
AN ADAPTIVE CLASSIFICATION ALGORITHM FOR SEMIOTIC
MUSICAL GESTURES

Nicholas Gillian R. Benjamin Knapp Sile O’Modhrain
Sonic Arts Research Centre
Queen’s University Belfast

United Kingdom
{ngillian01,b.knapp,sile}@qub.ac.uk

ABSTRACT

This paper presents a novel machine learning algorithm
that has been specifically developed for the classification of
semiotic musical gestures. We demonstrate how our algo-
rithm, called the Adaptive Naı̈ve Bayes Classifier, can be
quickly trained with a small number of training examples
and then classify a set of musical gestures in a continuous
stream of data that also contains non-gestural data. The
algorithm also features an adaptive function that enables
a trained model to slowly adapt itself as a performer re-
fines and modifies their own gestures over, for example, the
course of a rehearsal period. The paper is concluded with
a study that shows a significant overall improvement in the
classification abilities of the algorithm when the adaptive
function is used.

1. INTRODUCTION

Musicians frequently use communicative gestures to inter-
act with other performers live on stage when other forms of
communication, such as verbal, are inappropriate. These
gestures could consist of subtle looks between players in
an improvisation trio or the more obvious movements of a
conductor in front of an ensemble. Rime and Schiaratura
[1] refer to such communicative movements as semiotic
gestures; including symbolic hand postures such as the
“OK” sign or deictic pointing gestures within this defini-
tion. This natural method of interaction is still difficult
however between a musician and a computer and the ob-
jective of this work has therefore been to improve this.

To enable a computer to recognise a performer’s semi-
otic gestures we adopted a machine learning approach in
which a large data set, consisting of the recorded sensor
data - or features derived from the data - from each ges-
ture for example, are used to tune the adaptive parameters
of a model or function. As outlined in the previous work
by the authors [2], a key aspect in the design of the ma-
chine learning algorithms used for the recognition of mu-
sical gestures is that they need to be quickly trained with
the performer’s own gestural vocabulary, i.e. the relation-
ship between a gesture and its corresponding action, using

Copyright: c©2011 Nicholas Gillian et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

whatever sensor best suits the user. The algorithms should
not, therefore, be constrained to work with just one type
of sensor, such as a mouse or camera, but should instead
work with any N -dimensional signal. Further, the recog-
nition algorithms should be designed to be rapidly trained
with a low number of training examples. This would result
in a fast data collection/training phase facilitating a musi-
cian to rapidly prototype a gesture-sound relationship; en-
abling a performer or composer to quickly validate whether
such a relationship works both aesthetically and practi-
cally. For real-time musician-computer interaction, partic-
ularly in a live performance scenario, it may not be prac-
tical for a performer to be able to inform a recognition al-
gorithm that they are currently performing a gesture (by
pressing a trigger key for example). Therefore a recog-
nition algorithm should be able to automatically calculate
a classification threshold for each gesture in the model to
enable real-time continuous recognition, without the user
having to first train a null-model, such as a noise model
in speech recognition. For the recognition of semiotic mu-
sical gestures it is also beneficial for an algorithm to be
able to, after being initially trained by the performer, auto-
matically adapt its model to provide the best classification
results if the user adapts their own gestures. This is partic-
ularly useful for a musician as they might define a set of
gestures to use at the start of a rehearsal session, for exam-
ple, and then slowly modify and refine these gestures over
the course of the rehearsal period.

To the authors knowledge, there are only a small number
of examples of machine learning algorithms that are suit-
able for gesture recognition and can automatically adapt
their own models online. Licsar and Sziranyi [3], for ex-
ample, developed a vision-based hand gesture recognition
system with interactive training aimed to achieve a user-
independant application by on-line supervised training. Babu
et. al. [4] also created an online adaptive radial basis func-
tion neural network for robust object tracking. However,
both these algorithms did not fulfill the design constraints
for a semiotic musical gesture classification algorithm, as
the algorithm was either restricted to use just a video cam-
era as input to the recognition system or a large number of
training examples were required because of the complex-
ity of the model being used. A novel algorithm, called the
Adaptive Naı̈ve Bayes Classifier, was therefore specif-
ically developed for the recognition of semiotic musical
gestures.

mailto: ngillian01@qub.ac.uk
http://creativecommons.org/licenses/by/3.0/

2. ADAPTIVE NAIVE BAYES CLASSIFIER

The Adaptive Naı̈ve Bayes Classifier (ANBC) is a super-
vised machine learning algorithm based on a simple prob-
abilistic classifier called Naı̈ve Bayes that itself is based
on Bayes’ theory and is particularly apt for the classifica-
tion of musical gestures. Like a Naı̈ve Bayes Classifier,
ANBC makes a number of basic assumptions with regard
to the data it is attempting to classify, most significantly
that all the variables in the data are independent. However,
despite these naı̈ve assumptions, Naı̈ve Bayes Classifiers
have proved successful in many real-world classification
problems [5] [6] [7] [8]. It has also been shown in an em-
pirical study that the Naı̈ve Bayes Classifier not only per-
forms well with completely independent features, but also
with functionally dependent features, which is surprising
given the algorithm’s naı̈ve assumptions [9]. One major
advantage of the ANBC algorithm for the recognition of
musical gestures is that it requires a small amount of train-
ing data to estimate the parameters of each model. This is
mainly due to the naı̈ve assumption that each variable in
the data is independent, as the parameters for each dimen-
sion can be computed independently and it therefore does
not suffer from the ‘curse of dimensionality’[10]. We have
specifically updated the Naı̈ve Bayes Classifier with an
adaptive online training function along with the automatic
computation of a classification threshold for each gesture
in the model, making the algorithm particularly suited for
the recognition of semiotic musical gestures. Prior to ex-
plaining these modifications, we first describe the algo-
rithm’s foundations.

2.1 The Naive Bayes Classifier

The ANBC algorithm is based on the Naı̈ve Bayes Classi-
fier, which itself is based on Bayes’ theory and gives the
likelihood of event A occurring given the observation of
event B:

P (A|B) =
P (B|A)P (A)

P (B)
(1)

where P (A) represents the prior probability of eventA oc-
curring and P (B) is a normalising factor to ensure that all
the posterior probabilities sum to 1. Using Bayes’ theo-
rem, the Naı̈ve Bayes Classifier predicts the likelihood of
gesture gk occurring given the observation of sensor value
x:

P (gk|x) =
P (x|gk)P (gk)∑G
i=1 P (x|gi)P (gi)

(2)

Note that P (B), the normalising factor, has now become
the summation of the likelihood of all the G gestures in
the model occurring given the observation of sensor value
x. In most real-world applications, P (gk), the prior prob-
ability of observing gesture k, will be equally likely for all
the gestures and given by 1/G (in which case it could sim-
ply be ignored). Because a Naı̈ve Bayes Classifier makes
the naı̈ve assumption that each dimension of data is inde-
pendent, equation (2) can easily be extended to calculate
the posterior probability of gesture gk occuring given the

observation of the N -dimensional vector x:

P (gk|x) =
P (x|gk)P (gk)∑G
i=1 P (x|gi)P (gi)

(3)

where x = {x1, x2, . . . , xN}. As each dimension is as-
sumed to be independent, P (x|gk)P (gk), becomes:

P (x|gk)P (gk) =
N∏

n=1

P (xn|gk)P (gk) (4)

2.2 The Gaussian Density Function

The structure of a Naı̈ve Bayes classifier is determined
by the conditional densities P (x|gk) along with the prior
probabilities P (gk). For the classification of musical ges-
tures, the multivariate Gaussian density is a suitable den-
sity function to use, particularly in the instance where the
feature vector x for a given gesture gk is a continuous-
valued, randomly corrupted version of a single prototype
vector µk [8]. This is commonly the case for a static mu-
sical gesture, which will feature a specific body pose that
will be slightly corrupted by both human and sensor vari-
ability, hence why the Gaussian is a good model for the ac-
tual probability distribution. Other density functions such
as the Radial Basis Function, Cauchy distribution [5] or
Dirichlet distribution [11] would also be suitable.

The univariate Gaussian density is specified by two pa-
rameters, its mean µ and its variance σ2:

N (x|µ, σ2) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
(5)

The multivariate Gaussian density function in N dimen-
sions is given as:

N (x|µ,Σ) =
1

(2π)N/2|Σ|1/2
exp

„
−1

2
(x− µ)ᵀΣ−1(x− µ)

«
(6)

where x is an N -dimensional column vector, µ is an N -
dimensional mean vector, Σ is a N -by-N covariance ma-
trix, and |Σ| and Σ−1 are its determinant and inverse re-
spectively. Using the multivariate Gaussian, P (x|gk) can
be replaced by:

P (x|gk) ∼ N (x|µk,Σk) (7)

Instead of having to compute the determinant and inverse
for each Σk, the multivariate Gaussian density function
can be calculated by taking the product of N independent
univariate Gaussians, each with their own mean and vari-
ance values:

N (x|µk,σ
2
k) =

N∏
n=1

1
σn

√
2π

exp
(
− (xn − µn)2

2σ2
n

)
(8)

2.3 Adding a Weighting Coefficient

For the recognition of musical gestures, it is beneficial to
add an additional weighting coefficient (φkn) for the nth
dimension of the kth gesture. This weighting coefficient
adds an important feature for the ANBC algorithm as it

enables one general classifier to be trained with a high
number of multi-dimensional signals, even if a number of
signals are only relevant for one particular gesture. For
example, if the ANBC algorithm was used to recognise
hand gestures, the weighting coefficients would enable one
general classifier to recognise both left and right hand ges-
tures independently, without the position of the left hand
affecting the classification of a right handed gesture. By
setting the left handed sensor dimension’s weighting co-
efficients to 0 for any right handed gesture and the right
handed sensor dimension’s weighting coefficients to 1, any
left handed movements will be ignored for a right handed
gesture. The opposite weighting coefficient values could
also be set for any left handed gesture, or for a gesture that
required both hands, all the weighting coefficients could
be set to 1. This simple addition of a weighting coefficient
enables one general classifier to be trained for left handed,
right handed and two handed gestures, rather than creat-
ing and training three individual classifiers. This weighting
coefficient can either be set manually by the user or could
even be set by computing the overall significance of each
dimension for each particular gesture. A Gaussian model
(Φ) for the kth gesture therefore consists of:

Φk = {µk,σ
2
k,φk} (9)

Equation (8) can therefore be updated with a weighting co-
efficient to give:

N (x|Φk) =

NY
n=1

(
if φn > 0, 1

σn
√

2π
exp

“
− (xn−µn)2

2σ2
n

”
φn

otherwise, 1
(10)

To stop a weighting coefficient value of 0 setting the prod-
uct over all dimensions to 0, regardless of the other val-
ues or weights, the current product will only be multiplied
by the nth dimensional Gaussian value if the nth dimen-
sional weight coefficient is greater than 0. If the nth di-
mensional weighting coefficient is equal to 0 then that di-
mension should be ignored and therefore 1.0 is used in-
stead.

2.4 Real-World Computational Concerns

As the product of a large number of small probabilities
can easily underflow the numerically precision of a com-
puter, it is more practical to take the sum of the log of each
weighted Gaussian rather than the product:

lnN (x|Φk) =

NX
n=1

ln

(
if φn > 0, 1

σn
√

2π
exp

“
− (xn−µn)2

2σ2
n

”
φn

otherwise, 1
(11)

Taking the log of the function not only stops numerically
underflow, it also simplifies the subsequent mathematical
analysis. Because the logarithm is a monotonically in-
creasing function of its argument, maximization of the log
function is equivalent to maximization of the function it-
self [10]. Like the case in equation (10), the log of the
weighted Gaussian is only taken if the nth dimensional
weighting coefficient is greater than 0, otherwise the log
of 1 is used instead which gives 0 and therefore achieves
the desired result.

2.5 Training The Gaussian Model

Using the weighted Gaussian model, the ANBC algorithm
requires G(3N) parameters, assuming that each of the G-
gestures require specific values for the N -dimensional µk,
σ2

k and φk vectors. Assuming that φk is set by the user,
the µk and σ2

k values can easily be calculated in a super-
vised learning scenario by grouping the input training data
X, a matrix containing M training examples each with N
dimensions, into their corresponding classes. The values
for µ and σ2 of each dimension (n) for each class (k) can
then be estimated by computing the mean and variance of
the grouped training data for each of the respective classes:

µkn =
1
Mk

M∑
i=1

1 {Xin} 1 ≤ k ≤ G, 1 ≤ n ≤ N

(12)

σkn =

√√√√ 1
Mk − 1

M∑
i=1

1
{

(Xin − µkn)2
}

1 ≤ k ≤ G, 1 ≤ n ≤ N (13)

where Mk is the number of training examples in the kth
class and 1{·} is the indicator bracket that gives 1 when
the training label of example i equals k and 0 otherwise.

2.6 Preventing Over-Fitting

Although the Gaussian distribution is a suitable function to
use when the number of training examples is small, com-
pared with more complex distributions with a high number
of parameters, it is still prone to the problem of bias. In
particular, it can be shown that the maximum likelihood
solution given by taking the sample mean and sample vari-
ance will commonly underestimate the true variance of a
distribution [10]. This is a key example of over-fitting
when a limited number of training examples are presented
to the learning algorithm. The bias of the maximum like-
lihood solution will, however, become significantly less as
the number ofMk training points increases and in the limit
Mk → ∞ the maximum likelihood solution for the vari-
ance equals the true variance of the distribution that gener-
ated it. A performer should therefore ensure that they do
not attempt to train the ANBC algorithm with a very lim-
ited number of training example as this would cause the
algorithm to severely over fit its model.

2.7 Classification Using The Gaussian Model

After the Gaussian models have been trained for each of
the G classes, an unknown N -dimensional vector x can
be classified as one of the G classes using the maximum a
posterior probability estimate (MAP). The MAP estimate
classifies x as the kth class that results in the maximum a
posterior probability given by:

arg max
k

P (gk|x) =
P (x|gk)P (gk)∑G
i=1 P (x|gi)P (gi)

1 ≤ k ≤ G

(14)
As the denominator in equation (14) is common across all

gestures it can therefore be ignored without effecting the

results. If P (gk) is a constant scalar that is equal across all
of the G gestures then it can also be ignored, leaving the
maximum likelihood which, when using the logarithm of
the weighted Gaussian model, is equivalent to:

arg max
k

ln N (x|Φk) 1 ≤ k ≤ G (15)

Using equation (15), an unknown N -dimensional vector
x can be classified as one of the G classes from a trained
ANBC model. If x actually comes from an unknown dis-
tribution that has not been modeled by one of the trained
classes (i.e. if it is not any of the gestures in the model)
then, unfortunately, it will be incorrectly classified against
the kth gesture that gives the maximum log-likelihood value.
A rejection threshold, τk, must therefore be calculated for
each of the G gestures to enable the algorithm to classify
any of theG gestures from a continuous stream of data that
also contains non-gestural data.

2.8 Computing a Rejection Threshold

For the rejection threshold, we desire a value that indicates
how confident the classifier is in predicting that x actually
came from the kth distribution. In some applications it
would be possible to use the normalised value resulting
from Bayes’ theorem and classify x as class k if its pre-
diction value was above some pre-defined value, such as
0.5. Unfortunately though, this approach will not work
for the classification of a semiotic gesture in a continuous
stream of data which may also contain segments of non-
gestural data. Bayes’ theorem cannot be used in this in-
stance because, as P (B|A)P (A) is normalised by P (B), a
poor prediction value when normalised may unfortunately
yield a very confident prediction value, resulting in a false-
positive classification error if x is not a gesture.

This error can easily be mitigated however by using the
log-likelihood value of the kth predicted gesture as a mea-
sure of how confident the algorithm is that x is in fact ges-
ture k. Using the log of the weighted Gaussian function
as a confidence measure, a suitable rejection threshold can
therefore be computed during the algorithms training phase
to enable the rejection of non-gestural data in the real-time
classification phase. The rejection threshold, τk, can be
computed for each of the G gestures by taking the average
confidence level of all the training data for class k minus γ
standard deviations:

τk = µ∗k −
(
σ∗kγ

)
(16)

where µ∗k and σ∗k are the average confidence values and
standard deviation of the confidence levels respectively for
the kth gesture given by:

µ∗k =
1
Mk

M∑
i=1

1 {ln N (Xi|Φk)} (17)

σ∗k =

√√√√ 1
Mk − 1

M∑
i=1

1
{

(ln N (Xi|Φk)− µ∗k)2
}

(18)

Here γ is a constant scalar value that can be adjusted by
the user until a suitable level of classification has been

achieved. The γ parameter enables the performer to fur-
ther mitigate the effects of over-fitting, as by setting γ to
a value greater than 1.0 will lower the threshold value and
enable ‘noisier’ data than that in the training data set to
be classified as gesture k. Using the rejection threshold,
a gesture will only be classified as k if its log-likelihood
estimation is greater than or equal to that classes’ thresh-
old value. Otherwise, x will be classified as a null gesture,
usually with an I.D. value of 0:

k̂ =

{
k if(ln N (x|Φk) ≥ τk)
0 otherwise

(19)

2.9 Adaptive Online Training

One key element of the Naı̈ve Bayes Classifier, is that it
can easily be made adaptive. Adding an adaptive online
training phase to the common two-phase (training and pre-
diction) ethos provides some significant advantages for the
recognition of semiotic musical gestures. During the adap-
tive online training phase the algorithm will not only per-
form real-time predictions on the continuous stream of in-
put data; it will also continue to train and refine the mod-
els for each gesture. This enables the performer to initially
train the algorithm with a low number of training examples
after which, during the adaptive online training phase, the
algorithm can continue to train and refine the initial mod-
els, creating a more robust model as the number of train-
ing examples increases. The adaptive online training phase
also importantly facilitates the algorithm to adapt its initial
model as the performer themselves adapts and refines their
own gestures; as may happen over the course of a rehearsal
period for example. The adaptive online training works as
follows:

After the musician has initially trained the algorithm, they
can use it in real-time to classify their musical gestures.
During this real-time prediction, the musician can choose
to turn on the adaptive online training mode. In this mode
the algorithm will slowly refine µk,σk and τk for each of
the G gestures, overwriting the previous models that have
been computed earlier. For the adaptive online training
phase, the user must first decide on three parameters, the
maximum training buffer size, the update rate and γ the
scalar on the number of standard deviations (see equation
(16)). These parameters control the maximum number of
training examples to save for each class in the model, how
fast the algorithm retrains the model and the number of
standard deviations to use when calculating the classifica-
tion threshold in the model respectively. If x is classified
as gk and is greater than or equal to τk as determined by
equation (19) then:

• Add x to the training buffer, popping out the oldest
training example if the buffer is full and increment
the update counter by 1.

• If the update counter is equal to the update rate then
recompute µk,σk and τk using the data in the train-
ing buffer. These are calculated using equations (12),
(13), (17) and (18). Reset the update counter to 0.

Using a limited size first-in, first-out (FIFO) buffer, set by
the maximum training buffer size parameter, ensures that
only the most recent training examples are used to refine
the models allowing the µ and σ vectors to slowly change
as the user refines their own movements. Setting a fixed
buffer size also ensures that an unfeasible amount of mem-
ory is not consumed by thousands of training examples
over the course of a long rehearsal session. An individual
FIFO buffer must be used for each of the G gestures to en-
sure that a large amount of new training data for one class
does not ‘pop-out’ the original training data in any of the
other classes. The speed at which the algorithm adapts can
be controlled by the update rate parameter, allowing the
performer to control how sensitive the adaption algorithm
will be to their latest gestures. The overall sensitivity of
the system, both for the adaptive online training phase and
for the standard real-time prediction can be controlled by
the performer using the γ parameter.

2.10 Real Time Implementation

The ANBC algorithm has been fully integrated into the
SEC, a machine learning toolbox that has been specifically
developed for musician-computer interaction [2]. The SEC
is a third party toolbox consisting of a large number of
machine learning algorithms that have been added to Eye-
sWeb 1 , a free open software platform that was established
to support the development of real-time multimodal dis-
tributed interactive applications.

2.11 Strengths and weaknesses of the ANBC
algorithm

The greatest strength of the ANBC algorithm is also, per-
haps, its greatest weakness. This is the algorithm’s ability
to automatically adapt its model by adding the latest clas-
sified input vector to the data that will then be used to re-
compute the model. In the best case this self-labelled data
will help to create a more robust model, however, in the
worst case a small number of incorrectly labelled training
examples could create a ‘run-away’ model that becomes
less effective at each update step. To mitigate this problem
we have added a parameter in the EyesWeb implementa-
tion of the algorithm that enables the user to reload the
original ANBC model if the real-time classification abil-
ities of an updated model starts to perform poorly. The
user can also ensure that they have set the buffer size, up-
date rate and γ parameters to the most appropriate values.
We have found through the real-time application of using
the ANBC algorithm to classify semiotic musical gestures,
that one of its key strengths is the algorithm’s ability to
automatically compute τk, the classification threshold for
the kth gesture. This classification threshold enables the
ANBC algorithm to classify a gesture from a continuous
stream of data that also contains null-gestures without hav-
ing to explicitly train a null-class or tell the algorithm that
one of the gestures has just been performed.

1 http://musart.dist.unige.it/EywMain.html

3. EVALUATING THE ANBC ALGORITHM

The adaptive classification abilities of the ANBC algorithm
were tested using a simple ‘free-space’ pointing based ex-
perimental task. Participants were asked to define a num-
ber of target areas within a fixed region of space that they
then had to return to when prompted. The ANBC algo-
rithm was then used to classify if the participant’s hands
were in the correct area of space when prompted; and if
the classification results would improve when the adaptive
function of the algorithm was used. To constrain this task
as much as possible we chose not to use a musical sce-
nario and instead used a rudimentary game orientated task.
To achieve this we created a virtual boxing game called
‘Air Makoto’ in which participants were asked to strike a
number of virtual targets when prompted. The ANBC al-
gorithm, combined with a punch detection algorithm, were
used to recognise if the participant was able to successfully
hit the correct virtual target within a limited time scale.

3.1 Air Makoto

Air Makoto is a virtual boxing game loosely based on the
martial arts training game Makoto 2 . In Makoto, a player
stands in the center of an equilateral triangle, with a six-
foot tall metal column situated on each of the three cor-
ners of the triangle. Each column features ten clear panels
containing lights, pressure sensors and a speaker and rep-
resents an ‘opponent’ for the player to battle with. The
player uses one piece of equipment, consisting of a four
foot fiber-glass pole with lightly padded ends. The objec-
tive of Makoto is for the player to continually strike the
randomly appearing lights on each of the columns as fast
as possible using the pole without missing any, as the com-
puter controlling the lights monitors the player’s reaction
time. As the game progresses, the interval between each
new light and the amount of time it is lit decreases, with
the overall objective of the game to make it to the end of
the final level without missing a single panel.

Air Makoto uses a similar game design, with the excep-
tion that only two columns are used, both of which are
imaginary. The player must therefore define where in space
they want the columns’ target panels to be located. For
simplicity, we used three target panels for each column and
asked the player to ‘punch’ the air targets when prompted,
rather than hitting them with a pole. Using Air Makoto, we
were able to test the classification abilities of the ANBC al-
gorithm by using it to recognise whether a player had suc-
cessfully hit the corresponding target panel when prompted.
A Polhemus Liberty 6-degrees of freedom magnetic tracker
was used to track the participants’ movements, using cus-
tom built capturing software. The Polhemus was sam-
pled at 120Hz using two tracking sensors, one of each
mounted on the top of a small glove that each participant
was asked to wear on their left and right hands. The Pol-
hemus data was streamed directly into EyesWeb via OSC,
after which the position data from both sensors was sent
to the ANBC block for training/prediction, along with be-
ing sent to a hit detection algorithm to recognise the punch

2 http://www.makoto-usa.com/new/index.html

gestures. EyesWeb then sent the ID’s of any punch ges-
tures that were recognised via OSC to Processing 3 which
contained a game engine, to keep track of the participant’s
progress during a game, and a visual engine, that provided
the participant with a 3D virtual game environment for vi-
sual feedback, as illustrated in Figure 1.

Figure 1. The Air Makoto game screen

3.2 Hit Detection

In Air Makoto, a participant was evaluated as being able
to correctly hit a target panel if they made a punching ges-
ture at the imaginary location of the correct target panel
before the target panels light went out. The ANBC algo-
rithm was used to detect whether the player’s hand was in
the correct target area, however, the game also required a
way of detecting whether a punch gesture was made. A
punch gesture was detected by taking the first derivative of
the position data from the X, Y and Z axis of both sensors
on the left and right hands. The position data was first low
pass filtered using a moving average filter with a buffer size
of 5 prior to differentiation. The differentiated signal was
then passed through a dead zone block which zeroed any
value between the range of -1.0 to 1.0, offsetting any value
either above or below this range by -1. The output of the
dead zone block was passed through a threshold crossing
block that was triggered with an upwards threshold cross-
ing above the value of 0.1. Using these signal processing
techniques, illustrated in Figure 2, a robust punch detec-
tion algorithm was created as the thresholding block would
only trigger an output if a negative-positive change of di-
rection occurred in any of the three axes of either hand.
If a threshold crossing was detected then EyesWeb would
check to ensure that the ANBC algorithm was predicting
that one of the corresponding target areas was active, send-
ing a message to the Air Makoto game engine running in
Processing to inform it of the punch.

3.3 Subjects And Setup

Twelve participants were recruited from the SARC research
community via email. The sample group consisted of 9
males and 3 females with an average age of 29.3 (σ =
2.96). Six of the participants were right handed and none
of the participants had any conditions that would have af-
fected them in performing any of the movements required
in this experiment. Each participant was asked to stand

3 http://processing.org/

Figure 2. An example of the four main signal processing
steps of the hit detection algorithm used to detect punches
in the Air Makoto game. Moving from top down the four
images show: z position smoothed data, first derivative of
z, dead zone of the derivative signal and finally the up-
wards threshold detection on the dead zone signal.

on a marked location in the room and face a large projec-
tion screen situated three meters in front of them and two
meters to their right. A pair of speakers was placed on
either side of the screen to provide audio feedback. The
projection screen displayed the Air Makoto virtual game
scene, which consisted of two wooden columns placed on
the left and right of the main view (as illustrated in Fig-
ure 1). Each column featured three dark red panels, which
would change to bright red when the participant needed to
hit them.

3.4 Method

We used a within-subject experimental design, in which
each participant was asked to play the Air Makoto game
in two conditions. Condition A used the ANBC algorithm
without the adaptive online training mode and condition B
used the ANBC algorithm with the adaptive online training
mode. Prior to playing the game in either condition, each
participant was given specific instructions about how to
play the game and what they needed to do to train the sys-
tem to recognise the location of their target panels. None
of the participants were told that the ANBC algorithm was
being used to recognise their gestures. The experiment was
divided into three phases, with an initial data collection
phase followed by a practice phase and a game phase. The
practice and game phases were repeated for each of the
two conditions. The order in which each participant com-
pleted the two conditions was randomised to account for
any learning effects that might have occurred over the pre-
vious practice and game phases.

3.4.1 Data Collection Phase

To gather the initial training data required to train the ANBC
algorithm for both conditions, each participant was asked
to move their hand around the location of where they wanted
to place each of the three target panels for each column.
The participants were asked to only use their left hand to
train and hit the three target panels on the left-most column
and to only use their right hand to train and hit the three tar-
get panels on the right-most column. For the actual training
stage, each target panel on the screen would light up yellow

indicating for the participant to move their respective hand
to the location they wanted that target panel to be placed.
The target panel would then light up red, indicating that
the training data was being recorded, at which point the
participant was instructed to move their hand around the
location of the target panel covering a sphere with a diam-
eter of approximately 12-inches. The size of each target
area was constrained to approximately 12-inches to ensure
the game would be challenging enough for the participants
to play. After five seconds the training data for that target
panel would stop being recorded and the next panel would
light up yellow indicating that the training data for that tar-
get panel was about to be recorded. This was repeated until
the training data for all of the target panels was recorded.

3.4.2 Practice Phase

The participant then entered a practice phase which lasted
for one minute. In the practice phase all audio and vi-
sual feedback was turned on. For condition A, the original
training data was simply reloaded and the adaptive training
mode was turned off. For condition B however, the adap-
tive training mode was turned on during the practice phase.
At no stage in the experiment could the participants see a
representation of the position of their hands in the virtual
world as this would have made the game too easy. How-
ever, during the practice phase an additional piece of visual
feedback was provided in the form of a white square that
would light up around any target panel if the participant
had their hand in the location of that target panel. This vi-
sual feedback gave the participants valuable information in
terms of whether they had their hands in the correct loca-
tion or not. The participants also received audio feedback
in the form of a punching noise if they were able to suc-
cessfully ‘hit’ an illuminated target panel in the time allot-
ted. This audio feedback informed the participants whether
they were punching in the correct location and also mak-
ing the correct punching gesture to trigger a hit. All of
the twelve participants were able to perform the correct
punching gestures, if they could remember where they had
placed the target locations. The fact that each participant
could correctly trigger a hit showed that there was no in-
fluence in the participants training the ANBC algorithm
by moving their hand around the hit location; even though
they then triggered a hit by punching this location in the
practice and game phases.

3.4.3 Game Phase

After the participants had completed their one minute prac-
tice phase, they were then asked to play the main game
during which their successful hit scores would be recorded.
The main game lasted a total of two minutes, during which
time the participants had to hit fifty randomly selected vir-
tual target panels. To ensure the game was not too easy
for the participants, each panel was only illuminated for
1.5 seconds, resulting that a participant had to react very
quickly to hit the correct target panel. During the main
game the participants only received the visual feedback in-
forming them of which target panel they needed to hit. The
‘correct target area’ visual feedback and ‘correct punch

noise’ audio feedback were both turned off, resulting that
the participants were unsure whether they were hitting the
correct target panel in time or whether they were even punch-
ing the correct area of space at all. At the end of the two
minute game the correct hit accuracy score was displayed
on the screen, informing the participant how well they had
performed overall during that main game. The correct hit
accuracy score was calculated by awarding the participant
a point for each of the 50 randomly selected virtual tar-
get panels if the participant successfully ‘hit’ the correct
illuminated target panel within the 1.5 second time frame.
Each participant was then given a small amount of time to
rest before starting the practice phase again, only this time
with a different condition being used. After the second
practice phase the participant then played the main game
one final time after which their scores were recorded.

3.4.4 Algorithm Settings

For this experiment, we set the maximum training buffer
size parameter to 600 to ensure that the number of training
examples in the inital training data set would be equal to
the number of training examples used to retrain the ANBC
algorithm during the practice phase in condition B. The
update rate was set to 240, resulting in the ANBC model
being recomputed every two seconds during the practice
phase in condition B. The γ parameter was set to 5 for all
conditions.

3.5 Results & Discussion

Table 1 contains the results for all twelve participants across
both conditions. All of the participants, with the excep-
tion of participant eight, achieved a higher score in con-
dition B which used the adaptive function compared with
condition A which just used the training data collected in
the initial data collection phase. A paired t-test analysis
on these results showed that there was a significant over-
all improvement between the participants’ scores in con-
dition A with that of the participants’ scores in condition
B (h = 1, p = 0.0028). But why? One observation noted
during the course of the study may explain these results, in
that the majority of participants found it difficult to remem-
ber exactly where they had placed some or all of their tar-
get zones, even thirty seconds after they had just specified
their locations. Because of this inability to locate the target
zones, many of the participants had to spend the first thirty
seconds of the practice phase just locating one or several
of the target zones. In condition B, a difficult target zone
slowly adapted itself until the participant found it easy to
locate, with many of the participants remarking “ah, now
I remember where it is”, unaware that the algorithm was
adapting the location and size of the target zone as the par-
ticipant was exploring its possible location in space. The
outcome of this adaptive training resulted that, for the ma-
jority of participants, they were consistently successful at
hitting the flashing target panels by the time the practice
mode ended. In condition A however, many of the partic-
ipants were still unsure of exactly where they needed to
punch for one or more of the target panels by the time the
practice mode ended. This observation highlights two im-

Participant # 1 2 3 4 5 6 7 8 9 10 11 12
Condition A 25 24 28 13 13 16 34 38 18 17 40 21
Condition B 29 42 31 24 17 31 42 36 19 19 45 36

Table 1. The results for all twelve participants for conditions A and B, with the maximum score possible in either condition
of 50. The adaptive training was only used in condition B.

portant points for the application of such ‘free space’ ges-
tures for both music and the wider HCI community. The
first is a performer’s ability to remember the precise loca-
tion of a point in space and the second is the importance of
some form of visual or audio feedback to inform the user
how far they are from any target location. For this exper-
iment we used a world-centered frame of reference (FoR)
[12], in which the user’s movements were tracked relative
to the 3D space in which they were moving. The partic-
ipants may have found it easier to locate the target areas
if a body-centered FoR, in which the target areas were al-
ways relative to the user’s body, was used instead. A body-
centered FoR may have helped the user, as a target area
placed at eye-level and arms reach at the user’s right, for
example, would always be at this body-centered-location
irrespective of where in the room the participant moved. A
body-centered FoR could have been achieved using a third
tracking sensor placed on the participant’s chest, for exam-
ple, from which the position coordinates of all the other
sensors could be translated.

Participant eight, the only participant to achieve a better
score in condition A over condition B, achieved an above
average score (µA = 23.92, µB = 30.92) of 38 and 36
for conditions A and B respectively. A possible reason
of this participant achieving a better score in condiiton A
over condition B is that his ‘target zones’ were already op-
timally trained from the initial training data and the dif-
ference in score simply resulted from a better performance
in condition A over condition B. Obviously, all of the par-
ticipants would have achieved a higher score if they were
allowed to move their hands around a much larger area
of space in the initial data collection phase as this would
have created a much larger ‘target zone’, enabling the par-
ticipant to be less accurate. To mitigate this, we deliber-
ately constrained the participants to only move their hands
around a spherically volume with an approximate diame-
ter of twelve inches. This constraint, combined with the
speed at which the random panels appeared in the main
game phase ensured that the game was difficult enough to
prove a challenge to the participants. This is confirmed by
the results over all participants and across both conditions
as none of the participants were able to successfully hit all
fifty of the targets.

4. CONCLUSION

This paper has presented the Adaptive Naı̈ve Bayes Clas-
sifier, a novel machine learning algorithm that has been
developed for the classification of semiotic musical ges-
tures. We have shown how the algorithm can classify a set
of gestures in a continuous stream of data and how the al-
gorithm can slowly adapt itself once initially trained. The
paper was concluded with a study that showed a signifi-
cant overall improvement in the classification abilities of

the algorithm when the adaptive function was used.

5. REFERENCES

[1] B. Rimé and L. Schiaratura, “Gesture and speech,”
1991.

[2] N. Gillian, R. B. Knapp, and S. O’Modhrain, “A
machine learning toolbox for musician computer in-
teraction,” in Proceedings of the 2011 International
Coference on New Interfaces for Musical Expression
(NIME11), 2011.

[3] A. Licsar and T. Sziranyi, “User-adaptive hand ges-
ture recognition system with interactive training,” Im-
age and Vision Computing, vol. 23, no. 12, pp. 1102 –
1114, 2005.

[4] R. V. Babu, S. Suresh, and A. Makur, “Online adaptive
radial basis function networks for robust object track-
ing,” Computer Vision and Image Understanding, vol.
114, no. 3, pp. 297 – 310, 2010.

[5] N. Sebe, M. S. Lew, I. Cohen, A. Garg, and T. S.
Huang, “Emotion recognition using a cauchy naive
bayes classifier,” Pattern Recognition, International
Conference on, vol. 1, p. 10017, 2002.

[6] Y. Li and R. Anderson-Sprecher, “Facies identification
from well logs: A comparison of discriminant analysis
and naive bayes classifier,” Journal of Petroleum Sci-
ence and Engineering, vol. 53, no. 3-4, pp. 149 – 157,
2006.

[7] S. Lu, D. Chiang, H. Keh, and H. Huang, “Chinese text
classification by the naı̄ve bayes classifier and the as-
sociative classifier with multiple confidence threshold
values,” Knowledge-Based Systems, 2010.

[8] R. Duda, P. Hart, and D. Stork, Pattern classification.
Citeseer, 2001.

[9] I. Rish, “An empirical study of the naive bayes classi-
fier,” in IJCAI-01 workshop on ”Empirical Methods in
AI”, 2001.

[10] C. M. Bishop, Pattern Recognition and Machine
Learning. Science and Business Media, Springer,
2006.

[11] T.-T. Wong and L.-H. Chang, “Individual attribute
prior setting methods for naive bayesian classifiers,”
Pattern Recognition, vol. 44, no. 5, pp. 1041 – 1047,
2011.

[12] S. O’Modhrain, “Touch and godesigning haptic feed-
back for a hand-held mobile device,” BT technology
journal, vol. 22, no. 4, pp. 139–145, 2004.

	 1. Introduction
	 2. Adaptive Naive Bayes Classifier
	2.1 The Naive Bayes Classifier
	2.2 The Gaussian Density Function
	2.3 Adding a Weighting Coefficient
	2.4 Real-World Computational Concerns
	2.5 Training The Gaussian Model
	2.6 Preventing Over-Fitting
	2.7 Classification Using The Gaussian Model
	2.8 Computing a Rejection Threshold
	2.9 Adaptive Online Training
	2.10 Real Time Implementation
	2.11 Strengths and weaknesses of the ANBC algorithm

	 3. Evaluating the ANBC Algorithm
	3.1 Air Makoto
	3.2 Hit Detection
	3.3 Subjects And Setup
	3.4 Method
	3.4.1 Data Collection Phase
	3.4.2 Practice Phase
	3.4.3 Game Phase
	3.4.4 Algorithm Settings

	3.5 Results & Discussion

	 4. Conclusion
	 5. References

