
ENSEMBLE: IMPLEMENTING A MUSICAL MULTIAGENT SYSTEM
FRAMEWORK

Leandro Ferrari Thomaz and Marcelo Queiroz
Computer Science Department – University of São Paulo – Brazil

{lfthomaz | mqz}@ime.usp.br

ABSTRACT

Multiagent systems can be used in a myriad of musical
applications, including electro-acoustic composition, au-
tomatic musical accompaniment and the study of emer-
gent musical societies. Previous works in this field were
usually concerned with solving very specific musical pro-
blems and focused on symbolic processing, which limited
their widespread use, specially when audio exchange and
spatial information were needed. To address this shortco-
ming, Ensemble, a generic framework for building musical
multiagent systems was implemented, based on a previ-
ously defined taxonomy and architecture. The present pa-
per discusses some implementation details and framework
features, including event exchange between agents, agent
motion in a virtual world, realistic 3D sound propagation
simulation, and interfacing with other systems, such as Pd
and audio processing libraries. A musical application ba-
sed on Steve Reich’s Clapping Music was conceived and
implemented using the framework as a case study to vali-
date the aforementioned features. Finally, we discuss some
performance results and corresponding implementation
challenges, and the solutions we adopted to address these
issues.

1. INTRODUCTION

In this paper we discuss implementation strategies and re-
port recent experience with Ensemble, a musical multia-
gent framework first presented in [1]. The multiagent ap-
proach is well-suited for musical applications involving a
number of autonomous musical entities that interact mu-
sically with one another, such as electronically-mediated
collective performance [2, 3], automatic accompaniment
and improvisation [4, 5], and biologically-inspired musi-
cal societies (used for studying emergent behaviors) [6, 7,
8, 9].

Although the literature on the use of agents in music is
rather extensive, most of it deals with very particular pro-
blems [1]. Two previous works have much more general
goals and are deeply connected to the present work, deser-
ving special attention. The MAMA architecture [4] offers
a framework for designing musical agents with interactive

Copyright: c©2011 Leandro Ferrari Thomaz et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unres-

tricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

behavior based on the speech act theory, which commu-
nicate using MIDI messages to perform a musical piece.
The SWARM Orchestra [2] is an user-extendable library
that deals with large and complex populations (swarms),
which may be used to control several musical and motion
parameters simultaneously.

The Ensemble musical multiagent framework, which was
first proposed in [1], builds up on the ideas of these two
systems to define a generic, extendable, and configurable
framework. Two general types of agents are considered
in this framework: musical agents, which inhabit a virtual
environment and interact with one another via sensors and
actuators, and an environment agent, which controls the
virtual environment and all interactions therein.

Musical agents are autonomous pieces of software that
may embody interactive musical algorithms, or may also
serve as virtual proxies to external agents, such as instru-
mentalists or even other musical software systems. They
can also serve as sound outlets, capturing sound at specific
positions in the virtual environment and sending them out
for playback on a real listening space, such as a concert
hall or an installation space, using either loudspeakers or
headphones.

Interactions are modelled as events, which can be of se-
veral types, such as sound events, motion events, visual
events and textual/symbolic messages, and each event type
is controlled by an event server (which is part of the envi-
ronment agent).

Musical agents can be specified using initialization files
or can be created and modified at runtime. Agent design
allows agent components, including sensors and actuators,
agent reasonings and sound-processing engines, also to be
added and removed at runtime, making this a pluggable
framework.

Interfacing the architecture with popular sound proces-
sing languages and environments, such as Pd or Csound, is
also a major concern. Currently, agent creation and modi-
fication, as well as on-the-fly control of agent motion, sen-
sing and acting, can all be done using Open Sound Control
(OSC) messages [10].

Ensemble extends the functionalities of [4, 2] by aggrega-
ting many novel features, such as multimodal communica-
tion (audio, MIDI and text-based) between musical agents,
pluggable components for defining agents and physical
characteristics of the virtual environment, and 3D sound
propagation simulation within the virtual world. In parti-
cular, audio exchange between agents and a realistic treat-
ment of space and acoustics, both poorly explored in pre-

http://creativecommons.org/licenses/by/3.0/


vious works, are defining characteristics of this work.
This paper is structured as follows. Section 2 discus-

ses the specific details of the implementation of the fra-
mework, and also the specification of agents and compo-
nents by the user. Section 3 presents a concrete musical
application of the system, based on Steve Reich’s Clapping
Music, as a case-study to illustrate the framework from the
user point-of-view. Finally, some concluding remarks and
pointers to further work are given in section 4.

2. FRAMEWORK ARCHITECTURE AND
IMPLEMENTATION

This implementation was coded in the Java SE 6 language.
Although Java performance limitations and poor sound pro-
cessing support are well known to the community, this
choice was made so that any musical applications program-
med by the user could be run on distinct platforms. The
JADE 4.0 multiagent middleware 1 was chosen for being a
well-documented and well-supported multiagent platform.

This framework can be classified as a white-box
framework [11], since the user is required to have some
knowledge of its internal implementation. User specific
implementations and extensions to the system need to fol-
low a few internal conventions, since the framework acts as
a main program, calling user-defined methods. Neverthe-
less, we provide a reasonable amount of reusable compo-
nents (such as analysis and synthesis engines) which may
ease considerably the specification of a musical agent by
the user.

Simplified UML class diagrams for the MusicalAgent and
the EnvironmentAgent can be seen in figures 1 and 2, res-
pectively. These two kinds of agents are based on the En-
sembleAgent class, itself a subclass of JADE’s Agent class,
which provides basic functionalities such as mechanisms
for message passing and scheduling/executing concurrent
activities, as well as the definition and control of agent life
cycles.

«interface»
RouterClient

«interface»
Sensing

«interface»
LifeCycle

«interface»
Acting

MusicalAgentComponent ReasoningKnowledgeBase

MusicalAgent

Actuator

EventHandler

EnsembleAgent

Sensor

Memory

0..*

1

0..*

1

Figure 1. Class Diagram of the Musical Agent.

1 Available at http://jade.tilab.com/. This and every other
link mentioned in this text has been verified march 25th 2011.

A MusicalAgent is composed of one KnowledgeBase ob-
ject (for holding multiple data, such as I/O sound infor-
mation) and possibly several MusicalAgentComponent ob-
jects, as shown in figure 1. These components can be of
two types: Reasoning components, which are responsible
for an agent’s decision processes, and EventHandlers, i.e.
Actuators and Sensors, capable of interacting with the en-
vironment through corresponding Acting and Sensing in-
terfaces.

Env ironmentAgent

EventServer

EnsembleAgent

World

EntityState

Law

«interface»
LifeCycle

«interface»
Acting

«interface»
Sensing

«interface»
RouterClient

0..*

1

1 1

0..*

1

0..*

1

Figure 2. Class Diagram of the Environment Agent.

A special singleton agent, the EnvironmentAgent, repre-
sents the virtual environment and manages all interactions
between MusicalAgents. As shown in figure 2, it is com-
posed of a World object, for describing the virtual envi-
ronment, and EventServers, for mediating event exchan-
ges between EventHandlers. The World object contains
the physical description of the space (number of dimen-
sions, connectedness, boundaries) and also stores the cur-
rent state of all entities (agent positions, motion intentions,
sound produced and received, etc.) in EntityState objects.
Law objects define the way the world state changes, i.e.
they describe how to update the description in the World
object given the last state, the current time instant and all
actions currently performed by the agents. For example,
realistic 3D sound propagation is defined by a particular
Law object that receives all sound produced anywhere in
the environment and delivers a specific mixture to each
sound Sensor according to its position relative to each
sound Actuator.

Major components of the framework (agents and their
aggregated components) implement a LifeCycle interface.
LifeCycle methods are: configure(), to set up configura-
tion parameters before startup; start(), used by the fra-
mework to start each component; init(), user-specific ini-
tialization, implemented by the user and called automa-
tically by start(); stop(), used by the framework to stop
each component; and finit(), user-specific finalization, im-
plemented by the user and called automatically by stop().
This approach provides greater flexibility when extending
components, while ensuring the necessary control to the
framework.

http://jade.tilab.com/


2.1 Event Exchange

Ensemble supports two kinds of event exchange methods:
sporadic, where events can be sent at any instant and rate
(e.g. changing position of an agent or sending a MIDI
or text message); and periodic, controlled by a synchro-
nous communication process with a fixed exchange fre-
quency, where in each cycle Actuators are requested to
produce Events and Sensors receive corresponding Events
(e.g. audio communication). Both types of event exchange
methods are controlled by corresponding EventServers, and
Actuators and Sensors interested in that event type (audio,
for instance) are required to register prior to participating
in the communication process.

The periodic exchange mode is controlled by state ma-
chines built into the EventServer and registered Actuators.
State changes are regulated by the Virtual Clock service,
responsible for timing the current simulation and schedu-
ling tasks. Figure 3 shows an UML sequence diagram of
a complete cycle of a periodic event exchange between an
EventServer and an Agent equipped with a Reasoning, an
Actuator and a Sensor.

:VirtualClockService:Memory:Reasoning :Actuator:Sensor :EventServer

{t1}

frameTime

process()

{t2}

needAction
needAction()

writeMemory()

{t3}

agentDeadline
readMemory()

act()
Event

{t4}

receiveDeadline

process()

{t5}

sendDeadline

act()
Event

writeMemory()

newSense()
readMemory()

frameTime

Figure 3. Sequence diagram of a periodic event exchange
cycle. Time runs downward according to the timeline at
the right of the figure.

At the beginning of each frame, there is a time interval for
the agent to process any information that it wants to send
in the next frame. When the deadline needAction is rea-
ched, the Actuator calls a needAction() method of the Rea-
soning responsible for writing the required information in
the Actuator’s memory. The agentDeadline indicates that
an Event must be sent through an act() method; failure to
meet this deadline will result in no Event being sent (an
empty audio frame, for instance). The EventServer waits
for all arriving Events until the receiveDeadline, when it
starts its own process() method, updating the World state
and sending back response Events for registered Sensors,
no later than the sendDeadline. When a Sensor receives an
Event, it writes the corresponding information in its Me-
mory and informs the Reasoning about it through the new-
Sense() method. Finally, at frameTime, a new exchange
cycle begins.

A Reasoning’s process() method can be defined as an
endless loop, or it can be triggered by the needAction()
method. All deadlines are user-defined, as they depend on
the amount of time needed for each process() method and
for the communication between Agents and EventServers.

2.2 Agent Memory

An agent’s Memory is the part of its KnowledgeBase used
to store incoming and outgoing Events, analogously to a
computer’s memory. Every Sensor and Actuator has an as-
sociated memory, which is automatically filled in when a
corresponding Event is received by a Sensor, and read from
when an Actuator is asked to act. When a Reasoning com-
ponent wants to send out some Event (sound, for instance),
it stores the information in the corresponding Actuator’s
Memory and triggers the corresponding action. When an
Event is received by a Sensor, it stores the information in
its memory and lets all registered Reasonings know about
it.

Memories are time-based, since all events have times-
tamps and durations, which are used to fill in the Memory
or read from it. Although Sensors and Actuators follow a
linear-forward time policy when accessing memories, there
are many other components which may be interested in
nonlinear or even random access, granted by generic
read(instant, duration, unit) and write(instant, duration,
unit) Memory access methods.

Two kinds of memories based on the same Memory inter-
face were implemented. The simplest one is the EventMe-
mory, which stores events in a double linked list, ordered
by timestamp. Since search time tends to grow linearly
with list size for regular linked lists, a simple heuristic was
used to improve memory access performance for common
situations. When processing audio or movement, sequen-
tial memory accesses are most likely to occur, and so the
last seeked timestamp is used as a starting point for suc-
cessive memory accesses.

A specialized AudioMemory was designed for dealing
with audio data, which is implemented as a circular buf-
fer of samples with a parameterized sample rate. This me-
mory can be accessed using timestamps and also sample
indices, using interpolation for continuous (floating-point)
memory access. Linear interpolation is used by default,
but non-interpolated or N -point interpolated accesses are
easily configurable.

2.3 Agent Motion

A MovementEventServer is responsible for managing agent
movement requests and updating agent positions. Agents
equipped with movement actuators are able to change their
position in the virtual environment using simple instructi-
ons such as WALK, ROTATE and STOP. Depending on the
World definition (and its Laws) these may be used to ins-
tantly update an agent’s position, to instantly start moving
with a given velocity towards a certain direction, or more
realistically, to define an acceleration (as if induced by a
physical force) and let the EnvironmentAgent compute the
corresponding trajectory using basic (i.e. Newtonian) me-
chanics. This is defined by a specific MovementLaw.



The rate at which the MovementEventServer updates its
data about agent positions (within the corresponding En-
tityState) is defined by the user. At each update cycle, the
server checks if any agent has pending movement instruc-
tions to be carried out. Friction can also be considered
in the simulation, with user-defined friction coefficients.
The MovementEventServer can check for obstacles, such
as other agents or walls, thus restricting an agent’s move-
ment. Agents can be informed of the result of their move-
ment requests (and their updated position in the environ-
ment) via specific MovementSensors.

A MovementReasoning was conceived to help design a-
gent trajectories defined by waypoints and time-of-arrival
constraints. This Reasoning sends out acceleration instruc-
tions to the EventServer through a movement actuator, and
monitors the agent’s actual position using a movement sen-
sor.

2.4 Sound Propagation

Realistic and reliable 3D sound propagation simulation
within the virtual environment was one of the central is-
sues in the design of Ensemble. This corresponds to having
each agent hear/sense exactly what it would in a real sce-
nario, according to the positions of its sound Sensors and
the positions of every sound Actuator, their corresponding
velocities (with an implied Doppler effect), attenuation ef-
fect due to distance, sound shadows cast by obstacles, etc.
This is of paramount importance when a sound design is
going to be reenacted in a real listening environment, such
as a concert hall or an installation, and the impression of a
realistic spatial soundscape is intended.

There are a few technical issues involved in a realistic
sound propagation simulation that will be discussed in the
sequel. First of all, it should be noted that sound is only
perceived at sound Sensors (and not anywhere in the space),
and so a simulation of wave equations on a discretized grid
representing the space would be computationally prohibi-
tive and also useless for the most part. Instead, sound pro-
pagation is considered independently for each pair (sound
Actuator, sound Sensor). Global simulation parameters
such as speed of sound, attenuation due to distance and
frequency filtering due to the environment can all be con-
figured by the user.

The SoundEventServer is a periodic process that is requi-
red to deliver to each sound Sensor one audio frame per
cycle, representing all incoming sound at the current posi-
tion of the Sensor, which is allowed to vary continuously.
This means that, for each sound sample of this frame cor-
responding to timestamp t, the Sensor S has a different
position Sp(t), and the same is true for every other sound-
producing Actuator in the environment. So, for each times-
tamp t of this audio frame (to be delivered to a particular
sound Sensor), the event server has to go through all sound
Actuators in the environment and find out, for each sound
ActuatorAwith an independent trajectoryAp(·), when did
it produce sound that arrived at position Sp(t) at time t.

Considering that sound travels in a straight path with
constant speed c, the problem is to find an instant d(t) in
the past such that the path from position Ap(d(t)) to Sp(t)

takes exactly t−d(t) time units, or in other words, to solve
the following equation in the variable d for each given t:

Sp(t)−Ap(d) = c(t− d).

Since the functions Sp(t) and Ap(t) have simple analy-
tic derivatives (according to the Newtonian equations), the
Newton-Raphson method provides a quick way to find the
solution d(t) for each S, t and A. This solution for a ti-
mestamp t can be used as a starting point when finding
the solution for the next timestamp t + ∆, whose solution
d(t + ∆) is likely to be close to d(t). Experimental tests
showed that, with this initialization, it takes about four ite-
rations for the Newton-Raphson method to find d(t) within
a precision of 10−9 seconds.

Despite Newton-Raphson’s efficiency, it should be noted
that this problem has to be solved once for each sample n
of each sound Sensor S and for each sound Actuator A,
with a total of (#Sensors) ∗ (#Actuators) ∗ (FrameSize)
calls to this function. For instance, in a very simple setting
of two Sensors and two Actuators using a FrameSize of
100 ms with a 44.1 kHz sample rate, it would take 17640
function calls or about 70560 Newton-Raphson iterations
to complete each processing cycle, which gives less than
1.5 µs of CPU time per Newton-Raphson iteration, only for
sound propagation. As the number of Sensors and Actua-
tors increase, the chance of the sound event server losing
its periodic deadline becomes a threat.

To minimize this problem, a polynomial interpolation
method combined with the Newton-Raphson method was
used. This approach finds the precise values of d(t) for the
first and last sample of each sound frame, and for as many
points in between as necessary according to the polyno-
mial degree chosen. Then interpolation using Neville’s al-
gorithm is used to obtain d(t) for the remaining samples.
Experimental tests with a frame size of 100 ms showed that
quadratic interpolation (3 points per frame) provide va-
lues of d(t) within less than 10−5 seconds of their correct
values, corresponding to subsample accuracy, even when
Sensors and Actuators change their accelerations within
the considered audio frame. Cubic interpolation (4 points
per frame) drives errors down to 10−8 seconds or 0.000441
in terms of sample index.

Figure 4 shows performance measurements 2 made with
the framework; these values correspond to the time dedica-
ted to computing the sound propagation between one Ac-
tuator and N Sensors, expressed as a fraction of the frame
size. As expected, values grows roughly linearly as a func-
tion of (#Sensors) ∗ (#Actuators) for each fixed frame-
size, until a limit of operability is reached and the compu-
tation breaks down, meaning that not every sound produ-
ced gets propagated to every Sensor. This limit of operabi-
lity (indicated in the figure by small boxes) increases with
framesize, and for the particular equipment used in this ex-
periment, frame sizes between 100 ms and 250 ms seem
to offer a reasonable tradeoff between latency and stability
for (#Sensors) ∗ (#Actuators) ≤ 40.

It should be noted that this approach do corresponds to
a realistic sound propagation simulation that includes the

2 Test were conducted using a MacBook Pro with a 2.7 GHz Inter Core
2 Duo processor and 4 GB of memory, running Mac OS X 10.6.



100 ms limit 

50 ms limit 

250 ms limit 

500 ms limit 

1000 ms limit 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

0 10 20 30 40 50 60 70 80 

So
un

d 
pr

op
ag

at
io

n 
pr

oc
es

si
ng

 ti
m

e 
re

la
tiv

e 
to

 fr
am

e 
si

ze
 

(#Sensors)*(#Actuators) 

1000ms 500ms 250ms 100ms 50ms 

Figure 4. Sound propagation processing time for different frame sizes.

Doppler effect, since values of d(t) depend on continu-
ously changing values of position and speed of the Sen-
sors and Actuators. Therefore, approaching targets imply
compressing wavefronts, and distancing targets imply ex-
panding wavefronts. Frequency shifts are a direct conse-
quence of the definition of d(t) above.

Since a single agent may have multiple sound Sensors po-
sitioned at different points of its virtual body, a sound wave
has different arrival times for each Sensor. This allows the
use of multi-sensor listener agents that capture 3D sounds-
capes and send them for external multi-channel playback.
It also allows Reasonings to use these multiple inputs for
source position identification, source separation, etc.

Last but not least, it should be noted that realistic sound
propagation is but one of many alternatives in the design of
acoustical laws for the virtual world. Some musical mul-
tiagent designs [6, 7, 8] rely on different formulations for
the virtual space, such as discrete 2D spaces with planar
or square wavefronts. Unearthly and bizarre sound propa-
gation schemes could easily be implemented and used for
sound experimentation, for instance sending out different
frequency bands in different directions with different spe-
eds spreading out from a single sound source.

2.5 Interfacing

Ensemble was designed to allow flexible implementation
of musical multiagent applications, with the intention of
generalizing from examples found in the literature. Ne-
vertheless, interfacing the framework with other sound-
processing and music-processing programs is beneficial for
several reasons: it extends the available functionalities of

the framework, it affords code reusability, and it improves
user comfort, by allowing part of the application to be de-
veloped using a language or environment of the designer’s
choice.

We will discuss in the sequel several aspects of interfa-
cing with Ensemble that we consider fundamental: inter-
facing with specialized libraries, interfacing with general
sound-processing programs, user interfaces and audience
interfaces.

Interfacing with external libraries

Two external libraries for audio processing were incorpo-
rated into the framework: aubio 3 and LibXtract 4 . Es-
sential functionalities for audio processing such as FFT,
digital filters and feature extracting functions can be used
transparently when designing agents, reasonings, analysis
and synthesis engines through these libraries.

Since these libraries are implemented in C and are plat-
form-dependent, pre-compiled modules were created for
the three most common operating systems used by musici-
ans (MS-Windows, MacOS and Linux), which are acces-
sed using Java Native Interface (JNI). An Abstract Factory
Design Pattern approach ensures that other libraries can be
incorporated in the framework when needed.

Interfacing with other programs

Every agent and component of the system is able to receive
and send messages by means of a Router Service. This
service, accessible through the RouterClient interface, is

3 Available at http://aubio.org/.
4 Available at http://libxtract.sourceforge.net/.

http://aubio.org/
http://libxtract.sourceforge.net/


responsible for delivering every message to its correct re-
cipient, using the internal JADE mechanisms for message
exchange. The address scheme is based on a string con-
taining the names of the system, agent and component.
For example, one can send a message to a sound sensor
belonging to a musical agent by directing the message to
/ensemble/pianist/right ear, or to an external pro-
gram, for instance Pd, using the address /pd.

Open Sound Control (OSC) [10] is a message-exchange
protocol specialized in musical applications, used and un-
derstood by major musical softwares. The routing mecha-
nism of the multiagent framework can also be used to send
and receive OSC messages through a special RouterAgent
that implements an OSC server. For example, a Pd external
was implemented that works as a graphical representation
and user interface for an example 2D virtual world, using
only OSC messages. Through it the user is able to see
and interact with agents, send messages to start and stop
sound processes, and place or move himself/herself within
the environment to listen through headphones to a binaural
version of the simulation.

Figure 5. Pd interaction with Ensemble using OSC.

Figure 5 shows an example of a Pd patch that interfaces
with Ensemble by means of the OSC protocol. Two Pd
objects 5 are needed for the communication to take place:
dumpOSC, used for receiving OSC messages, and
sendOSC, used for sending messages. These string mes-
sages must be parsed, using the OSCroute object, and in-
terpreted by the Pd patch according to the user applica-
tion. We developed a Pd external, ensemble gui, which is a
two-dimensional graphical representation of an agent’s po-
sition on a rectangular virtual world. This external object
processes commands sent by the MovementEventServer to
update the graphical interface. The figure also illustrates

5 Bundled with Pd-extended, available at http://puredata.
info.

some example messages that can be sent to Ensemble to
create/destroy agents or to add audio sensors, all of which
are possible at runtime.

Interfacing with a user or sound designer

Applications using Ensemble can be built using a single
XML file, which contains parameters defining world com-
ponents and agent components, as well as starting points
for processes and rules for updating every aspect of the sys-
tem. These XML constructs are meant to be simple indica-
tions of the methods, components and parameter values of
the framework that will be used in actual simulation, and
so they are much simpler than actual Java programming.
Whenever an application relies on pre-built agent/world
components, the user is able to use the XML file to assem-
ble agents, plug-in their components (sensors, actuators,
reasonings, etc), define world parameters and laws, trigger
the start of the simulation and also to control the system at
runtime using nothing but XML commands.

Extending the system is possible by either programming
new components in Java, or alternatively by interfacing
with other programs as already discussed. This second al-
ternative is particularly interesting when designing graphi-
cal user interfaces for real-time user interaction, which is
probably easier to do in Pd than for instance in Java.

Interfacing with real listening spaces

Nothing in this discussion would make sense if there were
no channels to peep into or eavesdrop on the virtual en-
vironment while simulation is going on. Graphical user
interfaces can be used to see the motion of agents as dis-
cussed above, while more advanced image processing te-
chniques might also be considered for rendering spatial re-
presentations of the virtual world. But getting sound out of
the virtual environment is the first and foremost goal when
designing a musical multiagent application.

Two Reasonings were implemented to provide audio in-
put/output using a regular audio interface hardware, so the
user can hear what is happening inside the virtual envi-
ronment and interact with it by inputting sound. The Jack
audio system 6 was chosen as the audio library for this task
for its low-latency, portability and flexibility, allowing a fi-
ner control of timing and also the use of multiple channels
of the audio interface (both impossible with Sun’s current
Java Sound implementation). Jack requires the use of JNI,
meaning that a library must be compiled for each operating
system.

With Jack, it is possible to route audio channels between
supported applications (Ensemble included) and also
to/from an external audio interface. Thus, an external ap-
plication such as Pd ou Ardour can export audio signals
that are fed into Ensemble through a Musical Agent (using
the JackInputReasoning), which may then be used as input
to a musical Reasoning, or it may be propagated in the vir-
tual environment through a sound Actuator. Any Musical
Agent within Ensemble may likewise export audio signals
using the JackOutputReasoning.

6 Available at http://www.jackaudio.org/.

http://puredata.info
http://puredata.info
http://www.jackaudio.org/


One consequence of the periodic event exchange appro-
ach is that a delay of two frames plus the delay of the audio
interface itself is introduced when sound is captured and
played back in the virtual environment; sound exported
from the virtual environment is subject only to the delay
of the audio interface.

3. CASE STUDY: CLAPPING MUSIC

In order to test some recent advanced functionalities of the
framework, a relatively complex musical application was
conceived. The starting point was the musical piece cal-
led Clapping Music, written in 1972 by Steve Reich. In
this minimalist piece, a small rhythmic pattern is repeate-
dly clapped by two performers. While the first one goes
on repeating the exact same pattern, the second one circu-
larly shifts the beginning of the pattern one beat to the left,
every 8 (or 12) repetitions, until they are once again synch-
ronized, after 96 (or 144) repetitions. Figure 6 shows the
pattern and its first shifted repetition.












       
            

    

       
           

     


Figure 6. Clapping Music original pattern (first measure),
and counterpoint produced with the first shifted pattern (se-
cond measure).

In the transposition of the piece to a musical multiagent
application, some complicating hypotheses were introdu-
ced. First, the rhythmic pattern could be the one propo-
sed by Reich, but it could also be randomly generated if
the user so wished. Second, multiple agents (virtual per-
formers) would be involved, with separate entries for each
one, and also independent shifting patterns (described by
user-controlled parameters). Third, and perhaps most im-
portantly, agents would not be allowed to communicate by
any means other than audio, i.e., we excluded the possibi-
lity of visual cues or trigger messages that would facilitate
synchronization between agents. Everything would have
to be done using audio analysis (i.e. finding out what the
pattern is, when did it begin, etc.) and audio synthesis.

Three types of agents were implemented: a Leader agent
who is responsible for proposing the pattern; a Follower
agent who will try to discover the pattern and then start to
play it, shifting each repetition by a certain amount; and a
Listener agent who copies the output to an external user.
At runtime, the Leader agent defines a rhythmic pattern
(set by the user or randomly created based on the number
of desired beats, bpm and wavetable), and start repeating
it, accentuating each first beat of the pattern as a cue for
other agents to pick up where it starts. Much more com-
plicated pattern-discovering strategies could also be imple-
mented without using such a cue, but they would inevita-
bly prohibit patterns which contain repetitions of smaller
sub-patterns or motives, such as AA or AAB patterns, for
instance.

The Follower agent has two states: analysis and playing;
in the analysis state, it must detect onsets as each audio

frame arrives in its sensors, and create a list of timestamps
and intensities. Real-time onset detection and other sig-
nal processing calculations (like FFT and RMS) used the
aubio library. As soon as the second repetition starts, the
agent has the pattern and is ready to play, but since it can
only produce output for the next audio frame, it will wait
for the third repetition of the pattern to enter with its shifted
version.

Agent movements were defined to graphically illustrate
the amount of shifted beats of each Follower with respect
to the Leader. While the Leader stays at the center, the
Followers perform an orbital-like motion around it based
on their current shift value. Whenever a Follower starts a
new repetition with a new shift value, it will walk towards
a new orbital position, and all agents align when a cycle is
completed (this may take much longer than the 144 repeti-
tions of the original piece). Agent positions also influence
how the user (through the Listener agent) will hear the pi-
ece, since sound propagation takes all agent positions into
account, with corresponding delays, attenuation and filte-
ring.

The flexibility in the application setup invites experimen-
tation with different parameters values, including the
amount and periodicity of shifting and the pattern itself,
which brings about a myriad of intricate interweaving pat-
terns. A curious effect due to spatialization is that fol-
lowers far away from the leader will never play in perfect
synchronism, since sound waves take some time to propa-
gate, implying that the pattern is recognized with a certain
delay.

An important fact about this application is that it uses
mainly built-in general purpose Ensemble componentes.
An XML configuration file is used to assemble all compo-
nents and set up the simulation, and only one customized
Reasoning had to be implemented in Java. Both files ac-
count for less than 500 lines of code, including comments.

4. CONCLUSION

This paper presented an updated account on the develop-
ment of Ensemble, a framework for musical multiagent
systems. Much has been improved since the first imple-
mentation presented in [1]: the current framework is more
flexible, allowing integration with external libraries and
programs, more user-friendly, allowing the specification of
applications without Java programming and also the use
of external graphical user interfaces, and also shows an
increased level of realism and better performance in the
sound propagation simulation, due to physical simulation
and major redesign in the internal data structures, such as
agent Memories and virtual world Laws.

The choice of Java, motivated by the fact that it is a
general-purpose, platform-independent language with wide
availability and support, has also had its drawbacks, some
of them predicted and others not so much.

Predictably, Sun’s Java Sound API implementation is not
suitable for a more demanding audio application. For ins-
tance, depending on the operating system and audio inter-
face driver implementation, one cannot address a specific
audio channel of an external audio interface. This diffi-



culty has been overcome through the use of PortAudio,
which, although it requires pre-compiled modules to work
on every platform, guarantees full access to most sound
peripherals.

Java’s garbage collection mechanism can sometimes in-
terrupt important time-constrained operations of the fra-
mework, such as the periodic event exchange, or important
audio processing operations, such as the sound propagation
simulation. Since one cannot control when the garbage
collector will be called, the framework is bound to loose
some audio frames whenever the system becomes overlo-
aded. Using Java Real Time might be a way to solve this
problem, since processing start times and deadlines could
be enforced by a real time operating system.

Also, the first few runs of each method were observed to
be slower than subsequent runs, since the Java Interpreter
always tries to execute code without compiling it, and only
decides to natively compile some code excerpt after it de-
tects intensive repetition. This problem was circumvented
by creating a warm-up repetition routine for computer in-
tensive methods.

The object-oriented approach used in the modeling and
implementation of the architecture implied a great deal of
object creation and destruction, on several levels of abs-
traction. These operations are somewhat expensive for the
Java Virtual Machine, since memory need to be allocated
and constructors/destructors called. Some time-constrai-
ned methods which deal with a lot of data, like the sound
propagation simulation, are heavily hit by this fact. In or-
der to increase performance, some coding techniques not
much in line with the object-oriented paradigm were ap-
plied, like reusing the same object and minimizing the
number of calls to a method.

Ensemble, in its current version, may be used to repro-
duce many kinds of musical multiagent applications, such
as those discussed in [1]. Some performance improve-
ments, relative to memory usage and synchronism between
state machines, are already scheduled for implementation.
These improvements are expected to allow the framework
to work with lower latencies and an even larger number of
agents.

The framework code, as well as example applications, is
open-source and freely available on the web 7 . There is
also a step-by-step tutorial on how to build a simple appli-
cation with existing components. Documentation is expec-
ted to significantly improve in the near future.

Acknowledgments

This work has been funded by CAPES, CNPq and FAPESP
(grant 2008/08632-8).

5. REFERENCES

[1] L. Thomaz and M. Queiroz, “A framework for musi-
cal multiagent systems,” in Proc. Int. Conf. Sound and
Music Computing, Porto, 2009, pp. 213–218.

7 Available at http://code.google.com/p/
musicalagents/.

[2] D. Bisig, M. Neukom, and J. Flury, “Interactive
swarm orchestra-a generic programming environment
for swarm based computer music,” in Proceedings of
the International Computer Music Conference. Belfast,
Ireland, 2008.

[3] M. Spicer, “AALIVENET: an agent based distributed
interactive composition environment,” in International
Computer Music Conference, 2004, pp. 1–6.

[4] D. Murray-Rust, A. Smaill, and M. Edwards,
“MAMA: An architecture for interactive musical
agents,” in Proceeding of the 2006 conference on ECAI
2006: 17th European Conference on Artificial Intelli-
gence August 29–September 1, 2006, Riva del Garda,
Italy. IOS Press, 2006, pp. 36–40.

[5] G. L. Ramalho, P. Y. Rolland, and J. G. Ganascia, “An
artificially intelligent jazz performer,” Journal of New
Music Research, vol. 28, no. 2, pp. 105–129, 1999.

[6] P. Dahlstedt and M. Nordahl, “Living melodies: Coe-
volution of sonic communication,” Leonardo, vol. 34,
no. 3, pp. 243–248, 2001.

[7] K. McAlpine, E. Miranda, and S. Hoggar, “Making
music with algorithms: A case-study system,” Com-
puter Music Journal, vol. 23, no. 2, pp. 19–30, 1999.

[8] J. McCormack, “Eden: An evolutionary sonic ecosys-
tem,” Advances in Artificial Life, pp. 133–142, 2001.

[9] M. Gimenes, E. Miranda, and C. Johnson, “The de-
velopment of musical styles in a society of software
agents,” in Proceedings of the International Confe-
rence on Music Perception and Cognition, 2006.

[10] M. Wright and A. Freed, “Open sound control: A new
protocol for communicating with sound synthesizers,”
in Proceedings of the 1997 International Computer
Music Conference, 1997, pp. 101–104.

[11] R. Johnson and B. Foote, “Designing reusable classes,”
Journal of object-oriented programming, vol. 1, no. 2,
pp. 22–35, 1988.

http://code.google.com/p/musicalagents/
http://code.google.com/p/musicalagents/

	 1. Introduction
	 2. Framework Architecture and Implementation
	2.1 Event Exchange
	2.2 Agent Memory
	2.3 Agent Motion
	2.4 Sound Propagation
	2.5 Interfacing

	 3. Case study: Clapping Music
	 4. Conclusion
	 5. References

