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ABSTRACT 
We present the initial research into a generative elec-
tronica system based upon analysis of a corpus, describ-
ing the combination of expert human analysis and ma-
chine analysis that provides parameter data for generative 
algorithms. Algorithms in MaxMSP and Jitter for the 
transcription of beat patterns and section labels are pre-
sented, and compared with human analysis. Initial beat 
generation using a genetic algorithm utilizing a neural net 
trained on the machine analysis data is discussed, and 
compared with the use of a probabilistic model. 

1. INTRODUCTION 
The goal of this research is to create a generative elec-
tronica using rules derived from a corpus of representa-
tive works from within the genre of electronica, also 
known as electronic dance music (EDM).  As the first 
author and research assistants are composers, we have 
approached the problem as a compositional one: what do 
we need to know about the style to accurately generate 
music within it?  

EDM is a diverse collection of genres whose primary 
function is as dance music. As such, the music tends to 
display several key characteristics: a constant beat, re-
peating rhythmic motives, four beat measures grouped in 
eight measure phrases. Despite these restrictions, a great 
deal of variety can be found in other elements within the 
music, and can define the different genres – the specific 
beat pattern, the overarching formal structure, the pres-
ence and specific locations of the breakdown (the release 
of tension usually associated with the drop out of the 
beat) – and it is these variations that create the musical 
interest in each track. 

The primary goal of this work is creative. We are look-
ing for methods – many of which are borrowed from MIR 
– that can be used both for offline analysis, as well as 
real-time generation in performance: we are not inter-
ested in genre recognition or classification. Our initial 
research is concerned with the analysis of a corpus from 
both a bottom-up (e.g. beat patterns) as well as top-down 
(e.g. formal structures) perspective, as both are defining 
characteristics of the style. Although some generation has 

already been undertaken, creative use of these analyses 
will be the future focus. 

2. RELATED WORK 
Little research has been done exclusively upon EDM, 
with the exception of Diakopoulos et al. [1], who used 
MIR techniques to classify one hundred 30-second ex-
cerpts into six EDM genres for live performance using a 
multi-touch surface. Gouyon and Dixon [2] approached 
non-electronic dance music classification using a tempo-
based approach. 

Automatic transcription of polyphonic music is, as 
Hainsworth and MacLeod suggest, one of the “grand 
challenges” facing computational musicology [3]. 
Klapuri gives an excellent overview of the problem [4]. 

Research specifically into drum transcription has re-
cently been undertaken [5, 6, 7], including a very thor-
ough overview by FitzGerald [8]. The parsing of compo-
sitions into sections from audio data has been researched 
as well [9, 10, 11, 12, 13]. 

Our research is unique in that it is carried out by com-
posers using a combination of two of the standard live 
performance software tools, MaxMSP and Ableton Live, 
and is specific to electronic dance music. 

3. DATA COLLECTION 
One hundred tracks were chosen from four styles of 
EDM: Breaks, Drum and Bass, Dubstep, and House. The 
selection of these styles were based upon a number of 
factors: they are produced for a dance-floor audience and 
display clear beat patterns; the styles are clearly defined, 
and significantly different from one another; there is 
common instrumentation within each of the separate 
styles; they are less complex than some other styles. 

Individual tracks were chosen to represent diverse 
characteristics and time periods, ranging from 1994-2010, 
with only four artists being represented twice. The tracks 
contain many common formal and structural production 
traits that are typical of each style and period. 

Breaks tempi range from 120-138 beats per minute 
(BPM), and is derived from sped-up samples of drum 
breaks in Soul and Funk music which are also commonly 
associated with hip-hop rhythms. Off-beats occur in the 
hi-hat, similar to House, with many parts being layered to 
add variety. The beat is moderately syncopated, empha-
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sizing two and four. Notable artists in this genre are Crys-
tal Method, Hybrid, and Stanton Warriors.  

Drum and Bass (D&B) has a tempo range of 150-180 
BPM, with a highly syncopated beat containing one or 
more sped-up sampled breakbeats. As the name suggests, 
the bass line is very important, most often a very low 
frequency (sub-bass) sampled or synthesized timbre. No-
table artists in this genre are Dom & Roland, Seba, and 
Klute. 

Dubstep has a tempo range of 137-142 BPM, with a 
half-time feel that emphasizes the third beat (rather than 
two and four). It tends to be rather sparse, with a pre-
dominant synthesized bass line that exhibits a great deal 
of rhythmic low frequency modulation, known as a 
“wobble bass”. Notable artists in this genre are Nero, 
Skream, and Benga. 

House has a tempo range of 120-130 BPM, with a 
non-syncopated beat derived from Disco that emphasizes 
all four beats on the kick, two and four on the snare, and 
off-beats in the hi-hat.  House music typically involves 
more complex arrangements, in order to offset the 
straight-forward repetitive beat, and often has Latin and 
Soul/R&B music influences, including sampled vocals. 
Notable artists in this genre are Cassius, Deep Dish, and 
Groove Armada. 

Each recording was imported into Ableton Live1, and, 
using the software’s time-warp features, and adjusted so 
that each beat was properly and consistently aligned 
within the 1/16 subdivision grid. As such, each track’s 
tempo was known, and analysis could focus upon the 
subdivisions of the measures. 

4. BEAT ANALYSIS 
Initial human analysis concentrated upon beat patterns, 
and a database was created that listed the following in-
formation for each work: 
   - tempo; 
   - number of measures; 
   - number of measures with beats; 
   - number of unique beat patterns; 
   - length of pattern (1 or 2 measures); 
   - average kicks per pattern; 
   - average snare hits per pattern; 
   - number of instrumental parts per beat pattern; 
   - number of fills. 

From these, we derived the following features: 
1.  kick density (number of measures with beats / 

(pattern length / kicks per pattern)); 
2.  snare density (number of measures with beats / 

(pattern length / snares per pattern)); 
3.  density percentile (number of measures / number 

of measures with beats); 
4.  change percentile (number of measures / number 

of unique beat patterns). 

In order to determine whether these were useful fea-
tures in representing the genres, a C4 Decision-Tree (J48) 
classifier was run, using the features 1-4, above (note that 
tempo was not included, as it is the most obvious classi-
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fier). The Decision-Tree showed that snare density and 
kick density differentiated Dubstep and House from the 
other genres, and, together with the change percentile, 
separated D&B from Breaks. The confusion matrix is 
presented in Table 1. Note that differentiating Breaks 
from D&B was difficult, which is not surprising, given 
that the latter is often considered a sped-up version of the 
former. 

 Breaks Dubstep D&B House 
Breaks 0.75 0.05 0.12 0.08 
Dubstep 0.04 0.96 0.00 0.00 
D&B 0.33 0.00 0.59 0.08 
House 0.00 0.00 0.00 1.00 

Table 1. Confusion matrix, in percent, for kick and 
snare density, and change and density percentile.  

While this information could not be used for genera-
tive purposes, it has been used to rate generated patterns. 
Actual beat patterns were hand transcribed, a task that is 
not complex for human experts, but quite complex for 
machines. 

4.1 Machine Analysis: Beat Pattern Detection 

In order to transcribe beat patterns, a Max for Live2 patch 
was created for Ableton Live that transmitted bar, beat, 
and subdivision information to Max 53, where the actual 
analysis occurred. Audio was analyzed in real-time using 
a 512 band FFT, with three specific frequency bands se-
lected as best representing the spectrum of the kick, 
snare, and hi-hat onsets: 0-172 Hz (kick); 1 kHz-5kHz 
(snare); 6 kHz-16kHz (hi-hat). Frame data from these 
regions were averaged over 1/16th subdivisions of the 
measure.  

Derivatives for the amplitude data of each subdivision 
were calculated in order to separate onset transients from 
more continuous timbres; negative values were discarded, 
and values below the standard deviation were considered 
noise, and discarded: the remaining amplitudes were con-
sidered onsets. The 16 value vectors were then combined 
into a 16×1 RGB matrix within Jitter, with hi-hat being 
stored in R, snare in G, and kick in B (see Figure 1). 

 

Figure 1. Example beat transcription via FFT, into 16×1 
Jitter matrices. Brightness corresponds to amplitude. 
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4.1.1 Transcribing Monophonic Beat Patterns 
 
15 drum loops were chosen to test the system against 
isolated, monophonic beat patterns. These patterns ranged 
in tempo from 120-130 BPM, and consisted of a variety 
of instruments, with one or more kick, snares, tuned 
toms, hi-hats, shakers, tambourines and/or cymbals. Ta-
ble 2 describes the success rate. 
 
Onsets Transcrip-

tions 
Correct Missed False 

positives 
389 373 0.84 0.12 .10 

Table 2. Transcription success rates given 15 drum 
loops. Missed onsets tended to be of low amplitude, 
while false positives included those onsets transcribed 
early (“pushed beats”) or late (“laid-back beats”). 

4.1.2 Transcribing Polyphonic Beat Patterns 
Transcribing beat patterns within polyphonic music was 
less successful, mainly due to the variety of timbres that 
shared the same spectral regions. Furthermore, specific 
instruments, such as the bass in the low frequency, or 
synthesizer textures in the mid and high frequencies often 
used percussive envelopes that were difficult to discrimi-
nate from beat patterns (whose timbres themselves were 
not limited to noise). 

 

Figure 2. Two “beat fingerprints” for entire composi-
tions: a single measure is presented as a horizontal line, 
with successive measures displayed top to bottom. Top, 
the House track “Funky Enuff”: blue indicates mainly 
kick, red hi-hat, demonstrating the “four to the floor” 
with hi-hat off-beats typical of House music. Bottom, 
the Dubstep track “Age of Dub”: yellow indicates snare 
and hi-hat, demonstrating the half-time feel of Dubstep.  

Successive measures were accumulated into longer 
matrices, with the second dimension corresponding to the 
number of measures within the composition. This re-
sulted in generating a track’s “beat pattern fingerprint”, 
visually displaying similarities and differences between 
individual compositions and genres (see Figure 2). 

While the track fingerprints provided interesting visual 
information, a fair degree of noise remained, due to the 
difficulty in separating actual beats from other timbres 
that shared the same spectrum. For example, human 
analysis determined that the track in Fig. 3, top, contained 
only a single beat pattern, present throughout the entire 
duration; machine analysis calculated 31 unique kick 
patterns, 40 snare patterns, and 20 hi-hat patterns. As a 
result additional filtering was done, removing all onsets 
whose amplitudes were below the mean. This tended to 
remove false positive onsets from breakdowns. 

5. BEAT GENERATION 
Although generation is not the focus of our research at 
this time, some initial experiments have been undertaken. 

5.1 Genetic Algorithm using a Neural Network 

We trained a neural network (a multilayer perceptron 
with four nodes in the hidden layer) using patterns from 
the machine analysis described in Section 4.1. A fifth 
output was specified in which random patterns were fed 
in order for the neural network to be able to identify non-
genre based patterns. The three individual patterns – kick, 
snare, hi-hat – were concatenated into a single 48 value 
floating point vector which was fed to the network. 

 

Figure 3. Example beats created by the genetic algo-
rithm using a neural network as fitness function; top, a 
Dubstep pattern; bottom, a House pattern. 

A genetic algorithm was created in MaxMSP in order 
to generate a population of beat patterns, using the trained 
neural network as the fitness function. Individuals, ini-
tially randomly generated, were fed to the neural net-
work, which rated each individual as to its closeness to 
the patterns of a user-selected genre (similarity being 
determined by an algorithm that compares weighted on-
sets and density); individuals ranked highest within the 
genre were considered strong, and allowed to reproduce 
through crossover. Three selection methods were used, 
including top 50%, roulette-wheel, and tournament selec-
tion, resulting in differences in diversity in the final popu-
lation. Mutation included swapping beats, and removing 
onsets, as randomly generated patterns tended to be much 
more dense than required. Using an initial population of 



100 individuals, a mutation rate of 5%, and evolving 20 
generations, two examples are shown in Figure 3.  

5.2 Genetic Algorithm using a Probabilistic Model 

A second approach was explored within the genetic al-
gorithm – the fitness function being the Euclidean dis-
tance from prototype patterns from each genre. These 
prototype patterns were calculated by accumulating on-
sets for all measures in every analyzed track, eliminating 
those scores below 0.2, and generating a probabilistic 
model (see Figure 4). 

 

Figure 4. Proto-patterns for Dubstep, top, and House, 
bottom, based upon onset probabilities derived from 
machine analysis, with probabilities for each onset. 

The machine analysis for these proto-patterns can be 
compared to those generated from the human analysis 
using the same criteria (see Figure 5). Note within House, 
only a single pattern occurs; the more active snare in the 
machine analysis suggests difficulty in the algorithm in 
separating percussive midrange timbres – such as guitar – 
from the snare. 

 

Figure 5. Proto-patterns for Dubstep, top, and House, 
bottom, based upon onset probabilities derived from 
human analysis, with probabilities for each onset. 

Additional mutation functions were employed that 
used musical variations, in which musically similar 
rhythms could be substituted – see [14] for a description 
of this process. Example patterns evolved using this 
model are given in Figure 6, using an initial population of 
100 individuals, a mutation rate of 5%, and evolving 20 
generations. 

 

Figure 6. Three House patterns evolved using a genetic  
algorithm using machine-derived prototype patterns as 
fitness functions. 

The use of a genetic algorithm in this second model to 
generate beat patterns might seem superfluous, given that 
a target is already extant. However, the result of the GA 
is a population of patterns that can be auditioned or ac-
cessed in real-time, a population that resembles the proto-
type target in musically interesting ways. No variation 
methods need to be programmed: instead, each pattern 
has evolved in a complex, organic way from the genre’s 
typical patterns. Lastly, unlike generating patterns purely 
by the probability of specific onsets found in the proto-
pattern, new onsets can appear within the population (for 
example, sixteenths in the House patterns shown in Fig-
ure 6). 

6. STRUCTURAL ANALYSIS 
Within Ableton Live, phrases were separated by hand 
into different sections by several expert listeners (how-
ever, only one listener per track):  
   • Lead-in – the initial section with often only a single 
layer present: synth; incomplete beat pattern; guitar, etc.; 
   • Intro – a bridge between the Lead-in and the Verse: 
more instruments are present than the Lead-in, but not as 
full as the Verse; 
   • Verse – the main section of the track, in which all 
instruments are present, which can occur several times; 
   • Breakdown – a contrasting section to the verse in 
which the beat may drop out, or a filter may remove all 
mid– and high–frequencies. Will tend to build tension, 
and lead back to the verse; 
   • Outro – the fade-out of the track. 

The structures found within the tracks analysed were 
unique, with no duplication; as such, form was in no way 
formulaic in these examples. 

Interestingly, there was no clear determining factor as 
to why section breaks were considered to occur at spe-
cific locations. The discriminating criteria tended to be 
the addition of certain instruments, the order of which 
was not consistent. Something as subtle as the entry of 
specific synthesizer timbres were heard by the experts as 
sectional boundaries; while determining such edges may 
not be a difficult task for expert human listeners, it is 
extremely difficult for machine analysis. Furthermore, 



many of the analyses decisions were debatable, resulting 
from the purely subjective criteria.  

6.1 Machine Analysis: Section Detection 

These fuzzy decisions were emulated in the machine 
analysis by searching for significant changes between 
phrases: therefore, additional spectral analysis was done, 
including: 
   • spectral energy using a 25 band Bark auditory mod-
eler [15], which provides the spectral energy in these per-
ceptually significant bands; 
   • spectral flux, in which high values indicate significant 
energy difference between frames, e.g. the presence of 
beats; 
   • spectral centroid, in which high values indicate higher 
overall central frequency, e.g. a full timbre, rather than 
primarily kick and bass;  
   • spectral roll-off, in which high values indicate the 
presence of high frequencies, e.g. hi-hats. 

These specific features were found to be most useful in 
providing contrasting information, while other analyses, 
such as MFCC, 24 band Mel, and spectral flatness, were 
not as useful. Spectral analysis was done using Malt & 
Jourdan’s zsa externals for MaxMSP4 

As with beat pattern analysis, these features were ana-
lyzed over 1/16 subdivisions of the measure, and stored 
in two separate RGB Jitter matrices, the first storing the 
Bark data (3.3-16 kHz in R, 450-2800 in G, 60-350 Hz in 
B), the second the spectral data (Flux in R, Centroid in G, 
Roll-off in B). See Figure 7 for examples of these spec-
tral fingerprints. 

For each of the nine vectors (three each, for Bark, 
Spectral, and Pattern), derivatives of amplitude differ-
ences between subdivisions of successive measures were 
calculated; these values were then also summed and 
compared to successive measures in order to discover if 
section changes occurred at locations other than eight bar 
multiples5. Having grouped the measures into phrases, 
phrase amplitudes were summed, and derivatives be-
tween phrases calculated; as with pattern recognition, 
negative values and values below the mean where 
dropped. This same mean value served as a threshold in 
scoring potential section breaks, as each phrase in each of 
the nine vectors were assigned positive scores if the dif-
ference between successive values was greater than this 
threshold (a new section) or below this value for subse-
quent differences (reinforcing the previous section 
change). Summing the scores and eliminating those be-
low the mean identified virtually all section changes.  

Sections were then assigned labels. Overlaying the 
human analysis section changes with the mean values for 
the nine features, it was found that breakdowns had the 
lowest energy in the low and high Bark regions, while 
verses had the highest energy in all three Bark regions 
(when compared to the entire track’s data). See Figure 8 
for an example. 
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5 The most formal variation occurred in House music, ironically con-
sidered the most static genre.  

 

Figure 7. Spectral fingerprints for the Breaks track 
“Blowout”, with Bark analysis, left, and 
Flux/Centroid/Roll-off, right. The section changes are 
clearly displayed: in this track, both low and high fre-
quencies are removed during the breakdown, leaving 
primarily the midrange, shown green in the Bark analy-
sis. 

Thus, those sections whose mean values for low and 
high Bark regions were below the mean of all sections, 
were tentatively scored as breakdowns, and those sections 
whose mean values for all three Bark regions were above 
the mean of all sections, were tentatively scored as 
verses.  

 

Figure 8. Mean amplitudes per section for twenty 
phrases for the Breaks track “Burma”. Gray represents 
the normalized amplitudes over the sections, pink repre-
sents the human-analyzed section divisions, orange the 
machine-analyzed section divisions, including a false 
positive in the lead-in. 

A Markov transition table was generated from the hu-
man analysis of all sections, and the machine labels were 
then tested against the transition table, and the scores 
adjusted. Thus, a low energy section near the beginning 
of a track (following the lead-in) may have been initially 
labeled a breakdown, but the transition table suggested a 
higher probability for a continued lead-in. After all possi-



ble transitions (forwards and backwards) were taken into 
account, the label with the highest probability was se-
lected. 

Each phrase within 32 tracks was machine labeled for 
its section: Table 3 presents the results. 5 tracks that dis-
played unusual forms (e.g. low energy verses) in the first 
three genres brought the scores down significantly. 

Genre Phrases Correct Percentile 
Breaks 174 122 0.70 
D&B 264 189 0.72 
Dubstep 184 124 0.67 
House 152 122 0.80 

Table 3. Success rate for machine labeling of sections. 

7. CONCLUSIONS AND FUTURE WORK 
Accurately creating music within an EDM genre requires 
a thorough knowledge of the model; while this knowl-
edge may be implicit within composers, this research is 
the first step in making every decision based upon ex-
plicit analysis. 

7.1 Improvements 

Several improvements in the system are currently being 
made, including: 
• Better beat detection involving comparing FFT matrix 
data between different regions of the tracks to determine 
similarities and differences within a phrase (i.e. compar-
ing measure n and n + 4) and between phrases (n and n + 
8). 
• Incorporating fill detection to determine sectional 
change. Fills occur in the last 1, 2, 4, or even 8 measures 
of a section, and display significantly different features 
than the phrase, and lead to a significantly different sec-
tion following. 

7.2 Future Directions 

Signal processing is an integral element of EDM, and we 
are currently involved in human analysis of typical DSP 
processes within the corpus, in determining representa-
tive processes, and their use in influencing structure. 
Similarly, pitch elements – bass lines, harmonies – are 
also being hand-transcribed. 
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