
BEATLED - THE SOCIAL GAMING PARTYSHIRT

Tom De Nies
Ghent University - IBBT
tom.denies@ugent.be

Thomas Vervust
Ghent University - CMST
thomas.vervust@ugent.be

Michiel Demey
Ghent University - IPEM
michiel.demey@ugent.be

Rik Van de Walle
Ghent University - IBBT
rik.vandewalle@ugent.be

Jan Vanfleteren
IMEC/Ghent University - CMST

jan.vanfleteren@ugent.be

Marc Leman
Ghent University - IPEM
marc.leman@ugent.be

ABSTRACT

This paper describes the development of a social game,
BeatLED, using music, movement and luminescent textile.
The game is based on a tool used in research on synchro-
nization of movement and music, and social entrainment
at the Institute of Psychoacoustics and Electronic Music
(IPEM) at Ghent University. Players, divided into several
teams, synchronize to music and receive a score in real-
time, depending on how well they synchronize with the
music and each other.

While this paper concentrates on the game design and
dynamics, an appropriate and original means of providing
output to the end users was needed. To accommodate this
output, a flexible, stretchable LED-display was developed
at CMST (Ghent University), and embedded into textile.

In this paper we analyze the characteristics a musical so-
cial game should have, as well as the overall merit of such
a game. We discuss the various technologies involved, the
game design and dynamics, a proof-of-concept implemen-
tation and the most prominent test results.

We conclude that a real-world implementation of this game
not only is feasible, but would also have several appli-
cations in multiple sectors, such as musicology research,
team-building and health care.

1. INTRODUCTION

In today’s games, the social aspect has become more than
just an extra feature. Game developers are incorporating
social interaction as a key feature into their games, and are
researching alternative ways for users to interface with the
gaming platforms. BeatLED is a so called ”social” game,
and this paper will describe it’s key features, internal work-
ings and applicability.

First we narrow down the general concept of a ”social
game”, and how this concept relates to earlier work. We
also motivate why the game was developed, and how it
can be applied in different fields. Next, we present the
various technologies and algorithms used to accommodate
the game. The game dynamics are described, followed
by an insight into the proof-of-concept implementation.

Copyright: c©2011 Tom De Nies et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

We also discuss the set-up and results of the various tests
that were performed. These tests include algorithm perfor-
mance tests and general test sessions with actual end users.
Finally, the future plans and possibilities for the project are
suggested and a conclusion is made.

2. SOCIAL GAME

2.1 What/Why?

Interaction - on-line or otherwise - has become a must for
all recent games. Studies show that a large part of the latest
console gaming generation considers the social aspect as
the most important motivation to play [1]. Typical exam-
ples of social games are those developed for the Nintendo
Wii consoles. When we examine these games, we are able
identify the following features:

Multiplayer Naturally, in order to be called ”social”, a
game should facilitate more than one player. Ideally,
easy, even dynamic expansion of the group should
be possible. In the best case, one can choose the
number of players arbitrarily.

Interactivity In order to be challenging and fun, the game
should include a tight action-perception coupling,
both between the players and the game, as among
the different players themselves. A slow responding
game, where users need to wait for feedback based
on their actions, is not an option.

Intuitivity The game itself, its rules and its controls, should
all be intuitive and easy to comprehend. During the
gameplay, players should not be focusing on how to
control the game, or try to comprehend its rules. In-
stead they should only be focusing on the general
idea of the game, and on the other players. Keeping
the controls natural not only allows the players to be
fully absorbed by the game, but also makes it easy to
introduce new players to the game, hence contribut-
ing to the social factor.

Motivation (to play in group) The game should not only
encourage participation, it should also easily attract
more players. For example, certain game modes could
only be made available when a predefined number
of players is reached. To make the game inherently
more challenging with more players would be even
better.

mailto:tom.denies@ugent.be
mailto:thomas.vervust@ugent.be
mailto:michiel.demey@ugent.be
mailto:rik.vandewalle@ugent.be
mailto:jan.vanfleteren@ugent.be
mailto:marc.leman@ugent.be
http://creativecommons.org/licenses/by/3.0/

Social bonding The game should incorporate a certain so-
cial bonding factor. This means playing the game
should be beneficial to the relationships between the
players. This factor is also present in many of the
team-building games, often seen in larger businesses.

During development of this game, it is important to keep
these features in mind. They are also recognized in many
console games, especially those intended for Nintendo Wii
or Microsoft Kinect. We will attempt to incorporate all of
these features in our social game.

The game we are building is centered around a widespread
social activity, namely dancing to music. Dancing is by na-
ture an intuitive and social activity, it allows you to interact
with other people without conversation, and the larger the
group, the more fun is guaranteed. All five of the above
factors can already be discerned in that activity. Therefore,
building a social game using music and movement is a log-
ical step.

We will build a game that allows players to dance to mu-
sic, and to receive a certain score, depending on how well
they synchronize with the music, and with each other.

2.2 Similar Games & Applications

To describe all games based on music, dance and/or move-
ment is beyond the scope of this text. We will highlight the
most relevant and well-known examples.

2.2.1 Similar Games

Dance Dance Revolution DDR, by Konami, is probably
the best-known dance game. Players receive instruc-
tions on a screen in the form of a sequence of arrows,
each arrow corresponding with a specific movement.
When they make the correct movement at the correct
time, they receive a positive score. Their movements
are recorded using a proprietary dance mat, as shown
in figure 1. The number of players is limited, with
a maximum of 2 or 4 players. Players are also very
limited in movement, partly because they are obliged
to follow the directions of the game and partly be-
cause of the limited space they have to dance.

Just Dance The spatial limitations of DDR are partially
solved by Just Dance for Nintendo Wii. Here, play-
ers interact only with the controller, but again, they
must watch the screen and follow the specific in-
structions of the game, as shown in figure 2.

Dance games for Kinect Another approach to dance games
is presented by the Kinect, a camera-based game
system recently developed by Microsoft. These games
are very similar in functionality to the previously
discussed games. Players have to follow the instruc-
tions provided on the screen, only now these instruc-
tions represent more complex movements. Using its
depth-sensitive camera, the Kinect is able to track
detailed movements of the players and match them
to the instructions. However, this also implies that
players need to remain inside the field of view of the
camera.

Figure 1. DDR dance mat: players have to match their
movements to arrows shown by the game.

Figure 2. Just Dance 2 for Nintendo Wii screen interface.
The hand that holds the wii remote is highlighted.

The major difference between all currently available games
and ours, is that our game takes into account the mutual
synchronization between the movements of players. It also
imposes no limitations in space.

2.2.2 Exergames

The games described above are so called exergames, since
many people use them as a motivating means of physical
exercise. DDR was even deployed in some schools, as part
of the exercise program [2]. This shows that a social game
such as the one discussed in this paper can also be applied
as a means of exercise .

2.3 Previous Research

The previous (and first try at) implementation of this game,
Sync-In Team [3], was used as a research tool, used to aid
in research toward synchronization of movement and mu-
sic. The game also allowed researchers to study social in-
teraction between dancing people, a phenomenon known
as entrainment [4].

This game captured the movements of 4 players, divided
into 2 teams, using accelerometers. The players were danc-
ing to a series of audio tracks. Using a simple Fourier
Transform based algorithm, the tempo of the movements
was calculated, and compared to the Beats Per Minute (BPM)
of the music.
A team whose tempo lay close to the BPM, got an increase
in score, while the score decreased for a team whose tempo
was too far off.

Scores were projected onto the floor, using growing and
shrinking patterns in different colors, each color correspond-
ing with a team, as pictured in Figure 3.

This approach had some limitations. The algorithm used
to calculate the tempo was based on an FFT (Fast Fourier
Transform), using a time-window of at least 4 seconds.

Figure 3. Sync-In Team score visualization using colored
projection on the floor

This resulted in a poor response-time, and other limita-
tions, such as no record of phase, or varying tempo.
The game was limited to 4 players, and 2 teams. Also, the
manner of output for scores limited the players in space
and movement, forcing them to look down.

2.4 Goal

Our goal is to resolve the issues that presented with the
original Sync-In-Team Game, while developing a new and
improved interactive social game, BeatLED.

The game should meet the following requirements:

• Allow at least 4, and preferably an arbitrary num-
ber of players to dance to a series of audio tracks,
divided into a number of teams.

• Capture their movement data and synchronize it with
the selected music, using a synchronization algorithm
that performs in nearly real-time.

• Output a score in an original way, not limiting the
movement space of the players.

This last aspect will be realized using the hardware devel-
oped at CMST, namely a flexible, stretchable LED-Matrix,
embedded into a t-shirt.

2.5 Motivation & Applications

A social game like ours can have numerous applications in
all fields. Next to personal entertainment, the game’s social
bonding and motivating characteristics could be applied
to business, interpersonal relationships and even medicine.
Applications could include team-building sessions (corpo-
rate or treatment-wise) or rehabilitation.

Apart from this, developing such a game represents an
interdisciplinary challenge, and is bound to uncover tech-
niques that can be applied in other applications.

3. TECHNOLOGIES

3.1 Accelerometers

In order to synchronize the movements of the players to
the music, we need a device that captures these move-
ments. For this we use accelerometers. An accelerometer
is a device that measures proper acceleration (relative to
free fall). Acceleration values are measured on three axes,
so each movement direction can be represented, as can be

seen in Figure 4, where the accelerometer is embedded in
a Nintendo Wii remote. For use during the development
stage, these Nintendo Wii remotes are chosen for their easy
connectivity via bluetooth, their high availability and low
cost.

Figure 4. Nintendo Wii remote with acceleration axes x, y
and z

3.2 LED-Display

For the visual output of the game, a flexible, stretchable
LED-matrix was developed at the Center of Microsystems
Technology at Ghent University.

The novelty lies in the integration of the LED-display
into textile, and the possibility to send data to this display
wirelessly. So far, all commercially available textile that
includes electronics lacks one or more of the key proper-
ties available with the CMST LED-Display. CMST has ac-
cess to an in-house lab with great facilities and know-how,
which were applied to obtain a stretchable LED display in-
tegrated in a T-shirt, as shown in figure 5(a).

The main focus of the design, beside stretchability, is on
size and power consumption, since this is a battery applica-
tion. All the electronics needed to control the display and
the wireless communication need to be small in compari-
son to the display itself.

The final circuit design was assembled on a flexible de-
sign and molded in silicone, rendering it some rigidity, as
shown in Figure 5(b). This mold could then be attached
inside the sleeve of the game T-shirt.

(a) (b)

Figure 5. The finalized LED-display (a) silicone mold (b)
embedded in T-shirt

4. SYNCHRONIZING MUSIC & MOVEMENT

4.1 Input Data Processing

Before any processing is performed, the input data needs
to be shaped into a format which is usable by the synchro-
nization algorithm. The acceleration data needs to be cap-
tured and filtered, and the music needs to be annotated,
detecting the beats in the audio track.

4.1.1 Acceleration Data

The acceleration signal A(x) provided by the accelerom-
eters described in 3.1 is sampled at a fixed sampling rate,
with each sample consisting of three real values, one for
each axis, normalized between -1 and +1.

Due to the high sensitivity, the signal is bound to contain
several involuntary, irrelevant movements, as well as some
noise. To counter this, the signal is passed through a low-
pass filter before any further processing. The simplest type
of linear digital filter, a Finite Impulse Response (FIR) filter
is used, designed to attenuate all frequencies higher than
10Hz.

4.1.2 Beat Detection

In contrast to the original Sync-In Team, where only the
average Beats Per Minute (BPM) of the song was calcu-
lated, our application’s algorithm needs more specific data.
This data includes the locations of each beat within the
track. Because developing a custom algorithm for this is
not the focus of this research, we opt to utilize third party
software for this, namely Beatroot [5].

Beatroot tracks the onsets of all beats in a .wav file, and
outputs these onset timings (in ms) to a plain text file,
which can be read by our synchronizing algorithm. Once
the audio is analyzed by Beatroot, the obtained data can be
used to calculate the average BPM.

bpm =

⌊
60

Ib

⌋
(1)

In this formula, Ib represents the mean beat interval, de-
fined as the average time between 2 successive beats, cal-
culated as

Ib =
L

B
(2)

with L = length of audio track in seconds and B =
number of beats detected.

4.2 Synchronizing Algorithm

The data described in the previous paragraph is now used
to associate a score to the synchronization between the
movement data and audio. To do this, a newly developed
peak detection algorithm is used.

4.2.1 Score Array

First, the beat data supplied by the beat detection algorithm
(4.1.2) is converted to a score array S.

We associate a positive score with every sample of the au-
dio track within a certain acceptable tolerance o before and
after a beat. While doing this, the same sampling rate fs
as the accelerometers is used, thus creating an array with

each element S[t] corresponding to a sample of the move-
ment data (with t the time of the sample). The acceptable
tolerance is calculated as

o =
Ib samples

m
(3)

where Ib samples represents the average number of samples
between two successive beats, calculated as Ib samples =
fs∗60
BPM and m an adjustable parameter used to determine
the tolerance in which a positive score is given. The fur-
ther away from the actual beat position, the lower the as-
sociated score will be. The same principle is used for the
off-beat locations, exactly between two successive beats,
since people tend to synchronize to these as well. A sim-
ple example of the creation of the score array is shown in
figure 6. Note that this illustration is simplified for visi-
bility reasons. The tolerance in the figure is chosen quite
high (100 ms) and the sampling rate very low at 20 Hz. In
the real implementation the sampling rate would be much
higher (ca. 100 Hz).

Figure 6. Creation of the score array from the detected
beat and off-beat locations (simplified example)

4.2.2 Peak Detection

Next, the low-pass filtered acceleration signal is processed
by a peak detection algorithm, for each axis. To detect
peaks in a single accelerometer signalX (one axis) of fixed
length, the following algorithm is used:

1. Calculate the average µ and the standard deviation σ
of the sampled signal. (For computational reasons,
an estimation for the average is used)

µ =
max(X) +min(X)

2
(4)

σ =

√√√√ 1

N − 1

N∑
i=0

(X[i]− µ)2 (5)

(Taking into account Bessel’s correction for sampled
standard deviation)

2. Create a binary form Xbin of the input signal with

Xbin[t] =

{
1, if X[t] > µ+K.σ

0, else
(6)

with K a parameter adjusted along the amount of
noise present in the signal. This process is illustrated
in figure 7.

3. For every continuous interval where Xbin = 1 a
peak is detected at the location in the middle of the
interval.

This process is illustrated in figure 7.

Figure 7. Original (filtered) acceleration signal (above)
and its binary form (below), with detected beats repre-
sented by vertical, dotted lines

4.2.3 Scoring Algorithm

The final step is to assign a score to the detected peaks, de-
pending on whether they correspond to a beat in the audio
track. The complete synchronizing algorithm is described
by the following steps:

1. Filter the input signal with the low-pass filter de-
scribed above.

2. Buffer the signal into frames of k.Ib samples.

3. For each frame of k.Ib samples:

(a) Detect a maximum of k peaks pi , i = 1, ..., k
(only for the acceleration data in the current
frame)

(b) Store the location lpmax of the highest peak
pmax

(c) The score is given by
sframe = S[startindexframe + lpmax]
with startindexframe the index of the first sam-
ple of the current frame, and S the score-array
described above.

In this algorithm, k is a parameter specifying the length
of the frame. In the proof-of-concept implementation, k is
chosen as k = 2, meaning 2 beats can be expected each
frame.

This algorithm is executed in parallel for each accelera-
tion axis, detecting only k peaks, namely those leading to
the highest scores.

5. GAME DYNAMICS

The game dynamics are an important factor to the game-
play and overall fun-factor of the game. For this project,
a gameplay is implemented using absorbing teams, but
thanks to the modularity of the synchronization algorithm,
other gameplays are possible in future applications.

5.1 Absorbing Teams

Figure 8. Example of Absorbing Team Game Dynamics:
the player from team 3 is absorbed by team 2

The game mode we propose has all features of a social
game as described in the beginning of this paper.

At the start of the game, all players are divided randomly
into a user-specified number of teams, with a minimum of
1 player per team. It is clearly relayed to the players to
which team they are assigned, using the color of the LED-
display.
During the game, players are shown 2 scores: their individ-
ual score and their team score. The individual score rep-
resents how well this player is synchronizing to the music.
The team score represents the mutual effort of the entire
team a player is currently assigned to, and is calculated as
the average of the scores of all team members.

After a predetermined time interval, the lowest scoring
player of the lowest scoring team is removed from his/her
team and transferred to Team Change Mode (TCM). This
will cause the team’s average score to drastically improve
(since they lost the low-scoring player).
After another, shorter time interval, the player in TCM is
added to the highest scoring team, resulting in a drop in
the team score of this team.
This way the highest scoring team figuratively absorbs the
low scoring player from the lowest scoring team. This ac-
tion then equalizes the team scores to a certain extent.
The game finishes when the music stops, or when all play-
ers have been absorbed by a single team.

An illustration of these game dynamics for 9 players is
given in figure 8. In this example, the blue team (Team 3) is
the lowest scoring team, and their lowest scoring player is
removed from the team and set to TCM. This immediately
affects the team score of team 3, changing it from 6 to 7.5.
The changing player is then added to the highest scoring
team, in this case the green team (Team 2), lowering the
score of this team to 8.25.

5.2 Score Display

The scores are displayed using the LED-display developed
at CMST. The outer rows represent the individual score,
while the inner rows correspond to the team score, as shown
in figure 9.

Scores are represented using a decimal system, with each
colored led representing 10 points, and the position of the
white led indicating the units. For example, in figure 9,

an individual score of 58 and a team score of 73 is shown.
However, it is important to note that players shouldn’t con-
cern themselves with these scores, they are merely intended
as an indication of how well they are doing.
Players should only make the simple association:
more color = better score.

Figure 9. Scores: schematic (left) and real display (right).
An individual score of 58 (outer 2 columns) and a team
score of 73 (inner 3 columns) is shown.

6. PROOF-OF-CONCEPT IMPLEMENTATION

6.1 Technical Details

For the practical implementation of BeatLED, Java was
chosen as a programming language, because of its porta-
bility, compatibility and ease of GUI design.

As mentioned before, the accelerometers embedded in
Nintendo Wii remotes were chosen, which were easily in-
terfaced via Bluetooth. However, because Wii remotes
send their acceleration data in bursts, a resampling mod-
ule had to be written, and was applied before inputting the
data into the game.

Because the game was designed in parallel with the LED-
display, the flexible visualization matrix was not immedi-
ately available. We opted to show preliminary output using
projections on the ground, and later using rigid versions of
the display.

6.2 Progress & Results

We succeeded in creating and testing a game with up to
10 players, and 5 teams. In fact, with the current game
design, the number of players and team can be arbitrar-
ily chosen at the start of the game, limiting the maximum
number of players to the amount of Wii remotes that can
be connected.

Because Bluetooth only supports up to 7 devices on 1 ma-
chine, we integrated the Open Sound Control 1 (OSC) pro-
tocol into the application. This way, additional accelerom-
eters could be connected to a different machine, and trans-
mit the acceleration data through a network connection to
the main gaming machine.
This also allows for easy integration with other types of
accelerometers. Future developers could easily create a
separate module to send (correctly formatted) data com-
ing from different accelerometers over the network to the

1 http://opensoundcontrol.org/

existing game.
We also opted to send the scores in the OSC format, to al-
low for easy connectivity of additional score displays, and
improve scalability and modifiability. Figure 10 shows a
schematic view of the set-up, where one laptop is used for
I/O, and one for processing. Note that there can also be
one all-in-one machine, or several I/O computers and one
processing computer.

Figure 10. Schematic view of the data-chain using Open
Sound Control (OSC). (During the game, the wii remotes
are attached to/held by the players.)

Three different synchronizing algorithms were tried out:
the original FFT algorithm, an algorithm based on adap-
tive oscillators, and a peak detection algorithm (described
above). The peak detection proved to be the best perform-
ing and was left in the implementation. Its parameters were
optimized, ensuring a realistic representation of the level of
synchronization of music and movement.

All components are modular and can be interchanged with
new implementations, leaving room for future adaptations
of the game.

7. TESTING

Two types of tests were performed in order to evaluate the
proof-of-concept implementation. First, the accuracy of
the synchronizing algorithm had to be determined. When
the final implementation was completed, a series of test
sessions were organized, allowing real end users to play
and evaluate the game.

7.1 Algorithm Tests

The accuracy of the peak detection was tested using the
peak detection error rate, defined for a fixed length frame
of samples i as

Epeaks(i) =
|Ndetected(i)−Nannotated(i)|

Nannotated(i)
(7)

withNdetected(i) the detected number of peaks in the frame,
and Nannotated(i) the number of peaks visible in the data.

We obtain the average peak detection error rate by aver-
aging these results for all frames of a set of test data.

Epeaks−avg =
1

F

F∑
i=1

Epeaks(i) (8)

A test set of accelerometer data was used, sampled at
200Hz with movements at varying tempo, with each vis-
ible peak carefully annotated. The results are visible in
table 1. We can clearly discern that even at a frame size
of 200 samples (corresponding with 1 second), usable re-
sults are obtained. This is clearly an improvement over the
original FFT algorithm, which required a frame size of 4
seconds.

frame size (samples) 100 200 400 800
Epeaks−avg - 3.9% 1.5% 1.8%

Table 1. Average error rate of detected number of peaks
for data with varying tempo

7.2 Test Sessions

7.2.1 During development

During development, monthly test sessions were organized,
using the latest version of the soft- and hardware. User in-
put influenced the following design decisions:

Location of the motion sensors It became quickly appar-
ent that users who held the motion sensor in their
hand moved significantly less than users with the
sensor attached to their body in an unobtrusive place.
This was applied in all later test sessions.

Game and song duration Using trial and error, an aver-
age length of 1 minute was chosen for the audio
fragments in the final implementation. User input
showed that a sequence of 4 tracks proved ideal.

Cumulative score vs. Sliding window A choice can be made
between a cumulative score and a sliding window
score. Cumulative scores are simply added to a player’s
previous scores, throughout the entire game, while a
sliding window calculates a player’s score as the av-
erage of his/her last N scores, with N the window
size. The choice of scoring method greatly affects
the strategies applied by the players. Users were in-
conclusive about which they liked best.

7.2.2 With finalized software

The tests with the final proof-of-concept software were car-
ried out using a less costly, rigid version of the LED dis-
play, allowing us to test the final game thoroughly, accu-
rately and without risk of damaging the more expensive
flexible demonstrators.

A short questionnaire (10 questions) was presented to the
users of the final test sessions. Although it was filled in by
a limited number of people, we were easily able to discern
some trends. The answers clearly indicated that most as-
pects of the game are positively received. User opinions
were very positive about the game rules, feedback delay,
game and audio duration and team change speed . How-
ever, they were rather divided about the score calculation
method (as mentioned above) and the score visualization.
While half of the users thought the scores were clearly pre-
sented, the other 50% thought the exact opposite. This

shows that there might be a need to further examine the
score representations.

8. FUTURE WORK

In the future, research in this topic could be continued by
exploring other algorithms for synchronization, and by in-
venting new game modes. The results and opinions gath-
ered from further test-sessions can be used to improve user
experience.

Our software allows musicologists to research natural syn-
chronization of people with music and each other, in a so-
cial context. More players could be added, and one could
even imagine a mass-player game, where real results about
social behavior would become apparent.

The LED visualization could be further expanded, firstly
by adding more LEDs, and secondly by improving wire-
less communication, allowing us to show more complex
images or even video. The user feedback indicated that a
simpler visualization, which is easier to understand, might
also improve user experience.

9. CONCLUSIONS

We developed a viable and usable social game, which meets
all of the discussed requirements. We used readily avail-
able equipment, combined with state-of-the-art, newly de-
veloped technology.

While this is a proof-of-concept implementation, we showed
that a social game such as ours could offer many possibil-
ities, not only for research, but also in the entertainment
sector and even health care.

Acknowledgments

We would like to thank all participators in this project,
especially the supervisors at IPEM, MMLab and CMST.
Also, special thanks are in order to the Belgian Industrial
Research & Development (BiR&D) committee for their fi-
nancial support, allowing this project to become a reality.

10. REFERENCES

[1] N. Games, Video Gamers In Europe. Interactive Soft-
ware Federation of Europe (ISFE), 2008.

[2] S. B. Yang, S. and G. Graham, “Healthy video gaming:
Oxymoron or possibility?” in J. of Online Education -
Vol. 04, 2008.

[3] M. Leman, M. Demey, M. Lesaffre, L. van Noor-
den, and D. Moelants, “Concepts, technology, and as-
sessment of the social music game ”sync-in-team’,”
in Proceedings of the 2009 International Conference
on Computational Science and Engineering - Vol. 04,
Washington, DC, USA, 2009, pp. 837–842.

[4] M. Leman, Embodied Music Cognition and Mediation
Technology. The MIT press, 2007.

[5] S. Dixon, “Evaluation of the audio beat tracking sys-
tem beatroot,” in Journal of New Music Research - Vol.
36, 2007, pp. 39–50.

	 1. Introduction
	 2. Social Game
	2.1 What/Why?
	2.2 Similar Games & Applications
	2.2.1 Similar Games
	2.2.2 Exergames

	2.3 Previous Research
	2.4 Goal
	2.5 Motivation & Applications

	 3. Technologies
	3.1 Accelerometers
	3.2 LED-Display

	 4. Synchronizing Music & Movement
	4.1 Input Data Processing
	4.1.1 Acceleration Data
	4.1.2 Beat Detection

	4.2 Synchronizing Algorithm
	4.2.1 Score Array
	4.2.2 Peak Detection
	4.2.3 Scoring Algorithm

	 5. Game Dynamics
	5.1 Absorbing Teams
	5.2 Score Display

	 6. Proof-of-concept Implementation
	6.1 Technical Details
	6.2 Progress & Results

	 7. Testing
	7.1 Algorithm Tests
	7.2 Test Sessions
	7.2.1 During development
	7.2.2 With finalized software

	 8. Future Work
	 9. Conclusions
	 10. References

