
LIMITS OF CONTROL

Hanns Holger Rutz
Interdisciplinary Centre for Computer Music Research (ICCMR) – University of Plymouth

hanns.rutz@plymouth.ac.uk

ABSTRACT

We are analysing the implications of music composition
through programming, in particular the possibilities and
limitations of tracing the composition process through com-
puter artefacts. The analysis is attached to the case study
of a sound installation. This work was realised using a new
programming system which is briefly introduced. Through
these observations we are probing and adjusting a model of
the composition process which draws ideas from systems
theory, the experimental system of differential reproduc-
tion, and deconstructionism.

1. INTRODUCTION

«But words are still the principal
instruments of control»∗

The term "computer music" can be used to denote a musi-
cal praxis and musical research that reflect the «profound
influence of computer science on music»[1], and thus they
substantially depend on the medial implications of the com-
puter. The most crucial implication, as Loy and Curtis
point out in a 1985 survey, is the formalisation of concepts
through the use of programming languages. The involve-
ment of programming languages distinguishes this form
of computer music from other forms in which the musi-
cian takes the role of the user of readily available applica-
tions «in which inputs of a simple structure produce effects
(such as outputs) desired by the user»[1]. Coincidentally,
the sound transformation plug-ins offered by commercial
music software are often called "effects"—they offer fully
prescribed, and often standardised, tools to achieve well
known goals.

The term ‘goal’ was early introduced in cybernetics (e.g.
[2]), and is linked to the concept of control which is a regu-
latory mechanism to direct the system towards a goal. The
feedback from the system’s output to the regulator’s input
can be replaced by the human being listening to the sound
produced by an "effect", and the regulator is the knob in
the interface which also goes by the name of a "controller".
By rotating the knob, the imaginated sound—the goal—is
incrementally approached.

∗All epigraphs from William S. Burroughs’ essay The Limits of Con-
trol, but the last which is from the Jim Jarmusch movie of the same title.

Copyright: c©2011 Hanns Holger Rutz . This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Obviously, the application of these terms seems easy in
a rather mechanical case like this, but how is goal direct-
edness translated when using a musical programming lan-
guage, and how is control exercised with words instead of
knobs? As Rosenblueth et al. carefully put it [2], purpose-
fulness of a behaviour is an attribution resulting from an
interpretation. In other words, an observer is needed to
make this attribution.

2. DISSEMINATION

«A basic impasse of all control
machines is this: Control needs time in
which to exercise control»

When using systems thinking as an approach it is important
to remind oneself of its abstract nature. Although some au-
thors give systems an ontological status and then deduce
(observer specific) symbolic representations in the form of
models as homomorphic mappings of the real world sys-
tems [3], we follow Checkland here in that systems them-
selves are just abstractions and epistemological tools [4].
One of the main abstractions, perhaps the most fundamen-
tal one, is that of the boundary between a system and its
environment (cf. [5]): Where is the boundary between the
computer music composer taking the role of a programmer
and any other programmer (where is the boundary between
programming and composing, between a programme and a
composition)? Where does the process of composition be-
gin and where does it end?

Light is shed on these questions with the help of a case
study: ‹Dissemination›1 is the title of an audio-visual in-
stallation by Hanns Holger Rutz and Nayarí Castillo, in
which both media create a space by relying on and reflect-
ing upon each other. It consists of horizontally and verti-
cally suspended glass panels functioning both as a body for
sound resonance and diffusion—through the attachment of
sound transducers—as well as specimen holders carrying
petri dishes filled with seeds (see fig. 1). Several tableaux
are generated which unwind the temporal development of
the generative sound composition in space. Flying seeds,
which due to their natural features can be dispersed by
wind, symbolise motion, traveling and migration. The act
of dissemination is interpreted as an act of re-writing, leav-
ing traces, producing movement instead of a fulfilment,
strategy instead of finality.

Without going into many details, the concept of the sound
installation was to create a generative real time compo-
sition with different temporal layers, some of which are

1http://www.sciss.de/texts/ins_dissemination.html

mailto:hanns.rutz@plymouth.ac.uk
http://creativecommons.org/licenses/by/3.0/
http://www.sciss.de/texts/ins_dissemination.html

Figure 1: Photos from ‹Dissemination›. On the left, the site (Gallery ESC Graz) is seen with the suspended glass panels
pervading the space. The daylight is filtered with yellow gels. The right photo shows the pairing of a horizontal and vertical
plate, the vertical plate being excited by the black sound transducer, the horizontal plate holding an ensemble of petri dishes.
The middle photo shows a close up of a petri dish holding flying seeds.

cyclic and others which span an ongoing thread over the
duration of the exhibition. Although the setup had been
conceptualised back in September 2009, it was only in Au-
gust of the following year that the sound composition was
carried out. Within this period a framework for the de-
scription and connection of sound processes had been de-
veloped, and this was the second project in which it was
put to practice.

Thus, when looking at the programming, an arbitrary line
must be drawn between the preparatory work and the com-
position in the narrow sense. Since both the framework
and the composition have been managed using a version-
ing system, we are able to look at the development over
time. The repository containing the actual composition
was opened in August 2010 and is visualised in figure 2.
The lines of code written in the Scala programming lan-
guage have been manually categorised as belonging either
to the technical infrastructure of the system or carrying ac-
tual musical meaning. The piece was exhibited twice, with
the premiere taking place on September 18, and the second
exhibition beginning on October 20.

It can be seen that in the beginning more time is spent
with the programming of the infrastructure than the actual
composition. Since the framework was rather new, vari-
ous adaptations were required to realise the ideas for the
project. Infrastructure code generation decreases to nearly
zero towards the end of the first composition cycle with an-
other final spike due to preparing the work for autonomous
operation during the exhibition 2.

The other distinction made here is between newly written

2A bug was found that caused the system to become unstable after
a couple of hours running, so several measures had to be taken to work
around it.

code and code derived from previous projects or from older
stages of the same project. This follows from a recursion
model of the composition process developed in [6] which
proposes that this process is driven by material injected
from outside the system as well as (re-)transformation of
material already inside the system. Finding this pattern
in manifest condensations—computer artefacts such as the
code—could indicate that something similar is happening
in the psychic system of the composer. This is confirmed
by other studies, for example Collins in his case study of a
composer working on instrumental staff based music iden-
tifies a combination of both linear and recursive motions in
the development of the piece [7].

Infrastructure code copied from previous projects indi-
cates lack of modularisation, but can be mostly explained
by the time pressure factor in the realisation of a work3.
On the other hand, the adaptation of existing musical code
mostly amounts to sound synthesis and transformation in-
struments which are reused. In the second half, self ref-
erential composition code—code which is derived from
code within the same project—begins to increase and fi-
nally amounts to roughly half of the additionally produced
code volume. Musically, this can be interpreted as vari-
ation: More sound processes are introduced which share
structural similarities with previously created processes but
are then differentiated—for example by using other sound
files, other parametrisation, probabilities, spatialisation etc.
Figure 2 therefore seems to support the model of an in-
creasingly recursive behaviour of the composition process.

3Copying code in the short term is a much faster measure than refac-
toring into reusable external modules which pays off in the long term.

Opening

Berlin

Opening

Graz

Figure 2: Code commits to the GIT repositories of the composition and frameworks it depends on. Line count includes
lines created, lines edited and lines deleted. Multiple commits per day are integrated. Code carrying musical meaning in
the narrow sense is shown in green and contrasted with code used to build the infrastructure, used for debugging, and so
forth, which is shown in blue. Bars are split to distinguish newly created parts from parts derived from previous work.

3. PERMEABLE BOUNDARIES

«Concession is another control bind»

The ambitious goal of "strategy instead of finality" was to
reflect the recursive model of human activity in the genera-
tive structure of the piece itself. After all, «Programming is
not about doing; it’s about causing the doing»[8]. Follow-
ing the technical agnosticity of a frameworks’s application
programming interface (API) as to whether a call is issued
by direct human action or deferred action in the form of an
algorithm (the "caused doing"), both direct and indirect ac-
tions can be collapsed in the notion of an abstract writing
process as outlined by Derrida [9] (cf. [6]). A data struc-
ture which would allow the generative parts of the piece to
inscribe their actions into the piece itself was proposed in
[10], but unfortunately had not been ready for production
by the time ‹Dissemination› was created.

As a result, we can observe how the practice of the art
production ignores "impossibilities" imposed by the sys-
tems at hand and transcends their boundaries: The idea of
a persistent trace was upheld by another type of observer:
One of the main algorithms, named Plates (see figure 3),
instead of being able to read traces left inside a data struc-
ture, uses audio signal feature extraction to gain insight
into the instantaneous state of the composition. It tries to
maintain a sort of energy balance, reacting by generation of
new material or withdrawal of current material. The pro-
duction of new material is accomplished by recording parts
of the installation’s output signal and feeding it into a set
of signal transformation processes, eventually re-injecting
the transformed material into the piece. The material thus
generated remains on the hard disk of the installation com-
puter and leaves a persistent trace over the period of the
exhibition. This pool of material is periodically thinned
out so that the second function of memory, forgetting, is
included.

However, the assumption that, had the persistence layer
been developed to planned extent, the whole composition
would have been confined to the boundaries of this layer
and hence be fully traceable, is illusionary. This is be-

Meta Plates

 Gen

Ana | Rec

ColorLike

Flt | Gen

(de)activate

WaterLike

…

Flt | Gen

Licht

…

Windspiel

Gen

Gen

Flt

2x 4x

Figure 3: Schema of the constituent sound processes
in ‹Dissemination›. Vertical lines partition sound layers
where lower layers can filter or shadow upper layers. Or-
ange squares indicate spatialisation modes, corresponding
to the five channel diffusion in the first exhibition, and with
the mode for Licht showing the floor plan in Berlin. Each
process provides different components which can act as
sound generators, filters or analysing and recording stages.

cause our framework is a designed system and as such has
a prescribed model and a prescribed purpose (allowing a
traceable form of composition), and it would consequently
fall into the category of a "taciturn system" according to
Pask [11]. On the other hand, we offer the composer the
programming language which falls into the second cate-
gory of "language oriented systems"—these exhibit contin-
gency since the composer can change her mind and instruct
it to do other things than before. The composer-observer
resides inside the boundaries of the language oriented sys-
tem, so to say, but outside the boundaries of the techno-
logical observer, the domain specific language (DSL), the
framework subset of the language.

This is illustrated in the top most diagram of figure 4.
The framework’s language contains a notion of sound pro-
cesses which are described in terms of input and output sig-
nals, control parameters, resources such as sound buffers
and sound files, as well as a function which generates a
graph of unit generators responsible for the actual sound
analysis, transformation and synthesis, using the SUPER-
COLLIDER server. A simplified example from the Plates

Figure 4: The idea of a composition system as observing
(tracing) the composer’s traces, and how it is undermined.

algorithm is shown in figure 5.
One of the problems—defining a stable reference point

in the sound stream which could be analysed despite all
processes appearing and disappearing dynamically—was
solved within the framework: Special collector nodes are
created which are maintained throughout the installation.
The two collectors pColl1 and pColl2 correspond to the
two upmost dotted horizontal lines in figure 3. This allows
for example another process, Windspiel, to decide whether
it wants its sound output be picked up by Plates’ analysis
(using level pColl1) or not (using level pColl2).

Notwithstanding, the real problem is the highlighted line
in figure 5: Once every second the smoothed out analy-
sis data is sampled and a subroutine newAnalysis called,
and this is were the code escapes the intended traceability
of the persistence framework. One might well be able to
catch and represent the graph function within this frame-
work, but the client code looking at the analysis data and
making decisions about starting or stopping sound pro-
cesses leaks outside. Code and data fall apart, and there
are only two possible solutions to this dilemma: Either the
approach of developing the composition within a DSL em-

val fColl = filter("+") { graph { in=>in }}
val pColl1 = fColl.make
val pColl2 = fColl.make
pColl1 ~> pColl2

val pAna = (diff("ana") { graph { in =>
val bufID = bufEmpty(1024).id
val chain = FFT(bufID, Mix(in))
val loud = Loudness.kr(chain)
val centr = SpecPcile.kr(chain)
val flat = SpecFlatness.kr(chain)
val compound= List(loud, centr, flat)
val smooth = Lag.kr(compound, 10)
1.react(smooth)(plate.newAnalysis(_))

}}).make

pColl1 ~> pAna
pColl1 ~> pRec
pAna.play

Figure 5: Example of an analysis sound process code from
the Plates component. Also shown is the creation and con-
nection of collector nodes which establish stable references
in the conceived level structure.

bedded in a general purpose language is given up in favour
of a more rigid environment—perhaps one in which it is
still possible to write functions for the synthesis graph, but
such that they are embedded in hidden glue code that pre-
vents the composer from escaping a given scope—, or we
move the observer outside the language, dealing not di-
rectly with the framework anymore but the abstract syn-
tax tree (AST) representation of the language. This lat-
ter solution corresponds with the second diagram in fig-
ure 4. In the argumentation of soft systems approaches—
which seem adequate when dealing with language oriented
systems—, any system is open by definition, since it effects
and is affected by its environment. The "leak" can be recur-
sively closed: «Any open system can always be reframed
as closed by expanding the system boundaries to include
its environment.»[12].

Figure 4 shows this recursive closure with the software
observer eventually being replaced by the composer ob-
serving herself, meaning «the hermeneutic circle of inter-
pretation-action, on which all human activity is based.»[13]
Each stage bears new problems. In the AST analysis, it
becomes unfeasible to trace musical intentions in a fine
grained way, it also places a serious technical hurdle by
the need to represent multiple versions of code fragments
within the same class loader. On the other hand, the com-
position may easily integrate data which is not part of the
host language. In the diagram, this is indicated by "media
and data files" and "other software". In ‹Dissemination›,
several sound files were incorporated and meta files in the
form of segmentation data for particular sounds. Further-
more, a separate software FSCAPE was used from various
processes to render sound transformations while the instal-
lation is running. The next logical boundary would thus
be a file revision control system that could observe all data
involved. Again, if the fine levels of granularity shall not
be lost, this must be combined with observers of the pre-
vious levels. The third stage definitely escapes the ability
to monitor this purely in software, as the actual piece in-

volves decision making in the composer’s head which may
not be directly projected onto the software. A simple re-
minder is that this is an audio-visual installation, so the
composition of the physical components, the arrangement
and conditioning of the space are not covered, neither are
notes taken in sketchbooks and so forth.

4. SOLUTION SPACES

«All control systems try to make
control as tight as possible, but at the
same time, if they succeeded
completely, there would be nothing left
to control»

It can only be concluded that any observation system is
limited and should be modest and candid about its limita-
tions. It goes without saying that this does not imply that
such systems are not useful, but a clarification of the pur-
pose of this observation is required. It is not about the
establishing of a trace as an empirical fact pointing back
to an arche-trace, as there is no such thing as an arche-
trace (cf. [9]). The transportation of code from previous
projects and frameworks into a "new" project has already
indicated that, and figure 6 underlines it even further, as it
shows how DSP processes, sound files and concepts from
previous projects form an important part of the piece. The
DSP processes depicted have been developed by the author
over a period of ten years, and some of them are highly id-
iosyncratic and unfold their potential when connected with
the other processes, so they are considered essential com-
positional elements and not just "effects" (infrastructure).
The sound files, too, span almost a decade. Some of them
had been used in previous projects, some had never been
used in a piece, others have been used in a completely dif-
ferent manner before. Finally ‹Kalligraphie› and ‹Ampli-
fikation› are two sound installations which had a profound
influence on this new one: They established the idea of
a sound mobile constructed from semi-independent pro-
cesses and driven by a dedicated meta process, the physical
setup of glass plates, transducers and daylight colourisa-
tion, and even specific processes such as Licht—a process
which takes the frequency response of the glass plates and
constructs an inverse filter, imposing a moving gesture of
immateriality onto the "unfiltered" sounds—which was en-
hanced from the original version in ‹Amplifikation›.

The boundary between this piece and all previous pieces
seems to correlate with the performances and exhibitions
of the respective pieces, but it is just as conventional as
any system boundary and may not help in the analysis of
the composition process.

Observation as drawing-a-distinction is not so much dif-
ferent from writing, especially when the observer is lo-
cated within the system, as this type of observer not only
describes the system, but is also a relation, a determin-
ing component of the system, and the very description of
the system dynamically changes the subject of description
[13]. Thus, when we construct a computer music compo-
sition system with an observable, traceable data structure,
we aim at changing the notion of composition altogether,

and by doing that we hope to contribute to a form of com-
puter music which is truly depending on the computer as
medium. By offering the trace of the composition process
as an access point to recursive transformation, we are not
supporting the closure of a problem space but the opening
of a solution space (cf. [7]).

This is best illustrated with a classic concept from con-
trol theory, Ashby’s law of requisite variety [14]. It states
that goal-directed systems pursue a state of equilibrium,
and that in order to shield them from disturbances from
the environment—which would deter the system from its
goal—the regulator must provide counter actions which
have a variety that is at least as great as the variety of dis-
turbances. The function of the regulator thus is to minimise
variety in the output. Obviously this does not resonate with
language oriented systems which deal with communication
and wish to maximise the variety of possible expressions.
These two types of systems do not contradict each other,
as one can easily specify expressiveness as the goal of a
system, so that the regulator would minimise disturbances
which inhibit expressiveness. Heylighen and Joslyn por-
trait this duality as interaction between two systems with
complementary goals [3].

Another way to see this complementarity is the experi-
mental system described by Rheinberger which is based
on differential reproduction [15]. It is the modus operandi
of the scientific system but can be equally applied to arts.
Differential reproduction is a process of repetition and not
replication which means that the goal of identity is substi-
tuted for one of variation. In each iteration of an experi-
ment a form of cohesion must be established that allows it
to be compared to the previous experiment, but at the same
time the system must be open for disturbances from the
environment so that unforeseen things can happen. Un-
foreseen things should happen because the scientific sys-
tem aims at creating new knowledge, similarly the arts aim
at creating novel experiences. While technology serves as
a background layer and is a form of answering-machine—
problem closure, Pask’s taciturn system—, the epistemic
object is a question-generating machine—opening the so-
lution space, the language oriented system.

5. CONCLUSIONS

«. . . musical instruments . . . still sound
even when not being played, have a
memory; every note that has been
played once with them, still there,
inside, is resonating in the molecules of
the wood»

We have identified computer music (a better term would
be computer sound art) as a form which is intrinsically in-
spired by the computer as medium and not just a work-
bench with tools. Systems theory and cybernetics were
evaluated for the usefulness and applicability of their con-
cepts regarding the computer music composition process.
The distinction of language oriented from taciturn systems
and the identification of the former with computer music
programming languages opened the discussion of specific
terms such as ‘goal’, ‘boundary’ and ‘observer’.

Fourier Wavelet Laguerre Kriech BleachHilbertDSP

06/01 08/01 09/01 06/02 06/03 02/1007/03 04/06 10/0803/08 08/1010/0304/0304/02 05/02 08/09 09/0901/07

Sounds Bridges FTVcd Apfel Heli PhyletRegen

Sprenger

WindspielZeven

Projects Netzhaut Strahlung Kallig AmplifikationUnterwelt

Figure 6: Selection of external references for the piece and their establishment over time: Special digital signal processing
algorithms, sound files, and previous works. Pink colour items do not have a direct link with ‹Dissemination›, arrows
indicate dependencies between these references.

This composition approach was exemplified by an audio-
visual installation work. Using data from a versioning sys-
tem we found indications that the composition process can
be modelled as a recursive system which takes input both
from new ideas but equally from previous projects and then
increasingly relies on transformed material fed back from
previous iterations within the same process. Despite being
reinforced by other studies of composer observation, fur-
ther research is needed to turn these indications into gen-
eralised claims about computer music composition.

While the software framework used was not yet capa-
ble of tracing the writing of the composition, strategies
have been employed to overcome this limitation. A mem-
ory was realised as recorded and rendered sound files and
self observation was realised using audio feature extrac-
tion. Elaborating on the hypothetical implementation of
the persistent observing system, it was found that any such
observation system is inherently limited in scope and that it
lies in the nature of the programming language approach—
maximising expressiveness and communication with its en-
vironment—that system bounds become poriferous.

Hitting the limits of objective or "unconcerned" obser-
vation, we introduced a turn in the purpose of observa-
tion. A "concerned" observation is actively transforming
the compositional process by facilitating a recursive self-
reflection and focusing on its creative potential rather than
an archival idea of establishing the origins or roots of a
composition. This self-reflection can be interpreted as a
strategy for maintaining and increasing a solution space—
for example by allowing the composer to establish new
connections and relations between existing elements of the
composition cutting across different versions in time (the
‘meld’ operation of confluent persistence)—while at the
same time allowing for a cohesion between past and future
states of a composition. The oscillation between cohesion
and openness to disturbance from the environment is what
classifies this process as a differential reproduction, sup-
porting the emergence of new forms of expressions and
thereby supporting a core interest of the arts.

6. REFERENCES

[1] G. Loy and C. Abbott, “Programming Languages for
Computer Music Synthesis, Performance, and Com-
position,” ACM Computing Surveys (CSUR), vol. 17,
no. 2, pp. 235–265, 1985.

[2] A. Rosenblueth, N. Wiener, and J. Bigelow, “Behav-
ior, Purpose and Teleology,” Philosophy of Science, pp.
18–24, 1943.

[3] F. Heylighen and C. Joslyn, “Cybernetics and Second
Order Cybernetics,” in Encyclopedia of Physical Sci-
ence and Technology, R. A. Meyers, Ed. Academic
Press, 2001, vol. 4, pp. 155–170.

[4] P. Checkland, “Systems Thinking,” in Rethinking Man-
agement Information Systems, W. L. Currie and R. Gal-
liers, Eds. New York: Oxford University Press, 1999,
pp. 45–56.

[5] R. L. Flood, “Unleashing the ‘Open System’
Metaphor,” Systemic Practice and Action Research,
vol. 1, no. 3, pp. 313–318, 1988.

[6] H. H. Rutz, E. Miranda, and G. Eckel, “Reproducibility
and Random Access in Sound Synthesis,” in Proceed-
ings of the International Computer Music Conference,
2011.

[7] D. Collins, “A synthesis process model of creative
thinking in music composition,” Psychology of Music,
vol. 33, no. 2, pp. 193–216, 2005.

[8] D. Harel, “Can Programming Be Liberated, Period?”
Computer (IEEE), vol. 41, no. 1, pp. 28–37, 2008.

[9] J. Derrida, Of Grammatology. Baltimore: Johns
Hopkins University Press, 1997 (1967), trans. Gayatri
Chakravorty Spivak.

[10] H. H. Rutz, E. Miranda, and G. Eckel, “On the Trace-
ability of the Compositional Process,” in Proceedings
of the Sound an Music Computing Conference, 2010,
pp. 38:1–38:7.

[11] G. Pask, “The meaning of cybernetics in the be-
havioural sciences (The cybernetics of behaviour and
cognition; extending the meaning of ‘goal’),” Progress
of Cybernetics, vol. 1, pp. 15–44, 1969.

[12] A. Ryan, “What is a Systems Approach?” Arxiv
preprint arXiv:0809.1698, 2008.

[13] F. J. Varela, “Autonomy and Autopoiesis,” in Self-
organizing Systems: An Interdisciplinary Approach,
G. Roth and H. Schwegler, Eds. Frankfurt and New
York: Campus Verlag, 1981, pp. 14–23.

[14] W. R. Ashby, An introduction to Cybernetics. London:
Chapman & Hall, 1956.

[15] H.-J. Rheinberger, Toward a history of epistemic
things: Synthesizing proteins in the test tube. Palo
Alto: Stanford University Press, 1997.

	 1. Introduction
	 2. Dissemination
	 3. Permeable Boundaries
	 4. Solution Spaces
	 5. Conclusions
	 6. References

