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ABSTRACT

We consider the task of inferring associations between two
differently-distributed and unlabelled sets of timbre data.
This arises in applications such as concatenative synthesis/
audio mosaicing in which one audio recording is used to
control sound synthesis through concatenating fragments
of an unrelated source recording. Timbre is a multidimen-
sional attribute with interactions between dimensions, so it
is non-trivial to design a search process which makes best
use of the timbral variety available in the source record-
ing. We must be able to map from control signals whose
timbre features have different distributions from the source
material, yet labelling large collections of timbral sounds
is often impractical, so we seek an unsupervised technique
which can infer relationships between distributions. We
present a regression tree technique which learns associa-
tions between two unlabelled multidimensional distribu-
tions, and apply the technique to a simple timbral concate-
native synthesis system. We demonstrate numerically that
the mapping makes better use of the source material than a
nearest-neighbour search.

1. INTRODUCTION

This paper aims to improve musical expression by audio-
based control of timbre. There are various applications in
which the timbral analysis of a sound is used to control a
system whose output is sound of a different type, such as
concatenative synthesis [1][2][3], query-by-example [4] or
adaptive digital audio effects [5]. In such cases there are
two different timbral distributions to consider – that of the
controlling sound, and that of the audio output – and we
wish to be able to map from one to the other. Often the two
distributions are quite different, since for example we may
wish to map from vocal sounds on to timbres which cannot
be produced vocally, so the issue of mapping is non-trivial.

In this paper we argue that mapping through standard
techniques such as nearest-neighbour search may be in-
sufficient, and we present a new nonparametric technique
based on regression trees which accounts for the differ-
ences between timbral distributions. We then apply the
technique in a simplified timbral concatenative synthesis
system, and demonstrate numerically that the mapping
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makes better use of the source material than a nearest-
neighbour search.

1.1 Timbre trajectories: absolute or relative?

In order to map the timbre trajectory of a sound (its evolu-
tion over time) onto another, we will require some timbre
analysis of the signal. An issue that affects our choice of
search strategy is whether the timbral analysis should best
be treated as absolute context-independent data, or whether
it should be treated as relative – for example, relative to the
range of the sound source which produced it. Given a par-
ticular timbral “coordinate”, should we treat it differently
if we knew that it was produced by a clarinet or by a vi-
olin? Would such information imply a difference in the
expressive purpose of the sound?

The common definition of timbre describes it as that
attribute which enables a listener to differentiate sounds
which are equal in pitch and loudness [6]. It therefore
does not demand that timbre be an absolute or context-
invariant attribute of a sound. Research into music tim-
bre perception has taken a similar stance, basing experi-
ments on comparisons among sets of sound examples [7,
8, 9, 10]. Such studies often explain results in part through
acoustic features derived from the examples, which can
imply a context-independent notion of timbre inherent in
the signal. However Grey [11] finds evidence for context-
dependence of timbre perception in musical patterns. Laka-
tos [12] offers some consideration of contextual effects by
investigating sets of harmonic and percussive sounds both
separately and combined. He presents evidence supporting
the existence of two broadly context-independent timbre
dimensions but also for some degree of contextual influ-
ence on timbre judgements.

Musical applications of timbre analysis often use acous-
tic features taken from the signal (e.g. [13][14, Chapter
16]), implicitly treating timbre as absolute. This will cer-
tainly be appropriate in situations where the timbre data
contains strong semantic “anchors” – a clear example of
this occurs in human speech, where vowels are largely char-
acterised by the absolute positions of the main resonances
(formants) on the frequency scale [15]. However, the ev-
idence of context-dependence in musical timbre suggests
this may not always be the case. Consider a system which
synthesises sound based on timbral examples produced by
voice (e.g. [14, Part III]): the human voice is naturally con-
strained to its own timbre range, yet we may well wish to
induce the system to produce sounds outside this range. In
fact we consider this to be a basic requirement, since such
ability to extend our timbral range is one of the main ap-
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peals of such technologies.

1.2 Timbre lookup strategies

The most basic form of timbral search is perhaps a nearest-
neighbour (NN) search [16], often using Euclidean dis-
tance. Since timbre features in general have quite different
ranges, their ranges may be standardised before search, or
a scale-invariant metric such as Mahalanobis distance may
be used [17]. For example, Schwarz [14, Chapter 16] uses
the Euclidean distance normalised over the entire database
of sounds. This normalisation accounts for differences be-
tween the ranges of the features, but not for differences
between the timbral range of the different sound sources
included in the database. Note that timbral distance search
is but one criterion used in a concatenative synthesiser such
as this, which uses a constraint-satisfaction framework to
combine criteria related to duration, pitch and other con-
siderations.

Large database search systems often do not store the
raw timbral co-ordinates needed for NN search, but para-
metrically model the timbre of a recording (e.g. using
Gaussian Mixture Models) and store the model parame-
ters [13]. Timbral search can then be performed by finding
the parameter-set which maximises the likelihood of query
data.

Whether search is performed by instance-based meth-
ods such as NN or model-based methods such as Gaussian
Mixture Model likelihood, the difference in timbral ranges
of different sound sources is often neglected, perhaps re-
flecting an approach to timbre as absolute rather than rela-
tive. One approach to account for this could be to standard-
ise the mean and variance of timbre features for each type
of sound source, or for each recorded audio excerpt, which
would accommodate the large-scale differences. However
it would fail to account properly for multidimensional in-
teractions in the data such as the movement of one region
relative to the rest of the distribution.

Rather than pursuing the idea of a normalisation scheme
as a precursor to search, in this paper we develop an in-
tegrated method which automatically learns to map from
one data distribution to another, assuming similarities in
the orientation of the datasets in timbre space but allow-
ing for differences in the distributions at large and small
scales. Tree methods are attractive in this context because
recursive partitioning provides a generic approach to divid-
ing multidimensional distributions into regions of interest
at multiple scales. We next describe the method, before
applying it in a concatenative synthesis experiment.

2. AUTO-ASSOCIATIVE REGRESSION TREES

A regression tree [18, Chapter 8] is a computationally ef-
ficient nonparametric way to analyse structure in a multi-
variate dataset, with a continuous-valued response variable
to be predicted by a set of independent variables. The core
concept is to recursively partition the dataset, at each step
splitting it into two subsets using a threshold on one of the
independent variables (i.e. a splitting hyperplane orthogo-
nal to one axis). The choice of split at each step is made

to minimise an “impurity” criterion for the value of the re-
sponse variable in the subsets, often based on the mean
squared error [18, Section 8.3]:

impurity(α) =
nα∑
i=1

(yi − ȳ)2 (1)

where nα is the number of data points in the subset α under
consideration, and ȳ the mean of the sampled values of the
response variable yi for the points in α.

The original formulation of regression trees was con-
cerned with predicting a single univariate response vari-
able. They were subsequently extended to multivariate re-
sponses, for example by [19] using a direct multivariate
extension of (1):

impurity(α) =
nα∑
i=1

p∑
j=1

(yij − ȳj)2 (2)

with definitions as in (1) except that the yi (and therefore
also ȳ) are now p-dimensional vector values, with j index-
ing over the dimensions.

This extension yields a framework that can learn to in-
fer relationships between one multivariate data distribution
(the independent variables) and another (the response) –
hence their potential application to the inference of map-
ping from one set of multivariate timbre data to another.
One limitation of this is that the regression is still a su-
pervised technique, meaning that the pairwise association
between items in the training datasets would need to be
provided. In applications such as ours, where we might
have a large database of short audio fragments from var-
ious sources, it will often be impractical to annotate the
data, so we seek an unsupervised method. We will develop
an existing unsupervised application of regression trees for
this task.

2.1 Auto-association and multivariate splits

Questier et al. [19] apply regression trees to the task of
discovering structure in unsupervised multivariate data, by
equating the response variables with the independent vari-
ables, to create an auto-associative multivariate regression
tree (AAMRT). In other words they apply a standard re-
gression tree with the multivariate-response extension, but
there is no separation between the variables used to split
the dataset and the variables whose impurity is to be min-
imised – the independent variables are made to “predict
themselves”. This is reminiscent of data-driven histogram-
ming [20]; in the work of Questier et al. it is used for
feature-selection by analysing which features are most com-
monly used for splitting.

There are in fact two types of multivariate extension to
the standard regression tree.We have already described the
multivariate-response extension; also the choice of split-
ting plane can be generalised so that it can take any orien-
tation in the feature space rather than being aligned with
one axis [21]. We refer to this as the multivariate-splits
extension. Gama [22] shows that this extension can reduce
bias in the resulting estimator. Further, it may make more



effective use of the available information if there is a lim-
ited number of datapoints: if there are N data points then
there can be no more than around log2N splits used to
reach a leaf in a balanced binary tree. This could well be
fewer than the number of dimensions, meaning the infor-
mation from some dimensions would be neglected. For the
remapping task discussed in the next section, then, we will
use a regression tree that is based on AAMRT but multi-
variate in both senses.

Note that the impurity measures (1) & (2) are equivalent
to the sum of variances in the subsets, up to a multiplication
factor which we can disregard for the purposes of minimi-
sation. By the law of total variance (see e.g. [23, Appendix
S]), minimising the total variance within the subsets is the
same as maximising the variance of the centroids; there-
fore the impurity criterion selects the split which gives the
largest difference of the centroids of the response variable
in the resulting subsets. If only univariate splits are allowed
then this can be optimised as given in [18, Chapter 8]. In
the multivariate-splits variant, maximising the variance of
the centroids is achieved simply by selecting the hyper-
plane perpendicular to the first principal component in the
(centred) data. This multivariate-splits variant of AAMRT
allows for efficient implementation since the leading prin-
cipal component in a dataset can be calculated efficiently
e.g. by expectation-maximisation [24].

3. CROSS-ASSOCIATION

We wish to generalise the AAMRT method to apply it to
two datasets defined on the same space. A simple approach
would be to combine the two datasets into one and then
apply AAMRT, but this would not allow the algorithm to
adapt separately to the two datasets, to account for differ-
ences in location.

Instead, we modify the algorithm so that at each step of
the recursion the data coming from the two distributions
are separately centred. One single principal component is
then calculated from their union. The recursion therefore
generates two “similar but different” trees, implementing
the notion that the two datasets have similarities in struc-
ture (the orientations of the splitting planes are the same)
but may have differences in location at various scales (the
centroids of large or small subsets of the data are allowed
to differ). This is illustrated schematically in Figure 1.

If the datasets are unequal sizes then the larger set will
tend to dominate over the smaller in calculating the prin-
cipal component. To eliminate this issue we weight the
calculation so as to give equal emphasis to each of the
datasets, equivalent to finding the principal component of
the union J of weighted datasets:

J =
⋃

(NY (X − CX), NX(Y − CY )) (3)

where X and Y represent the data (sub)sets, CX and CY
their centroids, and NX and NY the number of points they
contain.

The resulting cross-associative multivariate regression
tree (XAMRT) algorithm is summarised in Figure 2. Note
that we do not prune the tree [18, Chapter 3], since for the

Figure 1. Schematic representation of the first two steps
in the recursion. In the first step (top), the centroids of
each dataset are calculated separately, and then a splitting
plane with a common orientation is chosen. The second
step (bottom) is the same but performed separately on each
of the partitions produced in the first step.

timbral application presented here, all of the variation in
the training set is useful for resynthesis.

To perform a remapping using a XAMRT data struc-
ture, one takes a data point and descends the tree, at each
split centring it by subtracting CX or CY as appropriate
and then deciding which side of the splitting plane it falls.
When the leaf node is reached, it contains two sets of train-
ing data points (a subset each of X and Y ). To choose a
corresponding coordinate relating to the opposite distribu-
tion, one could for example use a random datum selected
from the opposite subset, or the centroid of that subset, de-
pending on the application. (If the sizes of the datasets are
similar then the leaf will often contain just one datum from
each of the two distributions.)

4. TIMBRE REMAPPING EXPERIMENT

Our algorithm can be applied to timbre remapping tasks,
i.e. ones in which the timbral trajectory of a sound source
is used to control that of some other system. Concatenative
synthesis is an example of such a task, in the case where
an input sound is used as the controller for the concate-
native synthesiser (also referred to as audio mosaicing).
Concatenative synthesis is not the only example of timbral
application of our algorithm – we are investigating appli-
cation of the technique in general synthesiser control – but
it presents a known system in which timbres from hetero-
geneous sources are used to control sound generation.

Numerical evaluation of timbre remapping quality is
difficult since the perceptual quality and musical merit of
the audio result have no obvious objective metric. How-



XAMRT(X,Y )
CX ← centroid of X
CY ← centroid of Y
J ← result of equation (3)
p← principal component of J
Xl ← X ∩ ((X − CX) · p > 0)
Xr ← X ∩ ((X − CX) · p ≤ 0)
Yl ← Y ∩ ((Y − CY ) · p > 0)
Yr ← Y ∩ ((Y − CY ) · p ≤ 0)
if Xl is singular or Yl is singular

then L = [Xl, Yl]
else L = XAMRT(Xl, Yl)

if Xr is singular or Yr is singular
then R = [Xr, Yr]
else R = XAMRT(Xr, Yr)

return [L, R]

Figure 2. The cross-associative algorithm. X and Y are
the two sets of vectors between which associations will be
inferred.

Description Duration (sec) No. of grains
Amen breakbeat 7 69
Beatboxing 93 882
Fireworks 16 163
Kitchen sounds 49 355
Thunder 8 65

Table 1. Audio excerpts used. “No. of grains” is the num-
ber of 100ms grains segmented and analysed from the au-
dio (excluding silent frames) – see text for details.

ever, concatenative synthesis offers the opportunity for nu-
merical evaluation by studying the statistics of usage of the
different grains, as will be described in Section 4.4.

We require an experiment which will probe the tim-
bral matching performance of our algorithm. Concatena-
tive synthesisers typically operate not only on timbre, but
use pitch and duration as well as temporal continuity con-
straints in their search strategy, and then modify the se-
lected grains further to improve the match [25]. While
recognising the importance of these aspects in a full con-
catenative synthesis system, we designed an experiment in
which the role of pitch, duration and temporal continuity
were minimised, by excluding such factors from grain con-
struction/analysis/resynthesis, and also by selecting audio
excerpts whose variation is primarily timbral.

We first describe the audio excerpts we used and how
timbre was analysed, before describing the concatenative
synthesiser and our performance metric.

4.1 Audio data

In order to focus on the timbral aspect, we selected a set of
audio excerpts in which the interesting variation is primar-
ily timbral and pitch is less relevant. The five excerpts –
two musical (percussive) and three non-musical – are listed

in Table 1 and are also available online. 1 The excerpts are
44.1 kHz mono recordings.

The excerpts are quite heterogeneous, not only in sound
source but also in duration (up to an order of magnitude).
They each contain various amounts/types of audio event,
which are not annotated. This wide variety of excerpts was
selected to give a clear impression of the success of the
remapping techniques at drawing timbral analogies.

4.2 Timbre features

We chose a set of 10 common acoustic timbre features:
spectral power, spectral power ratio in 5 log-spaced sub-
bands (50–400, 400–800, 800–1600, 1600–3200, and 3200–
6400 Hz), spectral centroid, spectral 95- and 25-percentiles
and zero-crossing rate (for definitions see [26]).

Analysis was performed on audio “grains”: units of
fixed 100ms duration taken from the audio excerpt every
100ms (i.e. with no overlap). Each grain was analysed by
segmenting into frames of 1024 samples (at 44.1 kHz sam-
pling rate) with 50% overlap, then measuring the feature
values for each frame and recording the mean value of each
feature for the grain. Grains with a very low spectral power
(< 0.002) were treated as silences and discarded. The tim-
bre features of the remaining grains were normalised to
zero mean and unit variance within each excerpt. Analysis
was performed in SuperCollider 3.3.1 [27].

4.3 Timbral concatenative synthesiser

We designed a simple concatenative synthesiser using only
timbral matching, either by a standard nearest-neighbour
(NN) search or by our algorithm. Given two excerpts –
one which is the source of grains to be played back, and
one which is the control excerpt determining the order of
playback – and the timbral metadata for the grains in the
two excerpts, the synthesis procedure works as follows:

For each grain in the control excerpt, if the grain is silent
(power < 0.002) then we replace it with silence. Other-
wise we replace it with a grain selected from the other ex-
cerpt by performing a lookup of the timbre features – either
a NN search or the XAMRT tree regression. For numeri-
cal evaluation, the choice of grain is recorded. For audio
resynthesis, the new set of grains is output with a 50ms
linear crossfade between grains.

The NN search uses the standard Euclidean distance,
facilitated using a k-d tree data structure [28]. Note that
the timbre features are normalised for each excerpt, mean-
ing the NN search is in a normalised space rather than the
space of the raw feature values.

In both the NN and XAMRT lookup there is an issue
of tie-breaking. More than one source grain could be re-
trieved – at the minimum distance from the query (for NN)
or in the leaf node retrieved from the query (for XAMRT)
– yet we must choose only one. This is not highly likely
for NN search (depending on the numerical precision of
the implementation) but will occur in XAMRT when map-
ping from a small to a large dataset, since the tree can grow
only to the size allowed by the smaller dataset. Additional

1 http://archive.org/details/xamrtconcat2010
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criteria (e.g. continuity) could be used to break the tie, but
for this experiment we keep the design simple and avoid
confounding factors by always choosing the grain from the
earliest part of the recording in such a case.

4.4 Evaluation method

The ultimate evaluation of musical synthesis techniques is
through listening tests; however we defer this to later work,
when we plan to incorporate the technique into more com-
plete synthesis systems. For development and comparison
purposes it is particularly helpful to have objective mea-
sures of success. It is natural to expect that a good concate-
native synthesiser will make wide use of the “alphabet” of
available sound grains, so as to generate a rich as possi-
ble output from the limited alphabet. Here we develop this
notion into an information-theoretic evaluation measure.

Communication through finite discrete alphabets has
been well studied in information theory [29]. A key
information-theoretic quantity is the (Shannon) entropy,
defined for a discrete random variable X taking values
from an alphabet A as

H(X) = −
|A|∑
i=1

pi log pi (4)

where pi is the probability that X = Ai and |A| is the
number of elements inA. The entropy H(X) is a measure
of the information content of X , and has the range

0 ≤ H(X) ≤ log |A| (5)

with the maximum achieved iffX is uniformly distributed.
If the alphabet size is known then we can define a nor-

malised version of the entropy called the efficiency

Efficiency(X) =
H(X)
log |A|

(6)

which indicates the information content relative to some
optimised alphabet giving a uniform distribution. This can
be used for example when X is a quantisation of a contin-
uous variable, indicating the appropriateness of the quanti-
sation scheme to the data distribution.

We can apply such an analysis to our concatenative syn-
thesis, since it fits straightforwardly into this framework:
timbral expression is measured using a set of continuous
acoustic features, and then “quantised” by selecting one
grain from an alphabet to be output. It does not deductively
follow that a scheme which produces a higher entropy pro-
duces the most pleasing audio results. However, a scheme
which produces a low entropy will tend to be one which
has an uneven probability distribution over the grains, and
therefore is likely to sound relatively impoverished – for
example, some grains will tend to be repeated more often
than in a high-entropy scheme. Therefore the efficiency
measure is useful in combination with the resynthesised
audio results for evaluating the grain selection scheme.

Query type Efficiency (%)
Nearest neighbour 70.8 ± 4.4
XAMRT 84.5 ± 4.8

Table 2. Experimental values for the information-theoretic
efficiency of the lookup methods. Means and 95% confi-
dence intervals are given. The improvement is significant
at the p < 0.000001 level (paired t-test, two-tailed, 19 de-
grees of freedom, t = 12.47).

4.5 Results

We applied the concatenative synthesis of Section 4.3 to
each of the 20 pairwise combinations of the 5 audio ex-
cerpts (excluding self-to-self combinations, which are al-
ways 100% efficient) using each of the two lookup meth-
ods (NN and XAMRT). We then measured the information-
theoretic efficiency (6) of each run. Table 2 summarises the
efficiencies for each lookup method. Our method is seen
to be significantly better than the NN search, improving
efficiency by over 13 percentage points.

Audio examples of the output are available online. 1

Note that the reconstructed audio examples sound rather
unnatural because the experiment is not conducted in a full
concatenative synthesis framework. In particular we use
a uniform grain duration of 100ms and impose no tempo-
ral constraints, whereas a full concatenative synthesis sys-
tem typically segments sounds using detected onsets and
includes temporal constraints for continuity, and therefore
is able to synthesise much more natural attack/sustain dy-
namics [25].

Such factors mean our audio outputs are tricky to judge
by listening, and it is not quite clear how far the advan-
tage in efficient use of grains translates into an improved
perceptual richness of the output – i.e. into improvements
in the timbral analogies made. Nevertheless, our method
shows promise as the timbral component of a multi-attribute
search which could potentially be used in concatenative
synthesis, as well as other applications requiring timbral
search from audio examples (e.g. query-by-example [4]).

5. CONCLUSIONS AND FURTHER WORK

We have developed a nonparametric technique able to learn
associations from one unlabelled data distribution to an-
other defined on the same space, assuming similarity in
structure of the data distributions but accounting for dif-
ferences in location and shape. This provides a robust and
efficient way to map timbre trajectories from one sound
source onto timbre trajectories to be performed with a dif-
ferent sound source, making good use of the timbral vari-
ation available in the latter. In experiments with a simpli-
fied concatenative synthesiser, we have demonstrated that
it makes significantly better use of the source material than
a nearest-neighbour search.

Future work would integrate this approach into a full
concatenative synthesis framework, and supplement the ob-
jective tests with listening tests. We also intend to apply
the technique to other types of synthesis to control them
by audio input.
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