
A TOOLBOX FOR STORING AND STREAMING MUSIC-RELATED DATA

Kristian Nymoen
fourMs - Music, Mind, Motion, Machines

Department of Informatics
University of Oslo

krisny@ifi.uio.no

Alexander Refsum Jensenius
fourMs - Music, Mind, Motion, Machines

Department of Musicology
University of Oslo

a.r.jensenius@imv.uio.no

ABSTRACT

Simultaneous handling and synchronisation of data related
to music, such as score annotations, MIDI, video, motion
descriptors, sensor data, etc. requires special tools due to
the diversity of the data. We present a toolbox for record-
ing and playback of complex music-related data. Using the
Sound Description Interchange Format as a storage format
and the Open Sound Control protocol as a streaming pro-
tocol simplifies exchange of data between composers and
researchers.

1. INTRODUCTION

In this paper we introduce a set of tools that have been
developed for working with music-related data. Our goal
with this software is primarily to provide a set of tools for
researchers working with music-related body motion, but
we also see the potential for using the tools in other re-
search areas. We started working on the tools in 2008, and
the development has continued over the last years together
with our research on music and movement [1, 2, 3]. The
need for a common method of storing and sharing data re-
lated to musical movement was discussed at a panel ses-
sion at the International Computer Music Conference 2007
[4], and further emphasised at a seminar in May 2010 at
IRCAM, Paris, where several researchers from around the
world working with music and motion, and sound spatiali-
sation were present. A common denominator for this sem-
inar was to come closer to a scheme for describing spatio-
temporal aspects of music. The tools we are presenting
were revised after this seminar with the intention of mak-
ing them easy to use for the research community.

Section 2 introduces previous research and gives an over-
view of why these tools are needed, and what has already
been done in the field. In section 3, the different types
of data we are working with are discussed. Section 4 in-
troduces the tools. Finally, in section 5, we conclude and
point out the future directions of the development.

Copyright: c©2011 Nymoen et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

2. BACKGROUND AND MOTIVATION

In our research on music-related body motion, we are often
faced with situations where we want to study data from
several devices at the same time. We will start this section
by looking at two use cases that summarise some of the
challenges in the field and the tools needed.

2.1 Use cases

a. The music researcher
A researcher is interested in studying the movement of a
pianist by using an optical infrared motion capture system
and record MIDI events from the piano. By themselves, the
MIDI and motion capture data is trivial to record. How-
ever, synchronising the two, and being able to play them
back later, or even scrubbing through the recording, keep-
ing the MIDI-data and the motion capture data aligned, is
not as trivial. Motion capture data is typically recorded at a
sampling rate of 100–500 Hz, while the MIDI data stream
is event driven and only needs to be stored each time a
MIDI event takes place. Thus, using a common sampling
rate for MIDI data and motion capture data would mean
recording a lot of redundant data. The setup becomes even
more complex when the researcher wants to record data
from other sensors and audio/video as well.

b. The composer
A composer wants to develop a system for modifying sound
in real-time. Let us say that the composer has hired a violin
player who is wearing a position sensor and using a bow
equipped with an accelerometer. She wants to develop a
system that modifies the violin sound in real-time, based
on output from the position sensor and the bow accelerom-
eter data. Having the musician available at all times to
perform can be expensive, as the musician would typically
have to spend quite a lot of time waiting for the composer
to make adjustments in the mapping between motion and
sound. The composer would benefit from being able to
record both the sound and the sensor data, and to play them
back as a single synchronised performance.

Both of these examples show us that there is a need for
a flexible system that is able to record different types of
data from an arbitrary number of devices simultaneously.
Further complexity is added when multiple representations
of the same data is required. For instance, the researcher
could be interested in the coordinates of the hands of a pi-
ano player in relation to a global coordinate system, but

mailto:krisny@ifi.uio.no
mailto:a.r.jensenius@imv.uio.no
http://creativecommons.org/licenses/by/3.0/


also in relation to a coordinate frame defined by the po-
sition of the piano, or the center of mass in the pianist’s
body. The natural complexity of music introduces needs
for various simultaneous representations of the same data.

Existing formats for working with these types of data
have advantages and disadvantages, and there is no agree-
ment between researchers on how to share music-related
motion data. For motion capture data, the most widespread
format is C3D. 1 Unfortunately, C3D does not allow for
storing or synchronising music-related data and media. The
Gesture Motion Signal 2 format has been developed to han-
dle low level data in a musical context, but does not han-
dle higher level data. The latter is handled well with the
Performance Markup Language, 3 but this format does not
meet our requirements when it comes to audio and video
synchronisation.

An approach similar to or own has been implemented in
OpenMusic [5]. Bresson et al. have implemented a so-
lution for storing and streaming sound spatialisation data
in the Sound Description Interchange Format (SDIF). This
seems to be a promising solution, and we hope to keep col-
laborating on SDIF descriptors for spatio-temporal data.

2.2 GDIF

The Gesture Description Interchange Format (GDIF) has
been proposed for handling the diversity of data related to
music and motion [6]. The name GDIF might be some-
what misleading, as this is neither a format per se, nor is
it limited to only gesture-related data. Rather, it is a con-
cept and an idea for how data, and particularly data related
to musical movement, can be described and shared among
different researchers.

This concept includes a hierarchical structure, where the
raw data (i.e. the data that one receives directly from the
sensor or interface) is stored at the bottom layer. Above
this layer is a so-called cooked layer, where certain pro-
cessing has taken place. This can be anything from sim-
ple filtering or transformations, to more advanced analy-
sis. Other layers may include segmentations or chunks [7]
and even higher-level descriptors such as expressivity, af-
fect and mood.

So far, GDIF development has been concerned with con-
ceptual issues, and it has been up to the user to define how
to implement storage and streaming. Some guidelines have
been suggested, one of them being the approach imple-
mented in the system we are presenting in this paper. We
are using the Sound Description Interchange Format for
storing and the Open Sound Control protocol for streaming
GDIF data [4]. These formats will be presented in sections
2.3 and 2.4.

2.3 SDIF

The Sound Description Interchange Format (SDIF) was
proposed by researchers at IRCAM and CNMAT and has
been suggested as a format for storing GDIF data [4, 8].
This file format describes a sequence of time-tagged frames.

1 http://www.c3d.org/
2 http://acroe.imag.fr/gms/
3 http://www.n-ism.org/Projects/pml.php

Each frame consists of an identifier indicating what type of
frame it is, the frame size, the actual data and zero-padding
to make the frame size a multiple of eight bytes [9]. The
frames are further structured into streams. These streams
are series of frames, and all streams share a common time-
line. Inside each frame, the actual data is stored as strings,
bytes, integers or floating point values in one or more 2D
matrices.

2.4 Open Sound Control

Open Sound Control (OSC) is a protocol for real-time au-
dio control messages [10]. Conceptually, OSC shares many
similarities with the SDIF format, as it describes a way of
streaming time-tagged bundles of data. Each bundle con-
tains one or more OSC messages, each message contain-
ing an OSC address and the actual data in a list format.
The OSC address contains a hierarchical structure of hu-
man readable words, separated by slashes, making it sim-
ple to work with and share data between researchers and
musicians (e.g. /mySynth/pitch 120).

3. DATA TYPES

We are working with many different sorts of data. Part
of GDIF development is to define data types that are as
generic and at the same time as well defined as possible.
In other words, data types in GDIF recordings must be de-
fined in such a way that they are open enough for different
use, and at the same time detailed enough to leave little
or no doubt about what sort of data that is contained in a
GDIF stream.

Frames and matrices in SDIF streams are identified by a
four letter type tag. This introduces some challenges when
it comes to describing data. By convention, the first let-
ter should be X for non-standard SDIF streams, leaving us
with three letters to define the frame type and matrix type
we are working with. Although it makes sense to distin-
guish between the two, our current implementation makes
no distinction between the frame type and the matrix type.
This means that the current system only allows a single
data matrix inside each frame, and the frame automatically
adapts the type tag from the matrix it contains. This has
been sufficient in our use so far, but it would make more
sense to let the frame type identify the stream (e.g. accord-
ing to input device) and the matrix types define the data
within each matrix (e.g. position, orientation, etc.).

For our matrix type tags, we have chosen to let the second
letter determine the main data category, e.g. “P” for posi-
tion data. The third letter denotes the dimensionality of the
data, e.g. “2” if we are only tracking horizontal position.
The fourth letter lets us know if the stream contains delta
values of the original data. This number denotes derivative
level, for instance “1” if the stream is the first derivative of
the original data. This means that an XP32 matrix would
contain 3-dimensional data, of the second derivative from
the original position stream (i.e. acceleration).

We are sometimes interested in the absolute value of a
vector, i.e. the length of the vector independent of the di-
rection. This type of matrix is denoted by replacing the

http://www.c3d.org/
http://acroe.imag.fr/gms/
http://www.n-ism.org/Projects/pml.php


third letter in the type tag with an “A”. To formalise, this
gives us the general case:

XPjd[n] = XPj(d− 1)[n]−XPj(d− 1)[n− 1]

XPAd[n] =

√√√√ j∑
i=1

XPjd[n][i]2

and as an example, the specific case:

XP31[n] = XP30[n]−XP30[n− 1]

XPA1[n] =

√√√√ 3∑
i=1

XP31[n][i]2

where d denotes the derivative level, n denotes the frame
index in a sequence of frames, i denotes the dimension in-
dex at frame n, and j denotes dimensionality of the stream.

In addition to streams describing position, velocity, etc.,
GDIF data types include everything from raw data from
sensors to higher level descriptors. Table 1 displays a se-
lection of the GDIF data types we are currently working
with. A more complete list of data types can be found at
the wiki that has been set up for GDIF and SpatDIF devel-
opment. 4 It should be noted that these are our suggestions,
and we welcome a discussion on these data types.

Table 1. A selection of GDIF data types.

Tag Description
XIDX Referring to a certain event in a series of events,

e.g. triggering a sound sample from a sample bank.
XP30 3-dimensional position stream.
XP31 3-dimensional position stream. 1st derivative.

(i.e. velocity calculated from position data)
XPA1 x-dimensional position stream.

Absolute value of 1st derivative.
XOQ0 Orientation stream, four quaternion values.
XA30 3D acceleration stream. Used when working with

systems that provide acceleration data as raw data.
1MID MIDI stream, already defined in the SDIF standard
XEMG Electromyography sensor input.
XMQ0 Quantity of motion stream.
XMA1 Area of motion stream. First derivative.

The system accepts all measurement units. However, we
recommend using the International System of Units (SI)
whenever this is possible. This will make it easier for re-
searchers to share GDIF recordings.

4. IMPLEMENTATION

The tools presented in this paper are based on the SDIF
tools in the FTM library, 5 mainly ftm.sdif.write for
recording and ftm.track for playback [11]. They are
implemented in Max as modules in the Jamoma 6 frame-
work. These frameworks provide solutions for OSC and
SDIF. The two main modules in the toolbox are the record-
ing module and the playback module.

4 http://xdif.wiki.ifi.uio.no/Data_types
5 http://ftm.ircam.fr
6 http://www.jamoma.org

The recording module, based on ftm.sdif.write, is
designed for writing matrix-formatted data into separate
streams in an SDIF file (Figure 1).

Figure 1. The record module

Different streams are separated by different OSC names-
paces (e.g. \stream\0, \stream\1). The internal com-
ponents of the recording module are created dynamically
based on the user’s selection of streams from a drop-down
menu in the GUI. The user may customise the stream types
that are available in the drop-down menu by editing a sim-
ple text file. Using a script language that is specific to the
Max environment, stream definition commands and data
descriptions are generated dynamically and sent to the
ftm.sdif.write object whenever the user inputs a
command or selects streams. The internally used OSC-
routing objects as well as the ftm.sdif.write object
are also created dynamically whenever the user chooses a
different selection of data types. Figure 2 displays a simpli-
fied flowchart of how the record module works internally.

Wait for user input

Replace ftm.sdif.record and 
osc-routing objects in patch

Create type declarations 
messages

Send type declaration 
messages and file name 

to ftm.sdif.record

Send file name 
to ftm.sdif.record

Store stream type in 
memory

Store file name 
in memory

ftm.sdif.write handles 
time-tagging and storing 

of incoming data

New stream

File 
name

Record on

Read type-
declarations file

Populate stream 
selection menus

Figure 2. Simplified flowchart of the scripting system in
the record module

The playback module displayed in Figure 3 is based on
the ftm.track object. When an SDIF file is loaded into
the playback module, an ftm.track object is created for
each stream in the file. The data that is streamed from each
track object is converted from the FTM float matrix format
to Open Sound Control bundles using the OSC tools de-
veloped at CNMAT [10]. OSC does not support streaming
matrices, hence each matrix row is separated as an instance
number with its own OSC sub-address, e.g. first row gets
the address /XPOS/1, second row /XPOS/2, etc. The
user may set a custom buffer size for the OSC time tag to
compensate for network latency and jitter. This buffer is
set to a default value of 10 milliseconds.

The modules provide the user with a simple user inter-

http://xdif.wiki.ifi.uio.no/Data_types
http://ftm.ircam.fr
http://www.jamoma.org


Figure 3. The playback module streaming a 3D position
stream, an euler orientation stream and a quantity of mo-
tion stream

face. Rather than having to record data into separate un-
synchronised buffers, the user can now record data into a
single container without worrying about synchronisation.
The presented tools are open source, and can be down-
loaded by checking out the Jamoma repository from github, 7

or directly from the project website. 8 Since the data is
recorded as SDIF files, users may benefit from tools like
EasDIF 9 for analysis and post processing.

5. CONCLUSIONS AND FUTURE WORK

This paper has presented challenges we are facing when
studying music-related body motion, and our solution to
some of these problems in the form of a software toolbox.
This toolbox includes a flexible module for making syn-
chronized recordings of music-related data, and a module
for playing back the data in real-time. The implementation
makes the GDIF recording setup fast and easy, and makes
this type of technology available to less experienced Max
users.

Future development includes:
• Separating frame types as independent definitions.

This will allow describing the stream type accord-
ing to the device (e.g. a motion capture stream), and
each frame can contain different data matrices (e.g. a
position matrix and an orientation matrix).

• Human readable OSC namespace for data from the
playback module (currently using the SDIF type tag).

• Integration of the Jamoma dataspaceLib for conver-
sion between different data representations [12].

• Implementing simple data processing like automatic
filtering and calculating absolute values.

• Develop a sequencer-like visual display, allowing zoom-
ing, editing, etc.

• Database for storing large collections of GDIF data.

6. ACKNOWLEDGEMENTS

Thanks to the developers of Max, Jamoma, FTM and OSC
for providing a good frameworks for implementing these
tools. Thanks also to the reviewers for valuable feedback.

7 http://github.com/jamoma/Jamoma
8 http://www.fourms.uio.no/software/jamomagdif/
9 http://sourceforge.net/projects/sdif/

7. REFERENCES

[1] A. R. Jensenius, “GDIF development at McGill,”
McGill University, Montreal, Canada, COST ConGAS
– STSM report, 2007.

[2] K. Nymoen, “A setup for synchronizing GDIF data us-
ing SDIF-files and FTM for Max,” McGill University,
Montreal, Canada, COST SID – STSM report, 2008.

[3] A. R. Jensenius, “Motion capture studies of action-
sound couplings in sonic interaction,” KTH, Stock-
holm, Sweden, COST SID – STSM report, 2009.

[4] A. R. Jensenius, A. Camurri, N. Castagne, E. Maestre,
J. Malloch, D. McGilvray, D. Schwarz, and M. Wright,
“Panel: the need of formats for streaming and storing
music-related movement and gesture data,” in Proceed-
ings of the 2007 International Computer Music Confer-
ence, Copenhagen, 2007.

[5] J. Bresson, C. Agon, and M. Schumacher,
“Représentation des données de contrôle pour la
spatialisation dans openmusic,” in Actes de Journées
d’Informatique Musicale (JIM’10), 2010.

[6] A. R. Jensenius, T. Kvifte, and R. I. Godøy, “Towards
a gesture description interchange format,” in Proceed-
ings of the 2006 International Conference on New In-
terfaces for Musical Expression. Paris, France: Paris:
IRCAM – Centre Pompidou, 2006, pp. 176–179.

[7] R. I. Godøy, “Reflections on chunking in music,” in
Systematic and Comparative Musicology: Concepts,
Methods, Findings. Hamburger Jarbuch für Musikwis-
senschaft. P. Lang, 2008, vol. 24, pp. 117–132.

[8] M. Wright, A. Chaudhary, A. Freed, S. Khoury, and
D. L. Wessel, “Audio applications of the sound descrip-
tion interchange format standard,” in AES 107th Con-
vention, 1999.

[9] M. Wright, A. Chaudhary, A. Freed, D. Wessel,
X. Rodet, D. Virolle, R. Woehrmann, and X. Serra,
“New applications of the sound description inter-
change format,” in Proceedings of the 1998 Interna-
tional Computer Music Conference, Ann Arbor, 1998,
pp. 276–279.

[10] M. Wright, A. Freed, and A. Momeni, “OpenSound
Control: state of the art 2003,” in Proceedings of the
2003 conference on New Interfaces for Musical Ex-
pression, Montreal, Canada, 2003, pp. 153–160.

[11] N. Schnell, R. Borghesi, D. Schwarz, F. Bevilacqua,
and R. Müller, “FTM – complex data structures for
Max,” in Proceedings of the 2005 International Com-
puter Music Conference, Barcelona, 2005, pp. 9–12.

[12] T. Place, T. Lossius, A. R. Jensenius, N. Peters, and
P. Baltazar, “Addressing classes by differentiating val-
ues and properties in OSC,” in Proceeding of the 8th
International Conference on New Instruments for Mu-
sical Expression, 2008.

http://github.com/jamoma/Jamoma
http://www.fourms.uio.no/software/jamomagdif/
http://sourceforge.net/projects/sdif/

	 1. Introduction
	 2. Background and motivation
	2.1 Use cases
	2.2 GDIF
	2.3 SDIF
	2.4 Open Sound Control

	 3. Data types
	 4. Implementation
	 5. Conclusions and Future Work
	 6. Acknowledgements
	 7. References

