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ABSTRACT

This paper presents three approaches for music structural
segmentation, i.e. intertwined music segmentation and la-
belling, using real-time techniques based solely on dynamic
sound descriptors, without any training data. The first
method is based on tracking peaks of a sequence obtained
from a weighted off-diagonal section of a dissimilarity ma-
trix, and uses Gaussian models for labelling sections. The
second approach is a multi-pass method using Hidden
Markov Models (HMM) with Gaussian Mixture Models
(GMM) in each state. The third is a novel approach based
on an adaptive HMM that dynamically identifies and labels
sections, and also sporadically reevaluates the segmenta-
tion and labelling, allowing redefinition of past sections
based on recent and immediate past information. Finally, a
method to evaluate results is presented, that allows penal-
ization both of incorrect section boundaries and of incor-
rect number of detected segments, if so desired. Computa-
tional results are presented and analysed both from quanti-
tative and qualitative points-of-view.

1. INTRODUCTION

Music structural segmentation is a task that underlies many
important audio processing applications, including genre
classification, audio summarization and music search [1].
Finding the temporal borders and labelling music sections
according to common properties provides a means to ap-
proach such applications. Besides, real-time music struc-
tural segmentation may also be used in musical perfor-
mances, for instance to control interactive processes re-
sponding to timbre variations.

In the literature we may find several methods for music
segmentation. Cooper and Foote [2] propose a segmenta-
tion method based on finding peaks of a dissimilarity se-
quence built from a similarity matrix, whose main diag-
onal is traversed (and dot-multiplied) by a radial smooth-
ing checkerboard kernel; additionally, they cluster similar
sections via a statistical method. Aucouturier and Sandler
[3] propose a segmentation method based on HMMs, us-
ing the sequence of observations as training data. Peeters,
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la Burthe and Rodet [4] propose a multi-pass approach us-
ing an HMM which is initialized after finding the centroids
of the sections using k-means. The main difference be-
tween the latter and the former method lies in the way
the HMM is initialized, where HMM parameters are ex-
pected to converge to a local optimum that better repre-
sents the real music sections, avoiding over-segmentation
due to fine-grained changes in spectral content, aiming for
long-term structures [4].

The methods proposed in [2, 3, 4] are not specifically
meant to be used in real-time, and they specifically require
training data for initializing key structures used in segmen-
tation. As opposed to that, we look specifically toward
real-time unsupervised techniques, i.e. methods that oper-
ate promptly on an audio stream and do not require any a
priori information about the stream content. In section 3.2
and 3.3 we present variations of methods found in [2, 4],
and in section 3.5 we propose a novel approach based on
an adaptive HMM that identifies section boundaries and la-
bels sections in real-time, but also sporadically reevaluates
the output of the segmentation, allowing a complete redefi-
nition of past sections using more recent information, pos-
sibly information that was not yet available at the time a
specific past section was identified. This allows the correc-
tion of errors imposed by the real-time output requirement,
both in terms of redefining section boundaries as well as
relabelling sections according to the most recent statistical
models of the identified sections.

According to [9], all segmentation methods described in
this paper could be categorized as homogeneity-based ap-
proaches, as they first depart from a novelty-based proce-
dure to finally produce clusters based on the similarity be-
tween section models.

The goal of this paper is both to present a novel real-time
method for the music structural segmentation problem, and
to assess the results of segmentation using real-time unsu-
pervised techniques, both from quantitative and qualitative
points-of-view. We also aim to compare segmentation re-
sults using instantaneous and dynamic descriptors within
such methods. Dynamic descriptors [4] provide an alterna-
tive temporal modelling for describing audio frames, com-
bining information obtained from several audio frames, as
opposed to instantaneous descriptors, which refer to a sin-
gle audio frame.

The structure of this paper is as follows; in section 2
we present techniques for defining dynamic descriptors;
in section 3, we develop the aforementioned real-time un-
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supervised techniques for automatic music structural seg-
mentation; and in section 4 we present a method to evalu-
ate the results obtained by these techniques, which is used
to compare their performances using instantaneous MFCC
descriptors and several dynamic MFCC descriptors.

2. DYNAMIC DESCRIPTORS

Choosing the right sound features can strongly influence
the segmentation’s success or failure. As pointed by [4],
Mel Frequency Cepstral Coefficients (MFCC) can be con-
sidered static features, as they represent sound restricted
by an analysis frame (usually 30 to 100 ms), as opposed to
dynamic features, that can model the temporal evolution of
sound.

One way to model dynamic signal evolution is shown in
[4], where temporal evolution is modelled after the spec-
tral shape of the signal energy, divided in Mel sub-bands.
Another approach for generating dynamic descriptors is
based on the idea of modelling temporal evolution from
any descriptors extracted from the audio signal [5], using
a smoothing function that condenses several past observa-
tions into a single value. This attenuates abrupt changes
in the sequence of observations at the frame-rate tempo-
ral level, which might easily confuse segmentation tech-
niques, but hopefully it preserves timbre changes at larger-
scale temporal levels.

Let X = {xn} ⊂ Rd, n = 1, . . . , N be the observa-
tion sequence extracted from the audio signal, where n is
a frame index. Let L be the number of past observations,
we define a dynamic descriptor sequence Y = {yn} ⊂
Rα, n = L+ 1, . . . , N as

yn = D(xn−L, xn−L+1, . . . , xn), (1)

where D is a smoothing function that takes into account
L observations and α is the new dimension after the trans-
form. This smoothing functionD can be defined in several
ways; we considered four strategies: statistical moments,
Euclidean norm, exponential decay and FFT coefficients.

Figure 1. Similarity Matrix generated using raw MFCC
descriptors. The red dots are the real transitions between
sections, manually defined.

To illustrate these strategies, consider the similarity ma-
trix of Figure 1, generated using MFCC. Figures 2a to 2h
display two similarity matrices for each strategy, with dy-
namic descriptors using temporal memories of 1 and 10
seconds, corresponding in our experiments to L = 20 and
L = 200, respectively. In those images the red dots are
the real transitions between sections, which were manually

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Similarity matrices generated using dynamic de-
scriptors with memory parameters of 1 and 10 seconds,
shown in left and right column, respectively. Figures (2a)
and (2b) use Statistical Moments, figures (2c) and (2d) use
Euclidean Norm, figures (2e) and (2f) use Exponential De-
cay and figures (2g) and (2h) use FFT coefficients. The red
dots are the real transitions between sections, which were
manually defined.

defined. The similarities were calculated using the cosine
similarity measure.

Thus, for each xk,t (i.e. the dimension k of x at instant
time t) we can generate the descriptors as follows.
Statistical Moments. In the dynamic descriptors gener-
ated with statistical moments, each xk,t provides four new
values: mean, variance, skewness and kurtosis.
Euclidean Norm. This dynamic descriptor represents the
temporal series corresponding to xk,t as the Euclidean norm
of L previous values, similarly to what RMS amplitude
does with respect to instantaneous amplitude values.
Exponential Decay. With this dynamic descriptor, tempo-
ral memory is represented by an exponential decay func-



tion w(n) = e−2πn, which is used to attenuate past obser-
vations.
FFT coefficients. With this method, each dimension k of
xt is segmented in windows of size L, from which Fast
Fourier Transform (FFT) coefficients are calculated. Only
the first 7 coefficients are selected, corresponding to the
slow variation of the spectrum of that descriptor.

3. REAL-TIME STRUCTURAL SEGMENTATION

To define objectively and above all suspicion what a musi-
cal section is might be a harsh task. Putting aside the mu-
sic theoretic issues and focusing only on the properties of
sound (more specifically the polyphonic timbre as defined
by [3]), we may define a section as an audio fragment with
a contiguously varying global timbre description. Pitch,
rhythm and amplitude might give some clues to where sec-
tion boundaries are, but in this work we aim to capture
section changes only by identifying contiguous sections of
global timbre stability.

In real-time unsupervised music structural segmentation
there is no available training data, and the input data are
flowing continuously. One issue we have to deal with is
to define the right moment when the identified sections are
going to be labelled. As the input data keeps flowing in,
labels and section boundaries might also change, and un-
til the music ends it is not possible to define all musical
sections and labels. Despite this theoretical impossibil-
ity, it might be interesting to consider musical applications
of incomplete or provisional segmentation and labelling,
for instance, for switching on and off interactive sound-
processing units depending on variation of global timbre.
Defining an incomplete segmentation and labelling at time
t as the result of those processes assuming the music had
literally ended at time t is at least theoretically sound.

Algorithm 1 outlines a general solution for real-time struc-
tural segmentation. At first, it continuously reads the de-
scriptor vector and accumulates these observations until
it reaches a minimum section size allowed. The core of
the algorithm is formed by the function that finds section
changes (line 5) and the function that labels sections ac-
cording to timbre proximity (line 17). In the following sec-
tions we will discuss the techniques used to solve these two
problems. In section 3.1 we will present a first technique to
automatically label the sections; alternative techniques will
be presented in sections 3.3 and 3.5, which uses Viterbi’s
algorithm on an HMM to label the sections.

3.1 Labelling

The primary task in labelling is to identify which musical
sections have the same characteristics, i.e. share a common
global timbre so they may receive the same label. For this
purpose we need a method to compare all sections found
and to calculate some measure of section separability. This
measure should determine how similar is a section model
ωi to another section model ωj , and a threshold on this
measure would tell us whether or not to label them equally.
For didactic purposes let us consider only two section mod-
els: ωi and ωj ; this labelling method will extend to a set

Algorithm 1 Real-time structural segmentation
Require: I ; Input data

wmin ; minimum window size
wmax ; maximum window size

Ensure: S ; section change locations
L ; labelled sections

1: p← 1, T ← {}, x← read(I)
2: while x 6= NULL do
3: T ← T ∪ {x}
4: if |T |+ 1 ≥ wmin then
5: relative← LocateChangePoint(T )
6: if relative = NULL then
7: if |T |+ 1 > wmax then
8: T ← {ti : ti ∈ T, i ≥ wmin}
9: end if

10: else
11: absolute← (p− 1)− |T |+ relative
12: T ← {ti : ti ∈ T, i > relative}
13: S ← S ∪ absolute
14: end if
15: p← p+ 1
16: end if
17: L← Label(S), x← read(I)
18: end while

of P sections in a straightforward fashion. This method
assumes that section models are normally distributed.

The Bhattacharyya distance was developed to estimate
the classifier error, but it is also used as a class separa-
bility measure, and provides an upper bound to the classi-
fier error, similarly to the Chernoff Bound [6]. This dis-
tance between section models ωi = N (µi,Σi) and ωj =
N (µj ,Σj) is given by

dij = 1
8 (µi−µj)T

(
Σi+Σj

2

)−1

(µi−µj)+ 1
2 ln

∣∣∣Σi+Σj
2

∣∣∣√
|Σi||Σj |

.

Once we have calculated the distance for each pair of sec-
tion models, those who have very small distances shall be
clustered, sharing the same label. In order to cluster similar
sections, we have used average linkage clustering [7], and
the clusters are given by calculating the inconsistency co-
efficient ξi for each link i, established by the clustering al-
gorithm, and cutting the dendrogram at any point between
the two links having the largest inconsistency values [8].
The inconsistency coefficient is a measure of how similar
the links below each link are, calculated as ξi =

zi−µzi

σzi
,

where zi is the i-th link height, µzi is the mean of all
link’s heights at the same depth and level and σzi is the
standard deviation of all link’s heights at the same depth
and level. Figure 3a shows a dissimilarity matrix using the
Bhattacharyya distance between section models before the
clustering algorithm. Light shades indicate small distances
between models, meaning that a cluster can possibly be
formed. Depending on the threshold we might say that
the second and third section models are candidates to form
a cluster, as well as the sixth, seventh and eight models.
Figure 3b shows the section models after the clustering al-
gorithm. Note that the clustering algorithm may join not
only temporally adjacent sections, but also temporally dis-
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Figure 3. Dissimilarity between section model pairs, cal-
culated before (figure 3a) and after (figure 3b) clustering,
using Bhattacharyya distance.

tant sections, according to the similarity of their statistical
models.

The above method is akin to the one in [2], but there a
Singular Value Decomposition of the similarity matrix is
used, and section models are clustered according to the
Kullback-Leibler distance.

3.2 Dissimilarity Matrix Peaks

In the Dissimilarity Matrix Peaks (DISSM-PEAKS)
method, transitions are detected through the rapid and
abrupt changes in the temporal observation sequence. To
this end, we calculate a dissimilarity sequence using the in-
formation given by the dissimilarity matrix and select the
peaks of this sequence, which are the section transitions.
The dissimilarity matrix is built using the cosine distance.
After we locate the transitions, each section is mapped into
a normal distribution and we label them according to sub-
section 3.1. The details of this method are as follows.
1. Let N be the number of observations. The dissimilarity
sequence, defined as ∆ = {δi : 1 ≤ i ≤ N}, is calcu-
lated by scanning a certain neighborhood of the dissimi-
larity matrixM from each diagonal pointMii. This neigh-
borhood can be characterized by its size h� N and a vec-
tor νi, 1 ≤ i ≤ N containing the neighboring observations
νi = {Mi+k,i−k : 1 ≤ k ≤ h, 1 ≤ i−k, i+k ≤ N}. The
dissimilarity is defined as the inner product δi =< W, νi >
of the observation vector and a exponential decay vector
W = {wj : 1 ≤ j ≤ h, wj = e−2πj(h−1)−1}.
2. Detect the peaks of the vector ∆ using a noise tolerant
peak finder algorithm 1 . Peak magnitudes must be ordered
in descending order, in order to select candidate transition
points with highest dissimilarity. The final transition points
are obtained after the parameter wmin (minimum section
size) is used to exclude peaks that lie too close to other
candidate transition points with higher dissimilarity. Tem-
poral indices T = {ti : 1 ≤ i ≤ P} of the P selected
peaks are considered transitions points for P + 1 sections
{[xt0 , xt1), [xt1 , xt2), . . . , [xtP , xtP+1

)}, where t0 = 1 and
tP+1 = N + 1.
3. Each section [xtk , xtk+1

) is mapped to a normal dis-
tribution N (µk,Σk), where the mean vector µk and the
covariance matrix Σk are estimated from the observation
data contained in [xtk , xtk+1

).

1 In our experiments we used a MATLAB R© code by Nathanael C.
Yoder, peakfinder.m

Figure 4. Transitions between sections found with the Dis-
similarity Matrix Peaks method. The red dots in dissimi-
larity matrix are the peaks found before the adjustment, the
green dots are the peaks after the adjustment, and the blue
strip is the neighborhood used to build the dissimilarity se-
quence.

4. Label the sections using the method described in sub-
section 3.1.

When the dissimilarity matrix M is generated using dy-
namic descriptors, the observation sequence gets smoother
as we increase the temporal memory L, and so we need to
navigate farther away from the diagonal of the dissimilar-
ity matrix to be able to detect peaks. Thus, it is convenient
to change the neighborhood definition so that it starts with
an offset from the diagonal, as νi = {Mi+k,i−k : 1 + ρ ≤
k ≤ h+ ρ, 1 ≤ i− k ≤ i+ k ≤ N}, where the parameter
ρ = L/2 ensures that the method will exclude smoothed
observations that are affected by Mi,i.

Furthermore, also due to temporal smoothing, temporal
transitions T found by the method are anticipated of L/2
observations, which means that we also need to adjust all
points to t̂i = ti + L/2. In our experiments we have used
a 1 second neighborhood, corresponding to h = 20, which
fits very well for our dataset, but it must be estimated ac-
cording to a given musical context/genre.

Figure 4 shows the dissimilarity sequence and the transi-
tion points found calculated using exponential decay dy-
namic descriptors, where L corresponds to 5 seconds.

3.3 Multi-pass GMM-HMM

The Multi-Pass GMM-HMM (MPS-GHMM) method is
based on the multi-pass algorithm by [4]; the motivation
for this variant is modelling the states (potential, initial
and final) as mixtures of Gaussian distributions. Using
our database set in another running tests, this variation im-
proved the method described in [4], leading to an error of
6.8% against 15.25%. The method can be summarized in
the following steps:

Build potential states. First, we identify the boundaries of
each section. This is accomplished by the
method described in subsection 3.2. To build potential
states, we select the observations within each section and
estimate the parameters of the Gaussian Mixture Models
(GMM) using the Expectation Maximization (EM) algo-
rithm [10]; the potential states are modelled as si(x) =



∑M
m=1 cimpim(x), where i is the i-th state, cim is them-th

mixture coefficient, and the m-th pdf is
pim(x) = 1

2πd/2|Σim|1/2 e
−0.5∗(x−µim)T Σ−1

im(x−µim) with
mean vector µim and covariance matrix Σim. See Figure 5a.
Reduce potential states. The number of potential states is
reduced in a similar way to what is done in [4], i.e. poten-
tial states having similarity > .99 are grouped together. In
[4], the potential states are represented by the mean obser-
vation vector within each section, and the cosine distance
is used to measure similarity. In our case, the potential
states are GMMs having m mean vectors and m covari-
ance matrices, so we used the Bhattacharyya distance to
measure similarity and summing up the distances for each
Gaussian of the mixture. Initial states are generated after
grouping potential states; initial states are also modelled
as GMMs, whose parameters are estimated using the EM
algorithm and the observations of each potential state. In
other words, if there is a group {sa, sb}, then GMM param-
eters of each initial state are estimated through the obser-
vations Xa ⊂ X and Xb ⊂ X restricted to each potential
state section. At the end of this step, K initial states are
built. See Figure 5b.
Introduce time constraints. The timing constraints are
applied similarly as in [4], except that we can use a mixture
of normal distributions instead of a simple normal distribu-
tion. TheK initial states are used to initialize a continuous
ergodic HMM [10]. The parameters of the HMM are re-
estimated using the Baulm-Welch algorithm with the train-
ing data set X , and so we obtain the final states. The final
music labels are obtained using Viterbi’s algorithm, given
the HMM and the descriptor vectors X . See Figure 5c.

3.4 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is a very well-
known hypothesis test method in statistics, but to our know-
ledge it has not yet been used specifically for Music Infor-
mation Retrieval. Nonetheless, there are works [11, 12]
using BIC to detect acoustic changes in an audio signal,
e.g. to detect changes from one speaker to another.

BIC is based on the log likelihood ratio between two
Gaussian models, and in our case is used to compare two
competing hypotheses: either an audio fragment has (at
least) one possible splitting point defining (at least) two
sections, or else the whole fragment belongs to a single
section. Thus, let Xi,j = xi, . . . , xj be the observation se-
quence. We’d like to test the hypothesis of Xi,j being ade-
quately modelled by a single normal distributionN (µ,Σ),

H0 : xi, . . . , xj ∼ N (µ,Σ) (2)

versus the hypothesis of Xi,j being split in two parts ad-
equately modelled by two different normal distributions

H1 : xi, . . . , xk ∼ N (µ1,Σ1)

xk+1, . . . , xj ∼ N (µ2,Σ2).
(3)

Parameters for each normal distribution are computed from
the corresponding observation sequence, and depend on
the splitting point k. The log-likelihood ratio is given by
R(k) = N log |Σ|−N1 log |Σ1|−N2 log |Σ2| whereN =

(a) (b)

(c)

(d)

Figure 5. Potential states found using the dissimilarity se-
quence method – Figure 5a. Initial states after grouping –
Figure 5b. Final states and labelling after Viterbi’s algo-
rithm – Figure 5c. Reference Segmentation, for compari-
son – Figure 5d.

|Xi,j |, N1 = |Xi,k| and N2 = |Xk+1,j |, i.e. the number
of observations within each set. The BIC values for each
index k is

BIC(k) = R(k)− λΠ (4)

which is a function of the maximum likelihood ratio and
a penalty factor Π = 1

2 (d + 1
2d(d + 1)) logN , depending

on the number of random variables d in the observation
vector X , weighted by λ (in our experiments we have used
λ = 1). The hypothesis H1 with two different Gaussian
models offers a better model (compared to H0) whenever
the result of this equation is positive. Thus the transition
point that provides the best splitting point (corresponding
to the maximum likelihood ratio) is given by

k = argmax
k
{BIC(k) |BIC(k) > 0}. (5)

In real-time segmentation with BIC, after locating the
section boundaries, constrained to wmin (see algorithm 1)
in order to prevent over-segmentation, the labelling is done
using the method described in subsection 3.1.

3.5 Adaptive HMM

The Adaptive HMM (AHMM) is a real-time method which
aims at labelling sections as each transition point between
sections is identified, and not afterwards, as in the BIC
method. In other words, labelling is done simultaneously
with real-time segmentation. The algorithm works in two
stages: a cache stage and a reevaluate stage.



3.5.1 Cache Stage

Each transition point tk found provides a new section T =
[xtk−1

, xtk), and triggers the labelling routine. Let B =
{bj} be the set of existing section labels of the real-time
routine. The model of the new section is compared to each
model corresponding to bj ∈ B, and the model having
higher similarity (mean log-likelihood) is updated with the
observations of the new section T , provided that this sim-
ilarity is higher than a minimum threshold α; if this is not
the case, a new label is added to B, with a model built
from T . Note that each state is modelled as a mixture of
Gaussian distributions

bj(x) =

M∑
m=1

cjmpjm(x), (6)

where M is the number of Gaussians per state and pjm(x)
is the Gaussian density function (see Section 3.3).

The details of the first stage of this method are as follows:

1. Initialize HMM λ(A,B, π) with 0 states, where A =
{aij} is the state transition probability matrix and π =
{πj} is the initial state probability distribution.

2. Find a transition point tk defining a section
T = [tk−1, tk), as described in algorithm 1 (section 3).
For instance, using the BIC method 3.4.

3. Find a label bj with model closest to T :

j = argmax
i

{
θi =

1

|T |
∑
tk∈T

log bi(tk)

}
(7)

If θj ≤ α then a new section model bS+1 is added to B,
with parameters estimated by the EM algorithm.

If θj > α then the observations in T are added to the
model of bj , whose parameters are re-estimated using
the EM algorithm.

4. Update the state transition matrix A, reinforcing the
transition between the previously detected state model
and bj (or bS+1, if θj ≤ α). Return to step 2.

Instead of simply applying the label with higher similar-
ity to the observations of each section found, observations
are labelled according to λ, using Viterbi’s algorithm.

3.5.2 Reevaluate Stage

As time passes, the HMM model represented by λ accumu-
lates errors due to the requirement of real-time operation,
in the sense that models that were defined and made sense
for segmentation at time t are carried on and keep influenc-
ing labelling at times t + 1, t + 2 and so on. This shows
the need for a model refinement stage, where up-to-date
knowledge about the input is used to reevaluate all previ-
ously defined sections and labels. The triggering of this
refinement routine can be done by several different means.
For instance, refinement may be triggered by user interven-
tion, by a threshold on the number of HMM states allowed,
or it might be automatically triggered every K iterations
for a pre-defined K. The refinement stage of this method
is described as follows.

1. Cluster similar section models using hierarchical clus-
ter and Bhattacharyya distance as similarity measure (sec-
tion 3.1).

2. Update the state transition matrix A by summing up the
grouped state transitions.

3. Reestimate the HMM parameters λ̂(Â, B̂, π), using the
Baulm-Welch algorithm. The corresponding state se-
quence for the observations X is obtained by Viterbi’s
algorithm.

Figure 6a shows all states (labels) found in a musical
piece just before the refinement stage. Figure 6b shows the
same piece after the refinement stage, where we can see a
reduction from 26 to 8 states.

(a)

(b)

Figure 6. State sequence before (6a) and after (6b) the
clustering step in Adaptive HMM. Refer to Figure 5d for
reference segmentation.

This method is sensitive to the α parameter, which must
be estimated. In our experiments we under-estimated its
value (for the record, α = −0.016138), so the algorithm
tended to produce a larger number of states, which would
hopefully be fixed by the second stage. An alternative is to
let the user decide which level of similarity is suitable for
a given musical context.

4. RESULTS

Having defined the segmentation and labelling techniques,
we would like to compare the probability error of applying
these methods to a set of musical pieces. We built a musi-
cal database containing 41 pieces of different genres with
up to 7 different musical parts each, manually segmented
and labelled. For each piece, we extracted MFCC descrip-
tors and four groups of dynamic descriptors as in section 2:
moments, Euclidean, exponential decay and FFT coeffi-
cients. Each group was computed using four different val-
ues for temporal memory: 0.5, 1, 5 and 10 seconds, to-
talling 697 executions for each method described in the
previously section.



To evaluate segmentation and labelling performances, a
measure of probability error is defined in subsection 4.1,
which corresponds to a lower bound on the number of tem-
poral positions wrongly labelled. Results are collected in
groups of dynamic descriptors, from which we compare
the performance of different values of the temporal mem-
ory parameter.

4.1 Evaluation

The segmentation and labelling evaluation depends on two
factors: the labelling error probability (i.e. a measure of
whether the labels in the test sequence are consistent with
the labels in the reference sequence), and the segmenta-
tion error probability (i.e. a measure of the temporal errors
in detected section boundaries). There are many metrics
for evaluating the segmentation results, some of which do
not consider the temporal order of observations, but the
overall frames [9]. We propose here a measure that takes
as input the temporal sequence of manually-assigned (cor-
rect) labels for each analysis frame, and the corresponding
sequence produced by the algorithm. Thus, temporal dis-
crepancies in the localization of boundaries will be trans-
lated into the (relative) number of analysis frames wrongly
labelled.

Let N be the number of observations in X , p the num-
ber of labels manually defined in the reference sequence
f(t), such that f(t) : N → {1, . . . , p}, and let q be the
number of labels found in the test sequence g(t), such that
g(t) : N → {1, . . . , q}. We wish to find a relabelling
function m : {1, . . . , q} → {1, . . . , p}, corresponding to
a translation of the algorithmically produced labels to the
manually defined labels, in such a way that the relabelled
sequence h(t) = m(g(t)) is closest to the reference se-
quence in the sense of minimizing the error ratio

ε(m) =
1

N

N∑
t=1

δ(f(t), h(t)), (8)

where δ is the Kronecker Delta. This is necessary due to
the fact that the labelling method does not necessarily pro-
vide the same symbols adopted by the reference sequence.

Although this relabelling function can be constrained in
different ways according to different interpretations, in this
work we will adopt a measure that focuses on the temporal
accuracy of section boundaries, and only implicitly penal-
izes differences in the number of reference labels p and
produced labels q. Thus we will consider as candidate re-
labelling functions all pq sequences of size q generated by
the elements {1, . . . , p}. Instead of a brute force search,
we used an association matrix sf(t),g(t), from which the
optimal labelling function according to ε(m) is given by
the Hungarian algorithm [13].

One interesting aspect of this measure is the fact that it
does not over-penalize a segmentation strategy that would
subdivide reference sections because of minor timbre vari-
ations, but it does penalize incorrectly detected section
boundaries. Theoretically, this measure would not penal-
ize a degenerate labelling that associated a different label to
every frame, but no honest structural segmentation method

would produce such a degenerate solution. An alternative
set of relabelling functions that do not suffer from this the-
oretical problem is the set of injections from {1, . . . , q}
to {1, . . . , p}, where the second set is enlarged with arti-
ficial reference labels whenever q > p. This alternative
would severely penalize over-segmentations but would be
proportionately less stringent on sloppy section boundary
detection.

4.2 Comparative Results

To evaluate the impact of the temporal memory parameter
on the segmentation and labelling methods, we grouped
the results by dynamic descriptor type. Besides executing
all methods described previously, we added the K-Nearest
Neighbors (K-NN) method for the sake of comparison. As
a well-known supervised classification technique, meaning
it has access to training data prior to classification, K-NN
is expected to surpass every unsupervised competitor, but
the obtained error values may be used as a baseline. For
the sake of simplicity, we have used a 1-NN configuration,
and a 10-fold cross-validation for evaluation.

In our experiments we used 13 MFCC extracted from 100
ms analysis windows with a feature extraction rate of 20
Hz. Comparing the results within each dynamic descriptor
type (Figure 7) we see that the segmentation errors gener-
ally increase with temporal memory, except for the MPS-
GHMM technique, where we can clearly see that smaller
values of temporal memory (or no memory, i.e raw MFCC)
also produce large errors.

Table 1 displays the best error results for each technique
separately, i.e. which dynamic descriptor (if any) worked
best for each technique. We may see from this table that
only the Exponential Decay dynamic descriptors were able
to improve error bounds with respect to raw MFCC,
whereas FFT coefficients, Euclidean and moments dynamic
descriptors followed similar patterns, but with slightly
worse error values.

Error Descriptor
BIC 14.81% MFCC

AHMM 20.11% MFCC
MPS-GHMM 5.47% MFCC Exp. Decay, 1 sec

DISSM-PEAKS 15.41% MFCC Exp. Decay, 0.5 sec
K-NN 2.57% MFCC Exp. Decay, 1 sec

Table 1. Minimum error rate for each technique and de-
scriptors that provided best results.

5. CONCLUSIONS

In this paper, we have presented three unsupervised meth-
ods for real-time music structural segmentation, including
a novel one, and we compared them to a fourth method
[11, 12]. We also presented a method to evaluate com-
peting hypotheses for segmenting the same piece, aiming
primarily at capturing temporal location errors of section
boundaries. We have discussed the generation of dynamic
descriptors based on the temporal modelling of MFCC.



(a) (b)

(c) (d)

Figure 7. Error rate for each of the technique using
Moments (Figure 7a), Exponential Decay (Figure 7b), Eu-
clidean (Figure 7c) and FFT coefficients (Figure 7d) dy-
namic descriptors. Bar colors refer to temporal memory
values for the dynamic descriptors: dark blue = raw MFCC
values, light blue = 0.5 sec, green = 1 sec, orange = 5 sec
and brown = 10 sec.

A number of experiments were performed to compare
different methods using dynamic descriptors with different
temporal memory values. The primary results are promis-
ing, showing that it is possible to perform such tasks in
real-time, without any training data. The results show that
temporal modelling of static music descriptors can lead
to improved results, and that the best dynamic descriptors
are those which do remember past information but do not
overemphasize it, as is in the case of raw MFCC and Ex-
ponential Decay temporal memory.

Further work will consider using other evaluation tech-
niques and a standard musical database, as described in
[9].
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