach based on inter-
active evolutionary computation [5, 6]. The systems based
on this approach run iterations of automatic generation of
a musical piece and a user’s evaluation of the generated
piece. The merit of this approach is that it does not require
the users to have musical skills because all they need to do
is to judge whether the generated piece is good. In prac-

Copyright: c©2011 Tetsuro Kitahara et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

tice, however, this approach can impose an excessive bur-
den on users because they have to repeatedly listen to and
evaluate system-generated pieces (sometimes thousands of
times). In addition, if they want to partly modify the gener-
ated piece, they cannot specify which part of the generated
piece should be regenerated and how.

The common problem with these studies is that, even if
the generated piece is different from what the user wants,
the user cannot specify to the system what should differ in
the generated piece and how, so that the system can regen-
erate it1 . This is an important problem because it is almost
impossible for AMC systems to generate pieces that per-
fectly match users’ desires at the first attempt. When the
generated piece is different from what the user wants, the
most common solution is for the users to edit the piece
themselves using commercial software such as music se-
quencers or digital audio workstations. It is, however, not
easy for unskilled people to appropriately edit a generated
piece of music using such software because musical pieces
in general consist of multiple voices, each of which could
produce inharmonic tones if inappropriately edited. We
attribute this problem to the unidirectional nature of the
composition process: from automatic generation to man-
ual editing.

In this paper, we propose an AMC system, called Or-
pheusBB, in which the manual editing stage is integrated
into the iterative composition process. OrpheusBB allows
users to edit the melody and chord progression of a gen-
erated piece after the first automatic generation. Once the
user edits part of the melody or chord progression, the sys-
tem immediately regenerates the rest of the piece. By re-
peating such editing, users can elaborate upon the piece
without considering the possibility that the melody and
the chord progression may become musically inconsistent
(typically inharmonic). This approach of iterative compo-
sition involving a manual editing stage is called the human-
in-the-loop approach. The technical issue in achieving this
system is how to estimate a melody and chord progres-
sion that are musically consistent with the edited part in
real time. We call this autonomous maintenance of musi-
cal consistency (AMMC) and achieve it using a Bayesian
network.

2. SYSTEM DESIGN

In the human-in-the-loop approach, music composition is
regarded as an iterative process of automatic music gener-

1 Roads also discussed human-system interactions in music composi-
tion from a similar point of view, stating that “totally automated compo-
sition programs demand little in the way of creativity” [7].

Figure 1. Iterative process in OrpheusBB.

ation and manual music editing (Figure 1). This approach
was inspired by the collaboration between a creator and his
assistants. A creator (such as a musician) sometimes cre-
ates his works in collaboration with assistants. In this case,
the creator determines the key concept of the work and cre-
ates the important parts alone, but may leave the remaining
parts to the assistants. Then, the assistants create the re-
maining parts using their professional knowledge and ex-
perience so that they are consistent with the creator-made
parts. The ideal goal of the human-in-the-loop approach is
to develop such a sophisticated music composition assis-
tant.

Human-in-the-loop AMC systems should satisfy the fol-
lowing three requirements:

1. Direct edit
If users want to edit a specific part of the melody
and/or chord progression, they should be allowed to
directly edit the part that they want to edit.

2. Priority on users’ editing
Users’ editing should have priority. In other words, a
mechanism should be provided to avoid overwriting
the part edited by the user.

3. Autonomous maintenance of musical consistency
If the user’s editing causes musical inconsistency, the
system should correct the remaining part to maintain
musical consistency. For example, if a user’s melody
editing introduces a disharmony with the chord pro-
gression, the system should correct the chord progres-
sion.

OrpheusBB first generates a musical piece based on the
lyrics input by the user. After listening to the generated
piece, the user can edit any note in the melody and/or
any chord in the chord progression (satisfying Require-
ment 1). When the user edits the melody, the system im-
mediately updates the chord progression to best match the
edited melody (satisfying Requirement 3). Similarly, the
melody is updated if the chord progression is edited. The
user can mark certain manually edited or automatically
(re)generated notes if they like those notes. The marked
notes will not be overwritten by the update caused by sub-
sequent editing, even if the marked and edited notes cause
musical inconsistency (satisfying Requirement 2).

2.1 Initial Input as the Seed of Composition

The initial input of the user,as a seed of the composition, is
an important issue because there are an infinite number of
musically appropriate melodies. This initial input should
efficiently constrain the variety of melodies available but
should not require musical skill for the input. If the tar-
get music is limited to Japanese songs, lyrics can be used
as the initial input, because Japanese is a pitch-accent lan-
guage [4]. Given a Japanese sentence, its natural prosody
in the standard Japanese pronunciation style is uniquely
determined, and the pitch motion in the prosody can be
used as a constraint for creating a melody. In fact, making
a melody following the prosody of the lyrics is well known
as a method for Japanese song composition. For this rea-
son, lyrics are adopted as initial inputs in OrpheusBB.

2.2 Achieving Autonomous Maintenance of Musical
Consistency

The main technical issue in achieving the above-mentioned
three requirements is how to achieve autonomous main-
tenance of musical consistency (AMMC). The key point
in achieving AMMC is determining what type of knowl-
edge representation framework should be used for describ-
ing the mutual dependency of the melodies and chord pro-
gressions. The knowledge representation framework to be
used here should provide a mechanism for inferring the op-
timal values for the remaining part when part of the frame-
work is updated (a new value is observed). One possi-
ble framework for such inference may be the truth main-
tenance system (TMS) [8]. It is, however, unsuitable for
music because TMSs are based on logical reasoning. An-
other available inference framework is the Bayesian net-
work. A Bayesian network is a probabilistic graphical
model in which the dependencies between random events
are represented via a directed acyclic graph. Because the
dependency between melodies and chord progression can
be probabilistically described (e.g., the C] note is rarely
used in melodies under the C chord), it is suitable for do-
mains, such as music, for which appropriateness cannot be
logically determined.

In this study, we describe the dependencies between the
prosody of lyrics, a melody, a chord progression, and chord
voicings (each is called a layer) in a dynamic Bayesian
network (DBN), as shown in Figure 2. This network rep-
resents two types of dependencies: the sequential depen-
dency within each layer and the simultaneous dependency
between different layers. The network should ideally have
arcs between the melody nodes and the voicing nodes [9],
but these are omitted to reduce the computational cost. To
use this network, the system has to know the temporal cor-
respondence between the nodes of the melody layer and
those of the chord progression layer. We therefore put the
following restrictions on the melody and chord progres-
sion:
• The rhythm of the melody is determined in the initial

generation stage and cannot be modified in the subse-
quent manual editing stage.

• The chords change every two beats (half measure).
Once music knowledge has been represented in this

Pi Prosody (pitch motion) of
the i-th mora from the previous
mora {up, down, flat}

Mi i-th note in the melody
{C, C], D, · · ·, B}

Ci i-th chord
{C, · · ·, B}×{maj, min}

V x
i Voicing for the i-th chord

{C, · · ·, B}

Figure 2. Dynamic Bayesian network used in our system.

Figure 3. Initial input window.

DBN, AMMC is reduced to the problem of inferring the
most likely values for the remaining nodes after updat-
ing the value for the node corresponding to the edited
note/chord. Marking a note is reduced to giving a proba-
bility of 1.0 to the current value for the node corresponding
to the marked note. AMMC is therefore achieved through
the following steps:

1. If the user marks a note, the probability of the current
value for the corresponding node is set to 1.0.

2. If the user edits a note or chord, the value for the cor-
responding node is updated, and then, the probability
inference is determined.

3. After determining the probability inference, the music
data (melody, chord progression, and chord voicings)
are updated to the values with the highest likelihood,
and the editing window is updated for further editing.

3. IMPLEMENTATION

We implemented OrpheusBB based on the design de-
scribed above.

3.1 Graphical User Interface

3.1.1 Initial Input Window (Figure 3)

Once OrpheusBB is launched, the initial input window ap-
pears. The user inputs Japanese lyrics with both kanji and
kana. If necessary, the user can change the chord pro-
gression and/or the rhythm pattern of the melody. Once

Figure 4. Music editing window.

the “Generate” button is pressed, the system generates a
melody that has the same pitch motion as the prosody of
the input lyrics, and proceeds to the music editing stage.

3.1.2 Music Editing Window (Figure 4)

Once it has generated a musical piece, OrpheusBB dis-
plays a pianoroll-like window, where the user can edit the
melody, chord progression, and chord voicings in the gen-
erated piece. If one or more components are edited by
the user, the remaining elements are immediately updated
based on the afore-mentioned AMMC function to avoid
producing inharmonic tones in the edited melody or chord
progression. Specifically, the chord progression and its
voicings are updated when the melody is edited, and the
melody and chord voicings are updated when chords are
changed.

The user can mark notes in the melody and/or chord voic-
ings to prevent those notes from being changed by AMMC
in subsequent editing against the user’s will (Figure 5
Left). In the typical situation for this note marking func-
tion, the number of marked notes gradually increases with
every iteration of the manual editing and automatic regen-
eration process. As the number of marked notes increases,
the musical piece is expected to become closer to the user’s
desires. Thus, the user elaborates upon the piece through
the iterative action of (1) editing notes/chords, (2) listen-
ing to the edited and automatically updated notes, and
(3) marking them if desired.

The chord candidates are represented by chord names,
such as C or Dm; however, the selection of an appropri-
ate chord is not easy for people who are not familiar with
this notation. We therefore implemented a function for as-
sisting such people in selecting chords, where the likeli-
hoods of the chord candidates are represented in grayscale
(Figure 5 Right). If a chord has a high likelihood under
the current context (the melody and neighboring chords),
the chord name appears in dark gray (or almost black) in
the dropdown list. If a chord has a low likelihood, on the
other hand, the chord name appears in light gray (or al-
most white). Using this function, the user can select a
chord that is expected to match the current melody from
the dark gray candidates. In addition, the user can select a
light gray chord to change the impression because the light
gray chords are expected to have largely different impres-
sions. When a light gray chord is selected, the melody is
regenerated in most cases.

Figure 5. Left: marked notes. Right: a dropdown list for
selecting a chord where the chords with high likelihoods
are displayed in dark gray and the chords with low likeli-
hoods are displayed in light gray.

3.2 Generation of a Melody from Lyrics

Given a set of lyrics, a melody is generated using the
method adopted in Orpheus [4]. The input lyrics are first
analyzed by the front-end module of a Japanese text-to-
speech engine to identify the pronunciation (yomi) and
prosody (pitch motion) of the lyrics. Then, the rhythm of
the melody is determined. Under the constraint that the
melody must have the same number of notes as the number
of morae of the lyrics, the system generates the rhythm by
dividing (e.g., from one quarter note to two eighth notes)
or merging (e.g., from two quarter notes to one half note)
notes in the rhythm pattern selected by the user as needed.
The notes in the pattern that should be preferentially di-
vided or merged are defined by a tree structure called a
rhythm tree [4].

After constructing the rhythm, the pitch (note number)
of each note in the melody is determined so that the pitch
motion matches the prosody of the lyrics and is also mu-
sically appropriate. Based on the emission probability of
each pitch and the transition probability from each pitch
to each pitch, which are manually defined in advance, the
note sequence that has the highest probability is searched
for using the dynamic programming search method [4].

3.3 Autonomous Maintenance of Musical Consistency

The autonomous maintenance of musical consistency
(AMMC) is achieved based on the DBN described in Sec-
tion 2. Because implementation of the DBN shown in
Figure 2 is not practical due to the computational cost and
the amount of training data required, we simplify the DBN
as follows:
• When the melody is edited, the system infers only

the chord nodes, considering all melody nodes to be
given. In this case, the DBN is equivalent to a hidden
Markov model, so the Viterbi algorithm can be used
to infer the chord nodes.

• When a chord is changed, the system infers only the
melody nodes, considering all chord and lyric nodes
to be given. In this case, inference of the melody
nodes is equivalent to an optimal path search per-
formed in Orpheus for melody generation.

C Em C F

5
Dm G

5

5

A Am F G C

Figure 6. The generated piece given the lyrics “Donguri
korokoro donguriko.” The latter part “korokoro donguriko”
was repeated three times because the input lyrics are too
short for a eight-measure piece.

• If a chord is changed by the user or system, only the
voicing of the changed chord is inferred.

The conditional probabilities for all nodes are experimen-
tally defined based on conventional music theory.

4. EXAMPLE OF USE

In this section, we present an example of the composition
of a musical piece using this system as a proof of concept.
In particular, we will confirm here that:
(1) chords are automatically changed when notes in the

melody are changed to notes producing disharmony
with the current chord progression,

(2) the melody is automatically regenerated when edited
chords produce disharmony with the current melody,

(3) the user can prevent the system from overwriting the
notes that they like by marking such notes, and

(4) the coloring of the chord names in the chord selection
lists helps the user select chords.

A user executed music generation with the lyrics
“Donguri korokoro donguriko”, obtaining the piece shown
in Figure 6. He then changed “E–E–G–G” in the melody in
the second measure to “F–F–A–A”, which results in dishar-
mony with the current chord “Em”. Then, the chord was
automatically changed to “F”, which matches the edited
melody (Figure 7). The neighboring chords were also
changed. He marked the edited and automatically updated
notes to prevent those notes from being overwritten.

Next, he changed the chord progression of the last two
measures (“F–G–C–C”) to “F–A[–G–C” to change the im-
pression of the ending. He selected “A[” because this
chord may give listeners the feeling of oddness as it is
rarely used in this context, according to the color (light
gray) of the chord name in the dropdown list. Accordingly,
the melody was regenerated (Figure 8), and he marked
those notes.

The unmarked notes of the first two measures in the
melody were, however, automatically changed. This is be-

C Em F Em C F

5
Dm G

5

5

C Am F G C C

Figure 7. The result of changing “E–E–G–G” in the sec-
ond measure of Figure 6 to “F–F–A–A”. The correspond-
ing chord was automatically changed to “F”.

C Em F Em C F

5
Dm G

5

5

C Am F A G C

Figure 8. The result of changing the last two-measure
chord progression in Figure 7 to “F–A[–G–C”. The
melody was automatically regenerated.

cause, in the current implementation, any unmarked notes
in the melody may be updated when a chord is changed. Of
the updated melody, he changed the notes “B” in the first
measure and “A” in the second measure to “C” and “G”, re-
spectively. Accordingly, the second chord in the first mea-
sure was automatically changed from “Em” to “Am”. The
chords in the second measure were not changed because
they did not cause disharmony with the changed melody.

Finally, he changed the last “G” note in the last measure
to “A”. The voicing notes for the corresponding chord were
not changed because these notes were marked. The com-
pletde piece is shown in Figure 9.

Thus we confirmed that the four aims mentioned in the
beginning of this section were achieved.

5. DISCUSSION

5.1 Results of Trial Use

Through the trial use reported in the previous section, we
confirmed that users can compose musical pieces based

C Am F Em C F

5
Dm G

5

5

C Am F A G C

Figure 9. The complete musical piece.

on our composition model, where a musical piece grad-
ually becomes closer to the user’s desires by repeating the
four steps of (1) listening to the system-generated piece,
(2) marking the notes that the user likes, (3) editing the
notes or chords that the user does not like, and (4) having
the system update the rest according to the user’s editing.

In addition, the coloring of the chord names in the chord
selection lists was effective at assisting the user in selecting
chords. It is well known that the use of non-diatonic chords
is effective in making an impressive chord progression, but
it is not easy to use these chords with a conventional music
sequencer if the user does not have a knowledge of har-
mony theory. With the chord coloring of our system, users
can simply select a chord from the light gray chord names.
Because the melody is automatically regenerated, the users
do not have to consider the mismatch between the melody
and chord progression when selecting a chord.

However, the following areas for improvement were re-
vealed in the trial:

• Conditional probability table (CPT)
To make the system behavior clearly understandable,
we adopted an extreme CPT: the probabilities of non-
diatonic chords and the conditional probabilities of
non-chord tones are very close to zero. For this rea-
son, all melody notes under the A[chord were C. The
exploration of more appropriate CPTs is an important
future issue. The training of CPTs from existing mu-
sic data should also be investigated.

• Over-updating
Whereas AMMC worked well overall, some notes
were automatically changed, even though they did not
produce inharmonic tones. Because this phenomenon
may negatively affect the user’s trial and error pro-
cess, it should be avoided by, for example, establish-
ing a threshold for overwriting: if the likelihood for
the current value is higher than the threshold, the cur-
rent value should not be overwritten to the most likely
value, even if it is not the most likely value.

• Undo function
The user wanted to revert his editing several times but

unable to do so because the current implementation
does not have an undo function. Implementing an
undo function to facilitate further users’ trial and error
will be important in our future work.

5.2 Directability

The recent development of machine learning technologies
and music corpora has facilitate great advances in the au-
tomation of music generation such as music composition,
music arrangement, and musical performance rendering.
Needless to say, such automation technologies are impor-
tant in achieving an environment that enables musically
unskilled people to create music. Most existing studies,
however, have neglected the issue of allowing users to
modify the automatically generated content.

Automation technologies should be developed by con-
sidering how the technologies are (or should be) used by
users. From this point of view, we recently introduced
the concept of directability [10], which indicates the con-
trollability of content at an appropriate abstraction level.
With conventional tools, such as music sequencers, cre-
ators have to directly edit all of the components of the
content (e.g., all of the notes in the music). The goal
of directability is to achieve intuitive editing by editing a
structure-level representation.

Although users edit musical content at the note level in
OrpheusBB, the editing is immediately reflected in the mu-
sic structure described in a DBN. OrpheusBB can therefore
be considered to be a directable user interface for editing
music.

5.3 Use for Further Advanced Arrangement

AMMC would be more effective if it were applied to more
advanced arrangements. When a walking bass line is used
in the bass part, appropriate passing notes are carefully de-
termined to smoothly connect chord to chord. If a chord
is changed, the passing notes around the chord (especially
before the chord) in the bass line should also be appropri-
ately changed. By adding the bass line layer to our DBN,
we can achieve autonomous maintenance of the walking
bass line: once a chord is changed, the passing notes
around the chord in the bass line are automatically modi-
fied. In actual performance situations, the detailed arrange-
ment, such as passing notes in a bass line, is often left to
each player, whereas the overall arrangement, such as the
chord progression, is determined by the arranger. Simi-
larly, users can focus on the overall arrangement, being
freed from the detailed arrangement, by using AMMC.

6. CONCLUSION

Automatic music composition (AMC) systems, rather than
simply generating a musical piece, should provide an en-
vironment that enables users to elaborate upon music by
repeated manual editing with the assistance of AMC tech-
nology. Based on this belief, we developed a human-in-
the-loop AMC system, OrpheusBB. The main advantage of
this system is that, when the melody or chord progression
is edited by the user, it can automatically regenerate the
remaining part to maintain musical consistency between

the edited part and the remaining part. We call this fea-
ture autonomous maintenance of musical consistency, and
achieved it by using probabilistic inference based on a dy-
namic Bayesian network.

We have some future plan. First, we will conduct quanti-
tative evaluations to more thoroughly explore the effective-
ness of this system. Second, we plan to improve the graph-
ical user interface for editing music data. The current user
interface is not easily used by people who are unfamiliar
with notewise editing in a pianoroll display. We are there-
fore currently developing a user interface that enables both
notewise and non-notewise editing. Third, we plan to ex-
tend our DBN to achieve a more advanced arrangement, as
discussed in Section 5.3.

Acknowledgments

This research was partially supported by CREST, JST,
Japan. OrpheusBB was implemented in collaboration with
Mr. Naoyuki Totani and Mr. Ryosuke Tokuami (Kwansei
Gakuin University).

7. REFERENCES

[1] L. Hiller and L. Isaacson, “Musical composition with
a high-speed digital computer,” Journal of Audio Engi-
neering Society, 1958.

[2] C. Ames and M. Domino, “Cybernetic composer: An
overview,” in Understanding Music with AI, M. Bala-
ban, K. Ebcioglu, and O. Laske, Eds. AAAI Press,
1992, pp. 186–205.

[3] D. Cope, Computers and Musical Style. Oxford Uni-
versity Press, 1991.

[4] S. Fukayama, K. Nakatsuma, S. Sako, T. Nishimoto,
and S. Sagayama, “Automatic song composition from
the lyrics exploiting prosody of the japanese language,”
in Proc. Sound and Music Computing, 2010.

[5] D. Ando, P. Dahlstedt, M. G. Nordaxhl, and H. Iba,
“Computer aided composition by means of interactive
gp,” in ICMC 2006, 2006, pp. 254–257.

[6] J. A. Biles, “Genjam: A genetic algorithm for generat-
ing jazz solos,” in Proc. ICMC, 1994.

[7] C. Roads, The Computer Music Tutorial. MIT Press,
1996.

[8] J. Doyle, “A truth maintenance system,” Artificial In-
telligence, vol. 12, no. 3, pp. 251–272, 1979.

[9] T. Kitahara, M. Katsura, H. Katayose, and N. Na-
gata, “Computational model for automatic chord voic-
ing based on bayesian network,” in Proc. ICMPC 2008,
2008, pp. 395–398.

[10] M. Hashida and H. Katayose:, “Mixtract: A directable
musical expression system,” in Proc. ACII 2009, 2009.

