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ABSTRACT 

We propose an approach for the automatic creation of 

mood playlists in the Thayer plane (TP). Music emotion 

recognition is tackled as a regression and classification 

problem, aiming to predict the arousal and valence (AV) 

values of each song in the TP, based on Yang’s dataset. 

To this end, a high number of audio features are extracted 

using three frameworks: PsySound, MIR Toolbox and 

Marsyas. The extracted features and Yang’s annotated 

AV values are used to train several Support Vector Re-

gressors, each employing different feature sets. The best 

performance, in terms of R
2
 statistics, was attained after 

feature selection, reaching 63% for arousal and 35.6% for 

valence. Based on the predicted location of each song in 

the TP, mood playlists can be created by specifying a 

point in the plane, from which the closest songs are re-

trieved. Using one seed song, the accuracy of the created 

playlists was 62.3% for 20-song playlists, 24.8% for 5-

song playlists and 6.2% for the top song. 

1. INTRODUCTION 

Since the beginning of mankind music has always been 

present in our lives, serving a myriad of purposes both 

socially and individually. Given the major importance of 

music in all human societies throughout history and par-

ticularly in the digital society, music plays a relevant role 

in the world economy. 

As a result of technological innovations in this digital 

era, a tremendous impulse has been given to the electron-

ic music distribution industry. Factors like the widespread 

access to the Internet, bandwidth increasing in domestic 

accesses or the generalized use of compact audio, such as 

mp3, have contributed to that boom. The frenetic growth 

in music supply and demand uncovered the need for more 

powerful methods for automatically retrieving relevant 

songs in a given context from such huge databases. In 

fact, any large music database, or, generically speaking, 

any multimedia database, is only really useful if users can 

find what they are seeking in an efficient manner. Fur-

thermore, it is also important that the organization of such 

a database can be performed as objectively and efficiently 

as possible. 

Digital music repositories need, then, more advanced, 

flexible and user-friendly search mechanisms, adapted to 

the requirements of individual users. In fact, “music’s 

preeminent functions are social and psychological”, and 

so “the most useful retrieval indexes are those that facili-

tate searching in conformity with such social and psycho-

logical functions. Typically, such indexes will focus on 

stylistic, mood, and similarity information.” [1]. This is 

supported by studies on music information behavior that 

have identified music mood
1
 as an important criterion for 

music retrieval and organization [2].  

Besides the music industry, the range of applications of 

mood detection in music is wide and varied, e.g., game 

development, cinema, advertising or the clinical area (in 

the motivation to compliance to sport activities pre-

scribed by physicians, as well as stress management). 

Compared to music emotion synthesis, few works have 

been devoted to emotion analysis. From these, most of 

them deal with MIDI or symbolic representations [3]. 

Only a few works tackle the problem of emotion detec-

tion in audio music signals, although it has received in-

creasing attention in recent years. Being a recent research 

topic, many limitations can be found and several prob-

lems are still open. In fact, the present accuracy of those 

systems shows there is plenty of room for improvement. 

In a recent comparison, the best algorithm achieved an 

accuracy of 65% in a task comprising 5 categories [4]. 

Several aspects make music emotion recognition 

(MER) a challenging task. On one hand, the perception of 

the emotions evoked by a song is inherently subjective: 

different people often perceive different, sometimes op-

posite, emotions. Besides, even when listeners agree in 

the kind of emotion, there’s still ambiguity regarding its 

description (e.g., the adjectives employed). Additionally, 

it is not yet well-understood how and why music ele-

ments create specific emotional responses in listeners [5]. 

For a long time, mood and emotions has been a major 

subject of psychologists and so several theoretical models 

have been proposed over the years. Such models can be 

divided into two approaches: categorical models or di-

mensional models. Categorical models consist of several 

states of emotion (categories), such as anger, fear, happi-

ness and joy. Dimensional models use several axes to 

map emotions into a plane. The most frequent approaches 
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uses two axes (e.g. arousal-valence or energy-stress), 

with some cases of a third dimension (dominance). 

The advantage of dimensional models is the reduced 

ambiguity when compared with the categorical approach. 

However, some ambiguity remains, since each of the four 

quadrants represents more than one distinct emotion 

(happiness and excitation are both represented by high 

arousal and valence for example). Given this, dimension-

al models can be further divided into discrete (described 

above) and continuous. Continuous models, unlike dis-

crete ones, view the emotion plane as a continuous space 

where each point denotes a different emotional state, thus 

removing the ambiguity between emotional states [5]. 

In order to reduce ambiguity, Thayer’s mood model [6] 

is employed. Hence, the emotion plane is regarded as a 

continuous space, with two axes: arousal and valence. 

Each point, then, denotes a different emotional state and 

songs are mapped to different points in the plane. 

In this paper we aim to automatically generate playlists 

by exploiting mood similarity between songs in the 

Thayer plane, based only on features extracted from the 

audio signal. To this end, we built on Yang’s work [5], 

where a regression solution to music emotion recognition 

was proposed. 

Thus, our first goal is to predict AV values for each 

song in the set. We employed the annotated values from 

the dataset created by Yang [5]. From each song, a high 

number of audio features are extracted, with recourse to 

three frameworks: PsySound, MIR Toolbox and Marsyas. 

The extracted features and Yang’s AV annotated values 

are used to train Support Vector Regressors (SVR), one 

for arousal and another for valence. Given the high num-

ber of extracted features, the feature space dimensionality 

is reduced via feature selection, applying two distinct 

algorithms: forward feature selection (FFS) [7] and RRe-

liefF (RRF) [8]. The highest results were achieved with a 

subset of features from all frameworks, selected by FFS, 

reaching 63% for arousal and 35.6% for valence, in terms 

of R
2
 statistics. Results with RRF were slightly lower 

recurring to a smaller subset of features. Compared to the 

results reported in [5], the prediction accuracy increased 

from 58.3% to 63% for arousal, and from 28.1% to 

35.6% for valence, i.e., an improvement of 4.7% and 

7.5%, respectively. A classification approach, using qua-

drants in the Thayer plane (TP) to train and prediction 

instead of AV values was also tested. Still, results were 

very similar between different feature sets, reaching 55% 

accuracy in terms of quadrant matching.  

Our second goal is to automatically create mood-based 

playlists. A playlist is “a list that specifies which songs to 

play in which order.” [9]. The sequence of songs has 

three important aspects: the elements, i.e., the songs in 

the sequence; the order in which these elements appear; 

and the length of the sequence. Unlike playing random 

songs or listening to complete albums, many times users 

want to listen to music according to their mood or to 

some activity they are involved in (e.g., relaxing or run-

ning). In this work, we select the elements in the playlist 

based on their distance to a seed song according to their 

location in the Thayer plane (Euclidean distance is calcu-

lated). In this way, the songs in the playlist are organized 

in increasing distance order to the seed song. Additional-

ly, the order of the songs can be specified with more 

flexibility by drawing a desired mood trajectory in the 

Thayer plane (see Section 4, Figure 3). As for the dura-

tion of the playlist, the number of songs to include is 

specified by the user. 

The accuracy of this approach is measured by matching 

playlists generated with predicted AV values against 

playlists using the real AV values. With one seed song, 

the average accuracy of the created playlists is 62.3% for 

20-song playlists, 24.8% for 5-song playlists and 6.2% 

for the top song only. We are not aware of any previous 

studies regarding the quantitative evaluation of mood-

based playlists, so, to the best of our knowledge, this is an 

original contribution.  

Finally, we have also built a working prototype to ana-

lyze music mood as well as to generate playlists based on 

a song or a mood trajectory (see Section 4, Figure 3). 

This paper is organized as follows. In section 2, we de-

scribe relevant work that has been done in the area. In 

section 3, the feature extraction process and used frame-

works are approached. Followed regression strategy and 

AV mood modeling is also addressed. In section 4, the 

quality of the ground truth is analyzed and experimental 

results are presented and discussed. Finally, conclusions 

from this study are drawn in section 5. 

2. RELATED WORK 

In 1989, Thayer proposed a two-dimensional mood 

model [6], offering a simple but effective way to 

represent mood. In this model, mood depends on two 

factors: Stress (happiness/anxiety) and Energy (calm-

ness/energy) combined in a two-dimensional axis, form-

ing four different quadrants: Contentment, representing 

calm and happy music; Depression, referring to calm and 

anxious music; Exuberance, referring to happy and ener-

getic; and Anxiety, representing frantic and energetic 

music (see Figure 1). A key aspect of the model is that 

emotions are located away from the center, since closer to 

the center both arousal and valence have small values, 

thus not representing a clear, identifiable emotion. Thay-

er’s mood model can fit in both sub-categories of dimen-

sional models: it can be considered discrete, having four 

classes, but it can also be regarded as a continuous model, 

as approached by [5] and in this paper. 

 

Figure 1. Thayer's model of mood (adapted from [10]). 

Research on the relations between music and emotion 

has a long history, with initial empirical studies starting 



in the 19th century [11]. This problem was studied more 

actively in the 20th century, when several researchers 

investigated the relationship between emotions and par-

ticular musical attributes such as mode, harmony, tempo, 

rhythm and dynamics [12]. However, only a few attempts 

have been made to build computational models. From 

these, most are devoted to emotion synthesis [13], elabo-

rating on the relationships between emotion and music 

composition and music expressivity. 

Only a few works addressing emotion detection in au-

dio signals can be found. To the best of our knowledge, 

the first paper on mood detection in audio was published 

in 2003, by Feng et al. [14]. There, musical pieces are 

classified into 4 mood categories (happiness, sadness, 

anger and fear) using two musical attributes: tempo and 

articulation, extracted from 200 songs. These features are 

used to train a neural network classifier. The classifier is 

then validated on a test corpus of 23 pieces, with average 

precision and recall of 67 and 66%, respectively. This 

first attempt towards music mood detection had, natural-

ly, several limitations. Namely, only two music attributes 

were captured and only four mood labels were employed. 

Regarding system validation, a reduced test corpus was 

utilized, making it hard to provide evidence of generality. 

Most of the described limitations were still present in 

following research works (e.g., [13], [15], [16]). Overall, 

in each approach a different (and limited) set of features, 

mood taxonomies, number of classes and test sets are 

proposed. Also, some studies constrain the analysis to a 

particular musical style, e.g., [13], [16].  

One of the most comprehensive approaches so far is 

proposed by Lu et al. [13]. The system is based on Thay-

er’s model of mood, employing its 4 music moods and 

using features of intensity, timbre and rhythm. Mood is 

then detected with recourse to a hierarchical framework 

based on Gaussian Mixture Models and feature de-

correlation via the Karhunen-Loeve Transform. The algo-

rithm was evaluated on a test set of 800 songs, reaching 

86.3% average accuracy. This value should be regarded 

with caution, since the system was only evaluated on a 

corpus of classical music using only 4 classes.  Its main 

limitations are the absence of important mood-related 

features, such as mode and articulation, and its short 

number of mood categories. Some interesting points are 

the usage of a hierarchical framework and different 

weights for each feature, according to their. 

Contrasting to most approaches, based on categorical 

mood models, Yang et al. [5] maps each music clip to a 

point in Thayer’s arousal-valence plane. The authors 

evaluated their system with recourse to R
2
 statistics, hav-

ing achieved 58.3% accuracy for arousal and 28.1% for 

valence. We base our approach in this work. 

In a recent evaluation that took place in MIREX’2010 

[4], the accuracy of several algorithms in a 5-class mood 

classification task was compared. The best algorithm 

achieved 65% accuracy. For a more comprehensive sur-

vey on MER see [10]. To sum up, we can see, from the 

lack of accuracy and generality of the current approaches, 

that there is plenty of room for improvement. 

Regarding automatic playlist generation (APG), most 

current approaches are based on the specification of one 

or more seed songs, creating playlists based on the dis-

tance between the seed and remaining songs, according to 

some distance function, e.g., [17-19]. Playlist ordering is 

usually defined according to the distance to the seed. 

Other approaches rely on the usage of user-specified 

constraints based on metadata, e.g., [9], [20], [21]. Those 

constraints usually include criteria such as balance (e.g., 

don’t allow two consecutive songs of the same artist) or 

progress (e.g., increase tempo or change genre at some 

point) among others [9]. Besides metadata-based con-

straints, audio similarity constraints can also be employed 

(e.g. timbre continuity through a playlist) [22]. 

In this paper, we follow the first approach, i.e., a seed 

song is specified and the playlist is created according to 

distances of the songs in the dataset to this seed song. 

Additionally, the order of the songs can also be specified 

by drawing a desired mood trajectory in the Thayer plane. 

3. FEATURE EXTRACTION AND AV 

MOOD MODELING 

3.1 Feature Extraction 

Several authors have studied the most relevant musical 

attributes for mood analysis. Namely, it was found that 

major modes are frequently related to emotional states 

such as happiness or solemnity, whereas minor modes are 

associated with sadness or anger [23]. Simple, consonant, 

harmonies are usually happy, pleasant or relaxed. On the 

contrary, complex, dissonant, harmonies relate to emo-

tions such as excitement, tension or sadness, as they 

create instability in a musical piece [23]. In a recent over-

view, Friberg [12] lists and describes the following fea-

tures: timing, dynamics, articulation, timbre, pitch, inter-

val, melody, harmony, tonality and rhythm. Other com-

mon features not included in that list are, for example, 

mode, loudness or musical form [23]. Several of these 

features have already been studied in the MIDI domain, 

e.g., [24]. The following list contains many of the rele-

vant features for music mood analysis: 

 Timing: Tempo, tempo variation, duration contrast 

 Dynamics: overall level, crescendo/decrescendo, ac-

cents 

 Articulation: overall (staccato/legato), variability 

 Timbre: Spectral richness, onset velocity, harmonic 

richness 

 Pitch (high/low) 

 Interval (small/large) 

 Melody: range (small/large), direction (up/down) 

 Harmony (consonant/complex-dissonant) 

 Tonality (chromatic-atonal/key-oriented) 

 Rhythm (regular-smooth/firm/flowing-

fluent/irregular-rough) 

 Mode (major/minor) 

 Loudness (high/low) 

 Musical form (complexity, repetition, new ideas, dis-

ruption) 

 

However, many of the previous features are often diffi-

cult to extract from audio signals. Also, several of them 

require further study from a psychological perspective. 

Therefore, it is common to apply low-level audio descrip-



tors (LLDs), studied in other contexts (e.g., genre classi-

fication, speech recognition), directly to mood detection. 

Such descriptors aim to represent attributes of audio like 

pitch, harmony, loudness, timbre, rhythm, tempo and so 

forth. LLDs are generally computed from the short-time 

spectra of the audio waveform, e.g., spectral shape fea-

tures such as centroid, spread, skewness, kurtosis, slope, 

decrease, rolloff, flux, contrast or MFCCs [25]. Other 

methods have been studied to detect tempo and tonality. 

To extract the referred features, an audio framework is 

normally used. The main differences between frame-

works are the number and type of features available, 

stability, ease of use, performance and the system re-

sources they require. In this work, features from Psy-

Sound, MIR Toolbox and Marsyas were used, measuring 

the relevance of each one in MER. Although PsySound is 

cited in some literature [5] as having several relevant 

features to emotion, there is no known comparison be-

tween this and other frameworks. 

In his work [5], Yang used PsySound2 to extract a total 

of 44 features. At the time, PsySound was available only 

for Mac PowerPC computers. Since then, the program 

was rewritten in MATLAB, resulting in PsySound3. Still, 

the current version contains inconsistencies and lacks 

features present in the previous version, making it im-

possible to replicate Yang feature set and thus compare 

the results between PsySound2 and 3. For this reason, we 

employ the exact same PsySound2 features extracted and 

kindly provided by Yang. From PsySound, a set of 15 

features are said to be particularly relevant to emotion 

analysis [26]. Therefore, another feature set was defined 

by Yang [5], containing these 15 features. This set is 

denoted as Psy15 hereafter, while the full PsySound, 

Marsyas and Music Information Retrieval (MIR) Toolbox 

feature sets will be denoted as Psy44, MAR and MIR 

respectively. 

The MIR Toolbox is an integrated set of functions writ-

ten in MATLAB, that are specific to the extraction of 

musical features such as pitch, timbre, tonality and others 

[27]. A high number of both low and high-level audio 

features are available. 

Marsyas (Music Analysis, Retrieval and Synthesis for 

Audio Signals) is a framework developed for audio 

processing with specific emphasis on MIR applications. 

Marsyas has been used for a variety of projects in both 

academia and industry, and it is known to be computa-

tionally efficient, due in part to the fact of being written 

in highly optimized C++ code. On the less bright side, it 

lacks some features considered relevant to MER. 

A brief summary of the extracted features and their re-

spective framework is given in Table 1. Regarding Mar-

syas and MIR Toolbox, the analysis window size used for 

frame-level features is 23 ms, later transformed to song-

level features by the MeanVar model [28], which 

represents the feature by mean and variance. All extracted 

features were normalized to the [0, 1] interval. A total of 

12 features extracted with Marsyas returned the same 

(zero) value for all songs, thus not being used in the expe-

riment. 

 

Framework 

(features) 
Description 

PsySound2 

(44) 

Loudness, sharpness, volume, spectral 

centroid, timbral width, pitch multiplicity, 

dissonance, tonality and chord, based on 

psycho acoustic models. 

MIR Tool-

box (177) 

Among others: root mean square (RMS) 

energy, rhythmic fluctuation, tempo, 

attack time and slope, zero crossing rate, 

rolloff, flux, high frequency energy, Mel 

frequency cepstral coefficients (MFCCs), 

roughness, spectral peaks variability 

(irregularity), inharmonicity, pitch, mode, 

harmonic change and key. 

Marsyas 

(237) 

Spectral centroid, rolloff, flux, zero cross 

rate, linear spectral pair, linear prediction 

cepstral coefficients (LPCCs), spectral 

flatness measure (SFM), spectral crest 

factor (SCF), stereo panning spectrum 

features, MFCCs, chroma, beat histograms 

and tempo. 

Table 1. Frameworks used and respective features. 

3.2 AV Mood Modeling 

A wide range of supervised learning methods are availa-

ble and have been used in MER problems before. From 

those, we opted for regression algorithms as a solution, 

similarly to what was done by Yang. The idea behind 

regression is to predict a real value, based on a previous 

set of training examples, which proved to be a fast and 

reliable solution [29]. 

Since we employ Thayer’s model as a continuous re-

presentation of mood, a regression algorithm is used to 

train two distinct models – one for arousal and another 

for valence. To this end, the algorithm is fed with each 

song feature vector, as well as the AV values, previously 

annotated in Yang’s study. The created models can then 

be used to predict AV values for a given feature vector. 

Support Vector Regression (SVR) was the chosen algo-

rithm, since it achieved the best results in Yang’s study 

[5], when compared with Multiple Linear Regression 

(MLR) and AdaBoost.RT. We used the libSVM library 

[30], a fast and reliable implementation of SVR and clas-

sification (SVC). A grid parameter search was also car-

ried out to discover the best SVR parameters. 

To reduce the dimensionality of the feature space while 

increasing prediction accuracy, achieving a subset of 

features that are better suited to our problem, we tested 

two feature selection algorithms: Forward Feature Selec-

tion (FFS) [7] and RReliefF [8]. FFS is a simple algo-

rithm, starting with an empty “ranked” set of features. All 

the remaining features are tested one at a time, moving 

the best performing one to the “ranked” set. The proce-

dure continues iteratively, with one feature being added 

to the “ranked” set in each iteration, until no more fea-

tures are left. One of its main limitations in FFS is the 

fact that it does not take into consideration the relation 



that might exist between groups of features, resulting in 

big subsets of features. RReliefF is another algorithm to 

measure features’ importance. Unlike FFS, RRF does not 

assume feature independence. In addition, it also provides 

a weight to each feature in the problem under analysis. 

Since the algorithm uses k-nearest neighbors (KNN), a 

proper value of K is of major importance. Using a small 

value may give unreliable results. On the other hand, if K 

is high it may fail to highlight important features. Taking 

this into consideration, several values of K for each fea-

ture set were tested to obtain better results. Given the 

differences of each feature selection algorithm, it may be 

interesting to compare each ranking and respective per-

formance. 

The dimensionality of the feature space can also be re-

duced with recourse to Principal Component Analysis 

(PCA) [31]. This is a widely used technique whose basic 

idea is to project the computed feature matrix into an 

orthogonal basis that best expresses the original data set. 

Moreover, the resulting projected data is decorrelated. As 

for the selection of the principal components, we kept the 

ones that retained 90% of the variance. Regarding im-

plementation, we made use of the PCA MATLAB code 

provided in the Netlab toolbox [32]. 

In order to measure performance of the regression mod-

els we used the R
2
 statistics, “which is the standard way 

for measuring the goodness of fit for regression models” 

[5]. Moreover, we want a direct comparison between our 

results and Yang’s. R
2
 is defined as follows, (1): 

      
   

   
  (1) 

where SSE represents the sum square error (SSE) and 

SST the total sum of squares (SST). SSE measures the 

total deviation of the predicted values from the original 

annotations (2). 

              
 

 

   

  (2) 

where    is the annotation and     the predicted value. The 

SST is used to measure the deviation of each annotation 

to the mean value of the annotations (3). 

              
 

   

  (3) 

where    is the specific annotation and    the average of 

all annotation values. An R
2
 of 1 means the model fits the 

data perfectly, while negative values indicate that the 

model is even worse than simply taking the sample mean. 

4. EVALUATION 

4.1 Ground Truth Analysis 

As previously mentioned, we employ the dataset and AV 

annotations kindly provided by Yang and used in his 

work [5]. The AV annotations are fundamental to the 

results, since they are used in the regressor training 

process and to measure the playlist results. According to 

Yang, the dataset is made of 25 seconds clips, of various 

genres, that better expressed the emotion present on each 

song, for a total of 195 songs, balanced between qua-

drants. The ground truth was created using 253 volun-

teers with different backgrounds, in a subjective test, with 

each song being labeled by at least 10 different subjects. 

The volunteers were asked to annotate the evoking emo-

tion in AV values, between [-1, 1]. Details on the subjec-

tive test can be found in [5].  

There are several problems with the ground truth that 

may have a negative influence on the results. One of 

them is the proximity of the AV values with the origin of 

the graph. Thayer’s model places the emotions far from 

the center, where the reference values are relevant, with a 

high positive or negative valence and arousal. However, 

most of the annotations are near the center, as shown in 

Figure 2, where 70% are at a distance smaller than 0.5. In 

it, the position of each point represents the average AV 

value given by annotators, while the marker type 

represents the expected quadrant for each song by Yang. 

One possible reason for this is the fact that the AV anno-

tations result from averaging several annotations by dif-

ferent subjects, which can vary greatly, once again show-

ing the subjectivity existent in emotions perception. 

 

Figure 2. Yang annotations placed on Thayer's model 

Another issue is the unbalanced song distribution. The 

original balance was disrupted since the AV values given 

by the subjects often placed the songs in a different qua-

drant than initially predicted by Yang. This affected spe-

cially the second quadrant, having only 12% of the songs. 

Finally, a few inconsistencies were found between the 

provided data. Originally, the article [5] mentions 195 

songs. However, due to some mismatches between arous-

al and valence annotations in the data provided by the 

author, we could only employ 189 songs. In any case, the 

difference is not significant. 



4.2 Experimental Results 

4.2.1 Mood Regression 

In the regression tests, 20 repetitions of 10-fold cross 

validation were run, ensuring that all songs are used in 

different groups for training and testing. 

Various tests were run in order to perceive the impor-

tance of each framework and its features on mood detec-

tion. From these tests, the best results were obtained with 

FFS, using a combination of all feature sets, reaching 

63% for arousal and 35.6% for valence, using a total of 

53 and 80 features respectively. The number of used 

features was high, in part due to the FFS working mode. 

Although RRF results were lower, they were in many 

cases obtained resorting to less features, helping us to 

identify the most important features for both problems 

(AV). For instance, using only the first ten features se-

lected with RRF resulted in 31.5% for arousal and 15.2% 

for valence. On the other hand, FFS achieved only 0.8% 

and 2.0% for arousal and valence respectively..  

The remaining tests highlighted MIR Toolbox features 

as achieving better results, especially on valence with R
2
 

attaining 25.7%. PsySound followed, with a valence 

accuracy of 21% and Marsyas scored the lowest, only 

4.6%, proving to be quite ineffective for valence predic-

tion. In terms of arousal, all the frameworks had a close 

score, ranging from 56% (Marsyas) to 60.3% (MIR Tool-

box). A summary of the results is presented in Table 2 

(values refer to average ± variance). For some unknown 

reason, we were unable to replicate Yang results [5], 

using either the Psy15 features or the list of features re-

sulting from the feature selection algorithm
2
. We also 

conducted the same tests with PCA, normally used to 

reduce correlation between variables, without any notice-

able improvement in results but actually leading to lower 

R
2
 values. 

 

 All features FFS RReliefF 

 A V A V A V 

Psy15 
58.7% 12.7% 60.3% 21.0% 60.1% 21.1% 

± 15.6 ± 18.4 ± 14.7 ± 15.4 ± 16.0 ± 16.4 

Psy44 
57.3% 7.9% 57.3% 19.1% 60.5% 16.3% 
± 15.9 ± 14.0 ± 15.6 ± 13.4 ± 15.2 ± 15.0 

MIR 
58.2% 8.5% 58.7% 25.7% 62.1% 23.3% 
± 14.2 ± 19.5 ± 13.3 ± 18.9 ± 9.9 ± 15.7 

MAR 
52.9% 3.7% 56.0% 4.6% 60.0% 10.4% 

± 16.2 ± 14.9 ± 14.6 ± 20.2 ± 12.4 ± 10.7 

ALL + 
PCA 

56.5% 23.4% 61.8% 27.2% 61.4% 17.0% 

± 13.6 ± 18.2 ± 11.0 ± 22.5 ± 16.2 ± 20.6 

ALL 
57.4% 19.4% 62.9% 35.6% 62.6% 24.5% 

± 15.6 ± 12.3 ± 8.8 ± 14.7 ± 13.7 ± 14.3 

Table 2. Results of the regression and classification tests. 

A list of the top ten features for both arousal and va-

lence is presented on Table 3. The list was obtained by 

                                                           
2
 It is worth mentioned that, in order to try to replicate Yang’s results, 

we employed the SVR parameters mentioned in his web page: 

http://mpac.ee.ntu.edu.tw/~yihsuan/MER/taslp08/. 

running the RReliefF algorithm on the combined feature 

set of all frameworks (referred as “ALL” in Table 3).  

 

Arousal Valence 

Feature Set Weight Feature Set Weight 

SFM19 (std) MAR 0.0186 
spectral diss 

(S) 
Psy15 0.0255 

RMS energy 

(kurtosis) 
MIR 0.0153 tonality Psy15 0.0239 

key strength 

minor (max) 
MIR 0.0139 

key strength 

major (max) 
MIR 0.0210 

MFCC2  

(kurtosis) 
MIR 0.0136 key clarity MIR 0.0158 

pulse clarity MIR 0.0135 
fluctuation 
(kurtosis) 

MIR 0.0147 

spectral kurto-

sis (skw) 
MIR 0.0129 MFCC6 (skw) MIR 0.0132 

LAmin Psy44 0.0128 
fluctuation 

(skw) 
MIR 0.0129 

spectral skew-

ness (kurtosis) 
MIR 0.0126 pulse clarity MIR 0.0118 

Nmin Psy44 0.0112 
tonal centroid 

1 (std) 
MIR 0.0118 

chroma (kurto-

sis) 
MIR 0.0110 

key strength 

major (std) 
MIR 0.0117 

Table 3. Top ten features selected by RRF (using the 

combined feature set from the three frameworks). 

4.2.2 Playlist Generation 

As mentioned before, for playlist quality evaluation we 

tested a regressor-based distance strategy. In this method, 

distances are calculated using the predicted AV values 

returned by the regression models. The predicted dis-

tances were compared to the reference distances resulting 

from the real AV annotations.  

To this end, the dataset was randomly divided in two 

groups, balanced in terms of quadrants. The first, 

representing 75% of the dataset was used to train the 

regressor. Next, the resulting model was used to predict 

AV values for the remaining 25% songs
3
. From this test 

dataset, a song is selected and serves as the seed for au-

tomatic playlist generation. Using the seed’s attributes, 

similarity against other songs is calculated. This origi-

nates two playlists ordered by distance to the seed, one 

based on the predicted and another on the annotated AV 

values. The annotations playlist is then used to calculate 

the accuracy of the predicted list, by matching the top 1, 

5 and 20 songs. Here, we only count how many songs in 

each top are the same (e.g., for top5, a match of 60% 

means that the same three songs are present in both lists). 

The entire process is repeated 500 times, averaging the 

results. 

Results obtained for playlist generation were very simi-

lar between the three audio frameworks. Several tests 

were run using all the combinations of features referred 

before. The similarity ranking was calculated using pre-

dicted values from the regressor. The best results were 

                                                           
3
 This 75-25 division was necessary so that the validation set was not 

too short, as we want to evaluate playlists containing up to 20 songs. On 
the other hand, the 90-10 division was employed before for the sake of 

comparison with Yang’s results 



accomplished using FFS for the combined feature set of 

all frameworks, with a matching percentage of 6.2% for 

top1, 24.8% for top5 and 62.3% for top20. Detailed re-

sults are presented in Table 4. The lower results in small-

er playlists are mostly caused by the lack of precision 

when predicting valence. Still, best results are obtained 

with longer playlists, as normally used in a real scenario. 

 Psy15 Psy44 MIR MAR ALL 

T
o

p
1
 

All 
4.2 4.1 3.6 4.0 4.2 

± 20.7 ± 18.6 ± 22.0 ± 20.7 ± 20.9 

FFS 
5.6 3.8 5.2 4.4 6.2 

± 21.0 ± 18.6 ± 23.6 ± 19.8 ± 20.7 

RRF 
5.1 4.6 5.6 4.6 5.2 

± 22.0 ± 19.0 ± 22.0 ± 22.6 ± 20.6 

T
o

p
5
 

All 
21.1 20.9 22.8 18.1 21.0 

± 18.1 ± 17.1 ± 19.0 ± 17.6 ± 17.8 

FFS 
21.5 21.2 22.0 19.8 24.8 

± 18.3 ± 17.9 ± 19.3 ± 18.5 ± 18.3 

RRF 
21.9 22.1 23.3 18.7 23.3 

± 18.1 ± 17.9 ± 18.4 ± 17.8 ± 18.4 

T
o

p
2

0
 

All 
61.9 60.5 62.7 58.5 60.7 

± 11.6 ± 12.3 ± 14.1 ± 13.6 ± 14.1 

FFS 
62.0 61.9 62.5 60.0 62.3 

± 11.9 ± 12.4 ± 13.9 ± 13.6 ± 13.6 

RRF 
61.0 60.8 61.7 57.4 61.6 

± 12.2 ± 12.8 ± 13.7 ± 13.0 ± 13.8 

Table 4. Regression-based APG results (in %) 

Finally, we have also built a working prototype to ana-

lyze music mood as well as to generate playlists based on 

a song or a mood trajectory. This is illustrated in Figure 

3, where a desired mood trajectory was specified by 

drawing in the Thayer plane (black dots), giving rise to 

the playlist represented by the larger colored circles. 

  

Figure 3. Automatic playlist generation prototype. 

5. CONCLUSIONS 

In this paper, we proposed an approach for the automatic 

creation of mood playlists in the Thayer plane, based on 

previous work by Yang [5] on continuous mood model-

ing.  

Regarding AV prediction accuracy, we were able to 

outperform Yang’s previous results using forward feature 

selection on a set of features extracted from three frame-

works (PsySound, MIR Toolbox and Marsyas), reaching 

63% average accuracy for arousal and 35.6% for valence, 

in terms of R
2
 statistics. RReliefF was also important to 

highlight the most interesting features to the problem. 

Regarding the playlist generation and similarity analy-

sis, matching for top1 was low, averaging 5% between all 

frameworks, with top20 presenting some reasonable 

results, of around 60%. From all the tests, a slightly high-

er accuracy was attained using the FFS selection of fea-

tures from the combination of all frameworks, with 6.2%, 

24.8% and 62.3% for top1, top5 and top20 respectively. 

Still, the results are very similar between feature selection 

algorithms to classify one as better suited. The same is 

verified in relation to frameworks, with MIR Toolbox 

having a slight advantage.   

In both cases, to decrease the influence that the outliers 

may have in the results we pretend to repeat the tests 

using median values instead of the current arithmetic 

mean. Despite the achieved improvements, we can see, 

from the lack of accuracy and generality of both our and 

other current approaches, that there is plenty of room for 

improvement. Also, several key open problems can be 

identified, namely in terms of extraction, selection and 

evaluation of meaningful features in the context of mood 

detection in audio music, extraction of knowledge from 

computational models (as all known approaches are 

black-box) and the tracking of mood variations through-

out a song. In order to tackle the current limitations, we 

believe the most important problem to address is the 

development of novel acoustic features able to capture 

the relevant musical attributes identified in the literature, 

namely features better correlated to valence. 

As stated in previous studies [10], the lyrical part of a 

song can have a great influence in the transmitted mood. 

The emotional response to the lyrics, obtained through 

natural language processing and commonsense reasoning, 

contributes to both the context and mood classification of 

the song [25]. 

As for playlist creation, it would be interesting to add 

some constraints regarding song ordering, for example, in 

terms of balance and progression. 
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