
AN ANALOG I/O INTERFACE BOARD FOR AUDIO ARDUINO OPEN
SOUND CARD SYSTEM

Smilen Dimitrov
Medialogy, Aalborg University Copenhagen

sd@{imi,create}.aau.dk

Stefania Serafin
Medialogy, Aalborg University Copenhagen

sts@{imi,create}.aau.dk

ABSTRACT

AUDIOARDUINO [1] is a system consisting of an ALSA
(Advanced Linux Sound Architecture) audio driver and cor-
responding microcontroller code; that can demonstrate full-
duplex, mono, 8-bit, 44.1 kHz soundcard behavior on an
FTDI based Arduino. While the basic operation as a
soundcard can be demonstrated with nothing more than a
pair of headphones and a couple of capacitors - modern
PC soundcards typically make use of multiple signal stan-
dards; and correspondingly, multiple connectors.

The usual distinction that typical off-the-shelf stereo sound-
cards make, is between line-level signals (line-in/line-out)
- and those not conforming to this standard (such as mi-
crophone input/speaker output). To provide a physical il-
lustration of these issues in soundcard design, this project
outlines an open design for a simple single-sided PCB,
intended for experimentation (via interconnection of ba-
sic circuits on board). The contribution of this project
is in providing a basic introductory overview of some of
the problems (PWM output in particular) in analog I/O
design and implementation for soundcards through a real
world example, which - while incapable of delivering pro-
fessional grade quality - could still be useful, primarily in
an educational scope.

1. INTRODUCTION

In contemporary terms, a soundcard is a device that is rec-
ognized by consumer users in having a specific role: it pro-
vides an analog input/output hardware interface to high-
level PC audio software (from media players like VLC to
processing environments like PureData). As such, the
development of a soundcard can be seen as a cross-disciplin-
ary effort, requiring understanding of both (analog and dig-
ital) electronics, and software engineering (from OS drivers
to application level). Consequently, it is (for the most part)
commercial enterprises that have the resources to develop
soundcard systems, in terms of practical implementation.

However, thanks to the broader penetration of affordable
technology in the mass market, as well as developments in
open source software - the development of practical sound-
card systems could be also within the reach of the DIY de-
veloper. This paper can be seen in the context of a wider
project aiming to broaden the discussion on open, DIY

Copyright: ©2011 Smilen Dimitrov et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

soundcard designs (as examples of PC controlled digital
audio hardware): [2] discusses an obsolete, historic hard-
ware design (with discrete parts) controlled by simple soft-
ware - while the AUDIOARDUINO [1] project demonstrates
a working, open soundcard system, which is based on: an
FTDI based Arduino Duemillanove as hardware; spe-
cific microcontroller code for Arduino’s ATmega328; and
matching ALSA soundcard driver for Linux. Note that the
main discussion of the streaming capability, software and
microcontroller issues of AUDIOARDUINO is given in [1];
this paper can be seen as an extension, focusing on the is-
sues of analog I/O.

The wider intent is to address those, that wish to start
studying the interaction between digital audio hardware
and software through practical examples - and as such,
would represent ’novices’: here understood as people that
may have basic understanding of analog (e.g. op-amps)
and digital (e.g. 74XX series) electronics, as well as soft-
ware (C programming) - but not necessarily practical ex-
perience with application of these domains in the context
of digital audio. As such, they are likely to encounter a
similar situation, as some of the developers on this project:
while there may be ample literature on best practices (also
from industrial perspective) in both digital and analog au-
dio, often times the discussion is in reference to simula-
tion results or industry equipment; and it can be difficult
to parse for a novice, without a previous practical insight.
Then again, the practical insight can be difficult to gain,
assuming the easiest (and most obvious) access to parts for
such novices is an average electronics lab (typically offer-
ing ’classic’ through-hole, discrete parts).

The board in this project follows that naïve approach: the
intent is not to provide a design competitive or compara-
ble to commercial products; rather, it is to start discussing
issues in analog I/O, from the perspective of AUDIOARD-
UINO, through a board that could relatively easily be as-
sembled by novices. AUDIOARDUINO takes the CD qual-
ity (16-bit, 44.1kHz - supported by many soundcards) as
a reference, and then attempts to achieve it, insofar as the
hardware and the simplicity of the approach allow. Even-
tually as an 8-bit, mono device, AUDIOARDUINO allows
for simpler conceptualization of the the ’analog sample’
(as a building block of the digital audio stream) in the
software domain; this board, then, aims to complement
that approach, and simply allow for the ’analog sample’ to
be more easily traced in both analog and digital domains
- in the same context as real soundcards. Furthermore,
there are commercial offerings that use the Arduino for
sound, such as Waveshield, VoiceBox shield, Seeed-

studio Arduino Music Player Shield or rmp3, which

mailto:sd@imi.aau.dk
mailto:sts@imi.aau.dk
http://creativecommons.org/licenses/by/3.0/

provide better fidelity than AUDIOARDUINO - however,
they represent standalone audio players/recorders; while
AUDIOARDUINO represents a soundcard. As such, while
the study of these devices may hold the key for a quality
analog I/O for AUDIOARDUINO, the intent here is more
on documenting how basic elements behave in simple con-
figurations - as opposed to obtaining performance. This is
also the reason why established techniques like data com-
pression, or companding (A-law or µ-law), are not addressed;
while many other technical details are included for refer-
ence. In this way, the paper could serve as introductory
material, especially to people with untraditional electron-
ics engineering background - in particular the wider elec-
tronic music instrument community. 1 And while the pro-
vided technical details may be difficult to structure in a
more meaningful way for non-specialists, they represent
a kind of practical experience which, the authors believe,
makes the difference between a theoretical concept and a
practical exercise - and as such, would be of interest to
novices.

Eventually, as this paper concludes, the use of this board
does not necessarily deliver any advantage - as opposed to
using the ’raw’ analog I/O of the Arduino. Yet, document-
ing its development and performance, through this paper
and media (schematics, video) on associated webpage [3],
could be of use as a starting point to novices - even without
building the board. Thus, the contribution of this paper is
primarily educational - however, it could possibly lead to
the development of an analog I/O board for AUDIOARD-
UINO, that would be close to matching the contemporary
state-of-the-art.

2. PREMISE

In simple terms, the problem here can be stated as follows:
while AUDIOARDUINO can demonstrate a soundcard op-
eration, it does so by reading a 0-5V analog input, and
providing a 0-5V PWM signal as analog output; however,
soundcards typically feature line (line-in and line-out) con-
nectors, as well as microphone input and speaker output -
all of which operate with analog signals, with a different
format from those that can be obtained directly from the
Arduino. The question is then, what basic circuitry could
we use to address the conversion between the analog inter-
face already present in AUDIOARDUINO, and the typical
analog interface found on a soundcard; and what could be
expected from a practical implementation of the same.

As discussed in [1], an Arduino is sufficient to demon-
strate the operation of a soundcard - in particular, because
on-board facilities of Arduino’s ATmega328 are used to
implement analog input/output (I/O). In a soundcard archi-
tecture sense, the Arduino board can be said to implement
the functionality of both the digital bus interface, and the
analog-to-digital (ADC) and digital-to-analog (DAC) con-
version.

In terms of analog input, the ATmega328 contains a sin-
gle 10- bit successive approximation ADC unit, which is

1 which, partly thanks to platforms like the Arduino, may have ex-
perienced increased exposure to basic analog electronics issues - also for
its members with primary expertise in other fields

in turn connected to an 8-channel multiplexer [4, p.251].
The use of an Arduino for AD conversion of diverse sen-
sor signals is standard practice [5], where the usual user
expectation is to obtain values in the 10-bit range (from 0
to 1023) - as representation of a voltage signal, in the range
from 0 to 5V, brought to an analog input. Lacking any in-
put filters, signals containing a constant (DC) 2 component
can be sampled without a problem (in contrast to the main
issue in [2]).

In terms of analog output, the ATmega328 offers three
programmable ’Timer/Counters’: Timer1 (16-bit), Timer0
and Timer2 (8-bit) [4]. Each of these can count monotoni-
cally up or down (which corresponds to a saw or triangular
’digital’ signal in time domain); and have associated ’Out-
put Compare’ (OC) units, registers and pins - which allow
for comparison of the current counter value with a preset
value. The result of this compare operation, can be output
on the respective OC pin as high (5V) or low (0V) volt-
age level. Thus, the OC units can be used as binary (i.e.,
’square’) signal generators - where the period of the sig-
nal is determined by: the clock frequency, maximum and
minimum value of the counter (called ’top’ and ’bottom’
in [4]), the mode and direction of counting, and the result
of the current compare operation. In AUDIOARDUINO, the
analog representation of the incoming 8-bit/44100 Hz data
stream is a binary PWM signal with a frequency of 62500
Hz - where the duty cycle of the PWM signal corresponds
to the analog sample value.

3. ANALOG I/O AUDIO LEVEL STANDARDS

When discussing analog signal interfaces for audio, related
literature often mentions three categories: [6] mentions
three levels used in a recording chain - microphone level,
line level and speaker level; while [7] talks about low-level
analog signals, line-level signals and amplified signals. In
principle, these categories would simply represent increas-
ing signal levels - thus having a definition for ’line level’
audio, would also partially specify the other two domains.

However, it is not easy to find a single definition of what
line level audio is. The term ’line-level’ itself may origi-
nate from early use in telephony [8], referring to pre-amplified
microphone signals [9]; but its possibly easiest definition is
as both ’the output level of a preamplifier’, and ’the input
level of a power amplifier’ [8]. Furthermore, there could
be differences between professional and consumer grade
audio hardware: [6] mentions ’+4 dBu, which is 1.23V’
for professional, and ’-10 dBV, which is 0.316 V’ for con-
sumer applications; [8] mentions ’any level above 25 mV
RMS’ for consumer, and ’0 VU’ as reference for commer-
cial applications - where 0 VU could be: 0.775 V RMS;
1.23 V RMS (+4 dBm); or 1.95 V RMS (+8 dBm). Also,
[10] defines 0 dB for line-level via maximum amplitude of
±0.7 V; while [11] reports ±1.5 V as amplitude for line-
level output of an Ipod.

Given how varying definitions for line-level signal can
be, one could wonder whether there is a standard that could

2 Note that while DC stands for ’direct current’, it is often used, espe-
cially in power supply adapters, to describe a constant voltage signal (as
in "12Vdc") - and a constant signal in general

be consulted. Bohn’s article [12] is solely dedicated to the
complexity involved in pursuing audio standards: the com-
plexity arises from multiple organizations (not all of them
solely dedicated to audio) issuing standards; these orga-
nizations merging and changing character through history,
often results with the same set of standards issued under
different names; the for-profit characters of standards com-
mittees allows for thousands of dollars in cost for complete
sets of standards. Also, since standards are copyrighted,
it is unclear to what extent they can be legally cited in
an open-source project. That being said, ’line-level’ sig-
nals are most likely defined either in IEC 60268 3 "Sound
System Equipment" (via [12]), or in EIA-RS-1603 "Sound
Systems" (via [8] and search, see also [13]). However, for
purposes of this document, we will consider microphone
level signals to be below 25 mV RMS (35 mV peak) - and
line level signals to be above microphone levels, and be-
low 1.23 V RMS (1.74 V peak); the peak being expressed
in terms of a sinusoid (according to VP = VRMS ·

√
2).

In AUDIOARDUINO, in terms of input, we can essentially
abstract the ADC process, as we bring a given analog sig-
nal directly to a pin of Arduino’s ATmega328. As such,
conforming to line level on the input side will require noth-
ing more than simple scaling 4 in the analog domain. How-
ever, in terms of output, what we do obtain as a final ana-
log signal representation is a PWM signal. Thus, if we
want to conform to line levels on the output, we must first
bring this PWM back to a format, where audio informa-
tion is encoded as a voltage level - i.e., we need to perform
a sort of a PWM to analog conversion (Sec. 5.1) - before
we can apply filtering (as appropriate for DA conversion)
and scaling4 (for line level conformance). Such conversion
requires an overview of the PWM signal characteristics.

4. PWM AS ANALOG SIGNAL
REPRESENTATION

Analog to digital conversion is often introduced through
the concept of a sampled (discretized in time) signal: an
analog signal V (t) (a, Fig. 1) is periodically sampled with
a frequency fS ; the values of V (t) at the moments of sam-
pling, are taken as representation of the signal (are held)
for the duration of the entire sampling period TS = 1/fS (b,
Fig. 1). The useful information carried by a sampled ana-
log signal is encoded as an analog voltage level. The sam-
pled values can further be quantized (discretized in ampli-
tude) to a finite set of levels, separated by a step value.
This allows for finite enumeration of the quantized level
set (digitizing), and further encoding with e.g. a binary
code. 5 As such, there is a direct correspondence between
analog sampled-and-held (SH) and pulse width modulation
(PWM) [14] signals, which will be briefly outlined here

3 IEC: International Electrotechnical Commission; IHF: Institute of
High Fidelity; EIA: Electronics Industries Association (now Alliance);
RS: Recommended Standard

4 In this paper, amplification/attenuation refers to multiplication, i.e.
y(t) = a·x(t); and scaling refers to multiplication and constant addition,
i.e. full linear transform y(t) = a · x(t) + b

5 Note that many resources may often refer to visualizations of sam-
pled, quantized analog signals as "PCM"; however, pulse-code modula-
tion (PCM) is a binary encoding technique, which can have the return-to-
zero (RZ) or non-return-to-zero (NRZ) waveforms.

through Fig. 1.

V(t)

tTs 2Ts 3Ts 4Ts

Vmax

VSH(t)

tTs 2Ts 3Ts 4Ts

Vmax

VPWM(t)

t

Ts 2Ts 3Ts 4Ts

VCC

-VCC

a

b

h

d

e

f

g

c

Figure 1. Comparison between analog signal (top, a); its
sample-and-hold (middle, b) and its PWM representation
(bottom, c) [signals emphasized with gradient filled areas,
see text for the other markings].

To begin with, VSH(t) (b, Fig. 1) can be produced by run-
ning V (t) (a) through a sample-and-hold circuit, clocked
at frequency fS ; while VPWM(t) (c) can be produced by
running V (t) through a comparator circuit, which com-
pares V (t) with a ramp (sawtooth or triangular) signal (d)
of frequency fS . The SH signal encodes the sampled volt-
age value as voltage (and the sample representation is in
the same domain as the original value); while the PWM
signal encodes the same voltage value as the duration of
time in which the PWM signal has the high value (VCC),
known as duty cycle (thus the sample representation and
the original value are not in the same domain). Note that
these processes simply quantize the analog signal in time;
obtaining a binary digital representation requires additional
stages. Most AD converters work with voltage as input,
enforcing a given sampling resolution, and can thus be di-
rectly applied to a SH signal – while obtaining a binary
digital value from a PWM signal essentially requires re-
sampling it with a frequency N times higher than the sam-
pling frequency fS , whereN is the number of quantization
levels; 6 and then counting the number of times the PWM
signal has been high within a period.

Using a sawtooth signal (d, Fig. 1) for the PWM compar-
ison results with single-edge PWM - and in terms of [15],
the PWM signal (c) on Fig. 1 is a single-edge, or specifi-

6 e.g., for n = 8 bit values, there are N = 2n = 256 quantization
levels, so resampling must occur at frequency 256 · fS

cally uniform-sampling trailing-edge PWM signal; the same
kind which is generated by ATmega328’s Timer0 in ’Fast
PWM’ mode. For this kind of PWM in particular, we can
easily establish a correspondence to SH: on Fig. 1, the ac-
tual signals in each case have the ’area under the curve’
filled with a gradient. For VSH(t) on Fig. 1, the dots indi-
cate the sampled values and the moments of sampling of
the original analog signal - the thick dashed line connect-
ing them (e) shows a linear interpolation reconstruction of
the original signal, based on these sampled values. Simul-
taneously, the VSH(t) diagram shows a sawtooth signal (d),
which explains how the particular PWM signal below is
derived: first, the sample value for PWM is the same as the
one for SH - because the saw period is the same as the SH
sampling period, and the sample value is taken at the be-
ginning of the period. Thereafter, while this sampled value
(same as the SH signal level) is higher than the current
sawtooth value, +VCC is output as PWM signal value; as
soon as the sawtooth signal becomes higher than the sam-
pled value, −VCC is output - hence, there is a linear corre-
spondence between the PWM duty cycle and SH level, 7

in representing a single sample value. This is also visual-
ized on Fig. 1: the grey triangles (g) within VPWM(t) rep-
resent the result of integration of VPWM(t) only while it is
in the duty cycle (active or high). If the integrated value
at end of each duty cycle is translated at the end of the
PWM period and taken to be the sample value (indicated
by dots on VPWM(t)), then the linear interpolation between
these points (indicated again by a dashed line) (h) will be
a scaled version of the linear interpolation of the SH signal
(e).

In terms of spectrum, we can approximate the SH signal
to a multiplication of the original modulating signal with a
comb (infinite Dirac pulse sequence) signal with frequency
fS - a basic result in sampling theory is that this corre-
sponds to convolution of the original and the comb spec-
tra, which results with sideband images (of the baseband
spectrum) around the harmonics of fS that extend to infin-
ity. To reconstruct a baseband signal with a spectrum lim-
ited by frequency fmax, Nyqist-Shannon’s sampling theo-
rem fS ≥ 2fmax must be satisfied. A PWM signal can be
approximated to a square one [16], and thus to a series of
odd harmonics at fS , 3fS , 5fS ...; it can be shown that the
PWM spectrum will contain: the original modulating sig-
nal (baseband); the harmonics; and sidebands around the
harmonics (note, however, the PWM spectrum in reality
is more complex [17]). Thus, Nyqist-Shannon’s theorem
should be applicable to PWM as well - meaning that it
should be, in principle, possible to reconstruct an analog
representation of a PWM signal just by using a low-pass
filter. In fact, simple LPF has been used for PWM recon-
struction at least since 1937 (Reeves patent [18]); see [19]
for a practical note on using simple RC filters.

Furthermore, use of PWM is common in audio ampli-
fiers, known as ’Class-D’; often, PWM is used directly
[20] to drive a loudspeaker, counting on the speaker’s fil-
tering properties; an approach already used for raw demon-

7 as percent of time when the signal is high vs. percent of the voltage
level in respect to the range represented by Vmax

stration of AUDIOARDUINO in [1]. Given that a typical
loudspeaker 8 uses a coil to electromagnetically move a
diaphragm membrane, electrically it can be approximated
to a coil (inductor). As the magnetic field that moves the
diaphragm is caused by current, the speaker can be con-
sidered (electrically) to be a current-driven element. Note
however, that while VPWM(t) on Fig. 1 pulses between
-VCC and +VCC – the PWM signal generated by the Ar-

duino pulses between 0V and 5V. This, in turn, means
that the current generated from such a PWM source will be
strictly unidirectional 9 - causing the diaphragm to move in
one direction only (which is audibly weaker in comparison
to a diaphragm driven both ways). This problem - gener-
ating bidirectional current in absence of negative voltage
supplies - is often addressed electronically with H-bridge
circuits (mentioned also in Sec. 5.2).

5. BOARD DESIGN / IMPLEMENTATION

The design approach for the board was to allow for quick
testing of several approaches to analog I/O with AUDIOAR-
DUINO; hence the board consists of several modules, charted
on Fig. 2.

Buffer
(follower+inv)
[antiphase]

PWM IN B_PWM PWM to
SH

H-bridge

L_SH

S_PWM

filter
passive RC

20KHz L
I
N
E
_
O
U
T

S
P
K
R
_
O
U
T

PWM END
signals

MIC_INmic
preamp

sum (mix)
amp

LINE_IN

DC level shift
(pot/divider)

0-5V
ANALOG
OUT

DOUT 6

DOUT 5
DOUT12
DOUT 3

AIN0

Ar
du

in
o

XOR
pulse

extractor

clear/copy_buf

B
_
I
P
W
M

class-D

filter 'active'
(bass/treble)

Speaker
Amp

DOUT 3 = OC2B
DOUT12 = OC2A
DOUT 5 = OC0B
DOUT 6 = OC0A

AudioArduino
analog board

Figure 2. Block diagram, representing units of the AU-
DIOARDUINO analog I/O board.

Fig. 2 shows that the PWM to SH conversion is performed
by a buffer (1), XOR pulse extractor (2) and PWM to SH
circuit (3); further discussed in Sect. 5.1. There are three
types of amplifiers: an ’analog’ speaker amplifier (4), and
PWM-oriented H-bridge (5) and Class-D (6) amps; fur-
ther discussed in Sect. 5.2. There are two filters; passive
RC (7), and active ’bass/treble’ filter (8); and for handling
input, there is a mic preamp (9), mixer or summing ampli-
fier (10) and a DC level shifter (11); further discussed in
Sect. 5.3.

8 including most headphones; however, excluding piezoelectric and
electrostatic speakers

9 i.e., the current will flow in one direction during the duty cycle; and
outside of it, current will not flow at all

Figure 3. Photo of a finished AUDIOARDUINO analog I/O
board.

The board schematics and PCB layout files have been im-
plemented in the open-source kicad software, and have
been released on [3]. The board has a single-sided de-
sign, implemented on a UV photosensitive PCB, which
hosts both surface-mounted parts, and through hole ones
(like resistors) soldered on the surface. Each of the afore-
mentioned units is essentially a standalone module, with
only some connections (like power) implemented on the
board; for establishing connections, multi-pin single-row
IDC socket pins are split in single connectors and soldered,
in which wire can directly be inserted (to allow for simple
manual wire-wrapping). Thus, the connections on Fig. 2
are not fixed: the full lines simply represent a starting con-
figuration, and the dashed lines represent alternative ones;
the completed board (without wires) is shown on Fig. 3.
The board also has an adapter socket to accept DC power
supply, which is distributed to most (but not all) parts of the
board – and audio connectors can be added, by attaching
them to respective pin sockets.

5.1 PWM to analog (SH) conversion

As noted previously, low-pass filtering is standard practice
for reconstructing a PWM signal in the analog domain; the
terms usually applied are PWM "reconstruction", "filter-
ing" or "demodulation". However, a technique known as
"ramp and hold" can be considered a PWM to sampled,
quantized analog (or "PWM to SH", for sample-and-hold)
signal converter: the quantization of a microcontroller-gen-
erated PWM duty cycle will be effectuated as quantized
analog voltage levels; and due to a dependence on a clocked,
regular ’clearing’, quantization in time is inherent. This
section describes the reasoning behind a simple "ramp and
hold" implementation with discrete parts, utilized here as
PWM to SH converter.

To discuss the PWM to SH conversion, note first that
PWM audio power amplifiers typically work with switch-
ing (PWM) frequency between 200 kHz and 800 kHz [16]
– even if Sec. 4 implied that 44.1 kHz (which, by Nyqist,
cover the audible 22.05 kHz analog spectrum) is applica-
ble as lower bound for PWM frequency. Then, let’s re-

turn to AUDIOARDUINO’s method of generating PWM on
the ATmega328. The ’Timer0’ timer/counter is used for
this purpose: once set, it runs continuously at the specified
timer clock frequency (in ’parallel’ with the main code ex-
ecution). The achievable frequency of the waveform it can
generate is: fPWM = fclk_IO/256N for Fast PWM mode [4,
p.103], or fPCPWM = fclk_IO/510N for Phase Correct PWM
mode [4, p.104]; where N is the ’prescale factor’ (1, 8, 64,
256, or 1024). Thus, the highest possible PWM frequency
on ATmega328 with 16 MHz clock is is 16000000/256 =
62500 Hz; achieved in Fast PWM mode with prescaler
N = 1.

A PWM signal with frequency of 62.5 kHz should be able
to reproduce the content of a 44.1 kHz digital stream in the
analog domain, given that the sample sizes are the same
(here 8-bit). The next possible waveform frequency (for
N = 2) is 31.25 kHz, which - being lower than 44.1 kHz
- is not suitable for reproduction; and that is the case for
all other PWM frequencies achievable on this Arduino.
Here, let’s note that the Timer0 counter simply increases
the value of the register (variable) TCNT0 at each clock
tick; since TCNT0 is 8-bit wide, when it reaches 255 it
’overflows’ on the next tick (that is, it is reset to 0) - and
this is what sets the PWM period. A matching register,
OCR0A, is used to set the duty cycle - it is continuously (at
each clock tick) compared to TCNT0: and if it is bigger,
the matching pin OC0A is set to high voltage (Vcc); else it
is set to 0 (ground).

We can now identify some sources of error in this ar-
rangement. The microcontroller code writes a single sam-
ple to PWM (that is, OCR0A) at 44.1 kHz; the PWM runs
independent of that at 62.5 kHz. At the moment of writing,
the counter may still process the previous (analog sample)
value - and the new value will be output first at the be-
ginning of the next PWM period. This could be also seen
as (analog) SH samples being displaced from their default
positions, and as such could be considered ’analog’ jitter
of sorts (see [21] for jitter measurements in professional
equipment). Additionally, note that “the extreme values for
the OCR0A Register represent special cases [4]” - meaning
that reproduction errors could be experienced for values 0
and 255, the limits of the 8-bit range. Assuming that these
errors will be tolerable, the problem now is how to extract
a SH type of voltage from the PWM signal, to conform
with ’line-level’ format.

Now, let’s briefly return to the case of a loudspeaker,
which we can discuss as an inductor with inductance L.
The current through an inductor L is the integral of the
voltage across: i(t) = 1/L

∫ t

0 v(t)dt – ideally, 10 constant
voltage would result in linear ramp current. Thus, if an in-
ductor is driven by a voltage signal VPWM(t) as on Fig. 1 -
then the current through it (shown as the dotted line on the
PWM signal, f on Fig. 1) will be: an upward ramp during
the duty cycle (for +VCC); and downward ramp outside of
it (when the voltage is -VCC). Ideally, since abs(−VCC) =
+VCC, the upward and downward ramp of the current would

10 A problem is that we cannot really approximate a speaker to an ideal
inductor; taking resistances into account, we now discuss RL circuits
- which instead of a linear ramp, will produce an exponential current
(which further increases the reproduction error; see [16] for the same
problem, but in terms of coding carrier linearity).

have the same slope (30° on f, Fig. 1) - however, note that
even in this ideal case, the current signal thus obtained does
not have a shape that follows the shape of the SH voltage
interpolation (the dashed line e on Fig. 1) we are inter-
ested in. While this can be addressed by increasing the
PWM frequency, 11 we would still have inaccurate sample
reproduction in the audio domain (for the particular type
of PWM signal on Fig. 1), even in the case of an ideal in-
ductor (speaker).

However, if we perform integration only during the duty
cycle, the integrated values at end of each PWM period
will correspond to the SH values. And this is ideally what
happens with the unipolar (0/+VCC V) PWM generated by
Arduino fed to a speaker: integration is performed during
duty cycle; and off duty cycle, there is no current and thus
no ramp in the other direction (although current should
leak). We can apply the same thinking to obtain integrated
signal in the voltage domain, by replacing the inductive
speaker with an integrator circuit. The basic integrator
typically charges a capacitor (CInt0 on Fig. 5) as a way
to obtain an integrated signal. Thus, to obtain integration
per each PWM period, we must discharge the capacitor at
end of each PWM period - which means we must somehow
detect the beginning and end of the PWM period.

Technologies like clock recovery or phase-locked loop
circuits are usually needed to extract a signal describing
the PWM period from an unspecified PWM signal. Here,
we instead use remaining timers on the Arduino to gener-
ate these signals: we can set the other 8-bit timer/counter
Timer2 to run in sync with Timer0 (causing counter values
TCNT0 == TCNT2 at all times) - and set the remaining
OC pins (OC2A, OC2B, OC0B) to turn high when counter
reaches values 252, 253 and 254, respectively 12 - thus in-
dicating the end of PWM period. These signals all turn
zero at the start of the PWM period, when the counter is 0
- meaning that they overlap in time (Fig. 4 bottom left). To
extract mutually exclusive pulses indicating counter value
252, 253 and 254 (Fig. 4 bottom right), we can employ the
XOR extraction circuit, shown on bottom part of Fig. 4.

For electronic buffering of the PWM signal, XOR cir-
cuits (from a 74LS86 chip) are used, because they can be
configured (in terms of binary TTL level signals) to work
as either follower or inverter buffers. 13 The pulse ex-
tractor XOR circuit (Fig. 4, bottom) accepts the end-of-
PWM-period OC pins’ signals, and outputs buffered end-
of-period pulses (xBEOP) corresponding to 4, 3 and 2 counter
ticks (counts 252, 253 and 254) before start of next PWM
period. These end-of-PWM-period pulses can then be ap-
plied as COPY and CLEAR (respectively, xBEOP-3 and
xBEOP-2 on Fig. 4) of the PWM-to-SH circuit, whose
schematic is shown on Fig. 5. The PWM-to-SH converter
on Fig. 5 consists of: a basic integrator (resistors RInt1-

11 Note that (unlike Fig. 1) literature may often show a single sinusoid
period, sampled by eight [14] up to tens of PWM periods [16]; higher
PWM frequency forces the integrated signal to more closely resemble the
original one

12 Using values 253, 254 and 255 turns out to be problematic, due to
the special status of 255 as range boundary

13 Note that the LS (Low Power Schottky) family of 74XX TTL series
has a standard propagation delay of 10 ns; thus inverting a signal twice,
results with a pulse which is delayed (in respect to a pulse buffered by a
follower - which is shown on top part of Fig. 4).

U10A
74LS86

GND

B_PWM_1

B_IPWM_1
U10B
74LS86

+5V

+5V
U10C
74LS86 B_PWM_2

(XOR) PWM buffer (with antiphase)

d6_OC0A-PWM

(XOR) overlap pulse extractor (& buffer)

xBEOP-1

xBEOP-2

xBEOP-3

End-of-PWM-period signals:

d5_OC0B-1

d3_OC2B-2

d12_OC2A-3
U11A
74LS86

U11B
74LS86

U11C
74LS86

GND
2
5
2

2
5
3

2
5
4

2
5
5

0 1

Start of PWM

2
5
2

2
5
3

2
5
4

2
5
5

0 1

Start of
PWM

Figure 4. Schematics of PWM buffer (top) and PWM
end-of-period pulse extractor (bottom), implemented with
XOR gates.

4=RInt, opamp (A) and capacitor CInt0); structure for dis-
charging the capacitor (transistor QInt_Empty0 and resis-
tor RbEmpty0); a structure known as transmission gate or
pass transistor which behaves as an analog switch (tran-
sistors Q_Pass1,2 and resistors RbPass1,2); a ’copy buffer’
capacitor C_cpbuf_0 (which together with the analog switch
forms a ’Sample and Hold’ circuit); and intermediate (B)
and output (C) buffer followers.

RInt1 RInt2
−

+
A
Vcc

-Vcc

RInt3
RInt4

P
W

M
In

CInt0

QInt Empty0
RbEmpty0

CLEAR

−

+

B
Vcc

-Vcc

Q Pass1

Q Pass2

RbPass2

RbPass1COPY

C cpbu f 0

−

+

C
Vcc

-Vcc

SH
O

U
T

Integrator Sample&Hold

Figure 5. Schematics of the PWM to SH converter.

The integrator used here is a non-inverting integrator (see
[22]), 14 so as to preserve the phase of the integrated sig-
nal as on Fig. 1. As in most RC structures, this circuit
too will generate exponentially changing voltage as the re-
sult of the processing of a constant voltage input; however,
if the RC product is much smaller than the PWM period,
the exponential voltage change can be approximated to a
linear ramp. The transmission gate structure is based on
the assumption that its transistors are either off or satu-
rating, making the structure appear as either high or low
resistance. This approximation to an analog switch will be
better for transistors with higher β (hFE, forward current
gain) parameter, and very low cut-off currents. While FET
transistors would be more appropriate for this role - BJT

14 Note that the simplest opamp integrator circuits typically represent
inverting integrators

transistors were used here, simply because they may be
conceptually more accessible to novices, 15 and it would
be instructive to observe their behavior in a circuit, based
on just the previously stated assumptions. For that reason,
the transistors on the actual board are simply those with
the highest β, available to the project at the time (in this
case, BC337-25); this is also the reason why a transmis-
sion gate is implemented through discrete components, in-
stead of using an integrated bilateral switch (such as 4016
or 4066).

The principle of the Fig. 5 circuit operation is: PWM in-
put is brought to the integrator; during duty cycle, the +5V
of PWM input cause a constant current to charge CInt0,
which develops a linear ramp voltage VCInt0(t) (as integral
of the constant current). This voltage VCInt0(t) is buffered
through (B) and brought to input of the analog switch struc-
ture. When COPY is high, the analog switch turns ON,
which should allow (B) to quickly charge C_cpbuf_0 to the
same voltage held by CInt0 (i.e., VCInt0(t)). When COPY is
low, the analog switch is turned off - so C_cpbuf_0 can not
discharge, being buffered by (C); and should hold its volt-
age constant. On the other hand, when CLEAR is high,
QInt_Empty0 turns on, and short-circuits CInt0 - forcing
its voltage to 0. Thus, the following sequence of events can
be pursued: at start of PWM period, CInt0 is charged for
as long as the duty cycle is active, and keeps this value off
duty cycle; near end of PWM period, COPY is triggered,
and C_cpbuf_0 is set to same voltage as CInt0; then COPY
is deactivated, which isolates C_cpbuf_0 from CInt0, caus-
ing it to hold the last copied value; then CLEAR activates,
which discharges CInt0; then finally CLEAR turns off, just
in time before next PWM period starts - where integration
can start again, by charging a newly emptied CInt0 capac-
itor.

Applying xBEOP-3 and xBEOP-2 (Fig. 4) to COPY and
CLEAR respectively, would ensure that COPY and CLEAR
run in sequence just before the end of PWM period. Ulti-
mately, this should result with the SH_OUT signal which
is a 62.5 kHz analog SH voltage representation of the 62.5
kHz PWM signal, in the voltage range from 0V to +5V. In
AUDIOARDUINO context, SH_OUT would be an oversam-
pled (but jittered - for more, see [1]) reproduction of the
original 44.1 kHz audio stream played back by high-level
software. Running this SH_OUT signal through low-pass
filter, DC-blocking capacitor, and amplifier, should finally
result with a audio voltage signal conforming to the line-
level range of ∓1.95V around a zero volt reference.

Note that this specific copy/clear PWM-to-SH process
guarantees errors in reproduction for levels above the COPY
pulse locations (i.e. above 252). Additionally, most opamps
work properly as followers (as on Fig. 5) only when fed by
a symmetric power supply (∓Vcc); powering basic opamps
like TL074 with a single supply (between GND and Vcc)
will introduce additional errors in operation. 16 Most of the
experiment videos on [3] have been performed with a sin-

15 as BJT are often used as a starting point in discussing semiconductor
transistors

16 although, there exist pin-compatible alternatives, known as ’rail-to-
rail’ op-amp

gle supply of 5V. 17

5.2 Speaker amp, H-bridge and Class-D

Whereas for ’line-out’, we had to consider some form of a
PWM to SH conversion, for a speaker output we need to
ensure that the signal is properly amplified - and there are
ICs that can work either with either type of signals. How-
ever, the choice can often be overwhelming for a novice, as
PWM parts can often be intended for motor use; therefore
the board includes several parts for comparison.

As mentioned, there are three amplifier structures on board.
The ’speaker amp’, is based on a National Semiconduc-

tor LM386 18 (marketed as ’Audio Power Amplifier’) and
intended to drive a small loudspeaker from line-level in-
put. The other two amplifiers are intended to handle raw
PWM input: a standalone Rahm BD6211F H-bridge driver
chip, marketed as ’full-bridge driver for brush motor ap-
plications’ with 400 ns dead time; and class-D amplifier
based on International Rectifier’s IRS20954S18 IC,
marketed as half-bridge ’protected digital audio driver’,
with selectable dead time between 15 and 45 ns.

All of these parts make use of an H-bridge structure, where
transistors are used as switches to cause bidirectional flow
of current through a load from a single supply: LM386
and IRS20954S use half-bridge (while BD6211F uses full-
bridge) configuration. Note that LM386 as ’class-B push-
pull’ amp uses BJT (whereas the others, as class-D, feature
FET) transistors as bridge switches (IRS20954S also needs
additional MOSFETs). Also, BD6211F needs two PWM
inputs (in antiphase), which is provided by XOR buffer
in Fig. 4. The H-bridge structure typically has an issue
when mutually exclusive switches briefly stay turned on
together, which causes a short-circuit of the bridge output
(alias shoot through); this is usually handled by introduc-
ing so-called dead-time [16]. Note that BD6211F’s dead
time of 0.4 µs represents 2.5% of the 16 µs period of the
62.5 kHz PWM signal.

5.3 Analog filters and input preamplification

The filter units can be used for either input or output through
wirewrapping. Assuming that the output PWM signal from
AUDIOARDUINO has a baseband spectrum up to 20 kHz,
and harmonics (with sidebands) starting at 62.5 kHz, an
ideally steep low-pass filter with cut-off at 20 kHz would
be able to reconstruct the baseband analog signal. The
board provides the RC (7, Fig. 2) unit as a passive low-
pass filter, designed for a cut-off frequency at 20 kHz -
simply as a means for experiencing the influence of the
simplest filter design on an audio PWM signal (even if, as
a first order filter, it cannot be expected to achieve any-
thing close to ideal reconstruction). The card design used
as a base in [2], serves as a source of: the ’bass/treble’ fil-
ter (8, Fig. 2); and the mic preamplifier (9,11 Fig. 2) unit
– while the mixer (10, Fig. 2) unit is a basic inverting op-
amp summer; all these units (8-11) are based on generic
opamps (i.e. TL074).

17 Further notes about the operation and performance of the board’s
circuits can be found on [3].

18 Used circuit design taken from part datasheet.

6. CONCLUSIONS

This paper outlined some basic issues in analog I/O for
soundcards, primarily by discussing a ’line-level’ interface
for the AUDIOARDUINO open soundcard system, imple-
mented by the analog I/O board. As the line input was
deemed to be manageable by scaling - the focus was mostly
on introducing the role of PWM voltage as digital output
signal, and it’s relationship to analog voltage in context of
audio; supported with a basic, first-principles proposal for
a simple PWM to (discretized) analog converter utilizing
specific capabilities of ATmega328.

Further media on [3] documents that this board, in its cur-
rent form, does not bring about any advantage to the use
of AUDIOARDUINO as a soundcard; it is useful only as a
subject of introductory study. In particular, the media doc-
umentation on [3] aims to provide experiential familiarity
to novices with the approached outlined here, even without
the need to actually build the board. As such, this paper
and project aim to provide a basis for further development
- and in that, promote the discussion of DIY digital audio
hardware implementations among researchers and hobby-
ists.

7. ACKNOWLEDGMENTS

The authors would like to thank the Medialogy department
at Aalborg University in Copenhagen, for the support of
this work as a part of a currently ongoing PhD project.

8. REFERENCES

[1] S. Dimitrov and S. Serafin, “Audio Arduino - an ALSA
(Advanced Linux Sound Architecture) audio driver for
FTDI-based Arduinos,” in Proceedings of the 2011
conference on New interfaces for musical expression,
2011.

[2] S. Dimitrov, “Extending the soundcard for use with
generic DC sensors,” in NIME++ 2010: Proceedings
of the International Conference on New Instruments
for Musical Expression, 2010, pp. 303–308.

[3] ——, “AudioArduino Analog Board homepage,”
WWW: http://imi.aau.dk/~sd/phd/index.php?title=
AudioArduino-AnalogBoard.

[4] www.atmel.com, “Atmel AT-
mega48A/48PA/88A/88PA/168A/168PA/328/328P
datasheet,” WWW: http://www.atmel.com/dyn/
resources/prod_documents/doc8271.pdf, Accessed:
29 Dec, 2010.

[5] arduino.cc, “Arduino homepage,” http://www.arduino.
cc/.

[6] T. Amyes, Audio post-production in video and film.
Focal Pr, 1998.

[7] L. Ahlzen and C. Song, The Sound Blaster Live! Book:
A Complete Guide to the World’s Most Popular Sound
Card. No Starch Pr, 2003.

[8] G. White and G. Louie, The audio dictionary. Univ
of Washington Pr, 2005.

[9] R. Donald and T. Spann, Fundamentals of television
production. Wiley-Blackwell, 2000.

[10] D. Walters, How to Build a Radio Station. Lulu. Com,
2006.

[11] mitat.tuu.fi, “Line level audio signal voltage,” WWW:
http://mitat.tuu.fi/?p=45, Accessed: 5 January, 2011.

[12] D. A. Bohn, “The bewildering wilderness–navigating
the complicated and frustrating world of audio stan-
dards,” S&VC, September, vol. 2000, pp. 56–64,
2000, URL: RANE reference,http://www.rane.com/
pdf/bewilder.pdf.

[13] J. A. Caffiaux, “A brief review of eia standards in the
audio field,” J. Audio Eng. Soc, vol. 16, no. 1, pp. 21–
25, 1968.

[14] K. Nielsen, “A review and comparison of pulse width
modulation (pwm) methods for analog and digital
input switching power amplifiers,” in PREPRINTS.
AUDIO ENGINEERING SOCIETY, 1997, p. 57pp,
URL: http://www.icepower.bang-olufsen.com/files/
convention/4446.pdf.

[15] Z. Song and D. Sarwate, “The frequency spectrum
of pulse width modulated signals,” Signal Processing,
vol. 83, no. 10, pp. 2227–2258, 2003.

[16] A. Knott, “Improvement of out-of-band behaviour
in switch-mode amplifiers and power supplies
by their modulation topology,” Ph.D. dissertation,
Technical University of Denmark, Department of
Electrical Engineering, Electronics, 2010. [Online].
Available: http://orbit.dtu.dk/getResource?recordId=
270897&objectId=1&versionId=1

[17] A. Knott, G. Pfaffinger, and M. A. Andersen, “On the
Myth of Pulse Width Modulated Spectrum in Theory
and Practice,” in Audio Engineering Society Conven-
tion 126, 2009.

[18] W. Kester, Analog Devices, Inc. et al., Data conversion
handbook. Newnes, 2005.

[19] A. Palacherla, “Using PWM to Generate Analog Out-
put,” 1997, Microchip Technology, (AN538).

[20] F. T. Agerkvist and L. M. Fenger, “Subjective test of
class d amplifiers without output filter,” in 117th Audio
Engineering Society Convention, 2004.

[21] J. Dunn, “Jitter: Specification and assessment in digital
audio equipment,” in Presented at AES 93rd Conven-
tion. Citeseer, 1992.

[22] J. W. Marshall Leach, “Ideal operational ampli-
fier (op amp) circuits,” 2010, ECE3050 Analog
Electronics Class notes, Georgia Institute of Tech-
nology. WWW: http://users.ece.gatech.edu/mleach/
ece3050/sp04/OpAmps01.pdf.

http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino-AnalogBoard
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino-AnalogBoard
http://www.atmel.com/dyn/resources/prod_documents/doc8271.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8271.pdf
http://www.arduino.cc/
http://www.arduino.cc/
http://mitat.tuu.fi/?p=45
http://www.rane.com/pdf/bewilder.pdf
http://www.rane.com/pdf/bewilder.pdf
http://www.icepower.bang-olufsen.com/files/convention/4446.pdf
http://www.icepower.bang-olufsen.com/files/convention/4446.pdf
http://orbit.dtu.dk/getResource?recordId=270897&objectId=1&versionId=1
http://orbit.dtu.dk/getResource?recordId=270897&objectId=1&versionId=1
http://users.ece.gatech.edu/mleach/ece3050/sp04/OpAmps01.pdf
http://users.ece.gatech.edu/mleach/ece3050/sp04/OpAmps01.pdf

	 1. Introduction
	 2. Premise
	 3. Analog I/O audio level standards
	 4. PWM as analog signal representation
	 5. Board design / implementation
	5.1 PWM to analog (SH) conversion
	5.2 Speaker amp, H-bridge and Class-D
	5.3 Analog filters and input preamplification

	 6. Conclusions
	 7. Acknowledgments
	 8. References

