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ABSTRACT

Voiced vowel production in human speech depends both on
oscillation of the vocal folds and on the vocal tract shape, the
latter contributing to the appearance of formants in the spec-
trum of the speech signal. Many speech synthesis models
use a feed-forward source-filter model, where the magnitude
frequency response of the vocal tract is approximated with
sufficient accuracy by the spectral envelope of the speech
signal. In this research, a method is presented for real-time
estimation of the vocal tract area function from the recorded
voice by matching spectral formants to those in the output
spectra of a piecewise cylindrical waveguide model hav-
ing various configurations of cross-sectional area. When a
match is found, the formants are placed into streams so their
movement may be tracked over time and unintended action
such as dropped formants or the wavering of an untrained
voice may be accounted for. A parameter is made avail-
able to adjust the algorithm’s sensitivity to change in the
produced sound: sensitivity can be reduced for novice users
and later increased for estimation of more subtle nuances.

1 INTRODUCTION

Estimation of the vocal tract area function from an incoming
voice signal is a task that has numerous proposed solutions,
as several applications would greatly benefit from accurate
depictions of the vocal tract shape during speech. For ex-
ample, studies have found that displaying the vocal tract to
the hearing impaired can improve their overall speech per-
formance [11, 15] as well as being an effective instructional
tool for singers [14]. Recent studies have aimed to iden-
tify useful features from the voice signal for musical control
[7, 6]. Some have identified the vocal tract shape as a poten-
tial feature for musical control and have used vision-based
methods for its estimation [5, 10]. Here, we propose using
the vocal tract shape as input data for control, though leav-
ing the actual application and mapping strategy to the user,
and present a method for extracting this shape directly from
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recorded voice by calibrating to the output of a waveguide
model.

Human speech depends both on the oscillation of the vo-
cal folds in the glottis and on the shape of the vocal tract.
Producing a particular vowel sound requires changing the
effective cross-sectional area function of the vocal tractthat
contributes to the appearance of formant peaks in the fre-
quency spectrum of the speech signal. While several algo-
rithms have been proposed to identify the vocal tract area
function from recorded speech, the most common involve
either computing reflection coefficients from linear predic-
tive coding (LPC) or autoregressive (AR) models using, for
example, Yule-Walker or Levinson-Durbin methods [2, 18],
or by directly tracking formant peaks in the spectral enve-
lope of recorded speech [9, 3]. Both approaches assume a
simplified feed-forward source-filter model of the voice, and
produce best results on vowel sounds, as the articulation of
consonants is more complicated than purely changing the
vocal tract shape.

For many applications, the feed-forward filter model is
considered to be sufficiently accurate as there is weak cou-
pling between the massy vocal folds and the vocal tract. It
should be mentioned however, that a stronger influence of
the vibrating source is observed on the spectral envelope—
and thus the formant peaks—for feed-back models that more
strongly couple the glottal excitation and vocal tract [17].
Likely due to this and other simplifications in the filter model,
such as inaccurate estimates of unknown propagation losses
and termination reflection/transmission functions, the detec-
tion of vocal tract shape from reflection coefficients has pro-
duced inconsistent and inaccurate results, both in this work
and in that of other authors [9, 12, 19]. Furthermore, accu-
racy deteriorates rapidly with an increase in sampling rate,
making its use limited for the singing voice which typically
requires a greater bandwidth than its spoken counterpart.

Formant-based analysis-by-synthesis methods may pro-
duce better results as they overcome filter inaccuracies by
only requiring a most likely fit to a synthesis model’s out-
put. Depending on the method used, calibrating a recorded
signal to the output of a very detailed and accurate model
could introduce potentially restrictive computational cost,
thus making it inappropriate for real-time use. In this par-
ticular case, there is also the possibility of estimating one
of several vocal tract shapes that produce indistinguishable



spectra. Care must therefore be taken to constrain possible
shapes so they are physiologically reasonable.

In this work, we present an efficient and accurate formant-
based vocal tract area function estimation algorithm, specif-
ically designed for real-time musical control. As described
in Section 3, the algorithm identifies formants on a sample
frame basis, and places them into streams, enabling their
movement to be tracked over time.

In Section 4, minimum action is applied to improve us-
ability, algorithm performance, and the visual feedback to
the user, by smoothing formant streams to account for un-
intended action such as dropped formants or the wavering
of an untrained voice (see Section 4). It considers that some
users will have greater control of their voice than others, and
provides a parameter for adjusting the algorithm’s sensitiv-
ity to a change in the produced sound.

Section 5 describes how estimated formants are com-
pared and matched to a database of formants collected of-
fline from the output of the vocal tract model (described in
Section 2) having various configurations of cross-sectional
area.

2 A SIMPLIFIED VOCAL TRACT MODEL

It is well known that digital waveguide modeling may be
used to simulate plane and spherical waves propagating in
cylindrical and conical acoustic tubes [16]. More complex
shapes, such as those produced by the vocal tract when us-
ing the velum, jaw, tongue and lips to voice different vowel
sounds, can be approximated using a sequence of cylindri-
cal waveguide elements separated by scattering junctions
accounting for the reflection and transmission that occurs
when a change in cross-sectional area creates a correspond-
ing change of impedance.
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Figure 1. A waveguide model of an acoustic tube closed
at one end with reflectionR0(ω) and open at the other with
reflectionRL(ω). The tube has a single change in cross-
sectional area at the center, creating a two-port scattering
junction with reflection and transmission defined byk, a co-
efficient set according to the relative areas of the two sec-
tions.

The way in which a shape departing from the purely cylin-
drical contributes to formant peaks in the magnitude spec-
trum may be seen by considering a simple model with only
two cylindrical waveguide segments of the same length but
with different cross-sectional areas,A1 andA2 respectively

(see Figure 1). The two-port scattering junction models
the reflection and transmission that occurs at the change in
cross-sectional area, where the reflection coefficient is given
by

k = (A1 − A2)/(A1 + A2). (1)

The response atY (z) (corresponding to the mouth) to input
X(z) (corresponding to the glottis) is given by

Y (z) = X(z)(1 + k)z−2[1 + b + b2 + . . .] +

Y (z)RL(z)R0(z)(1 − k2)z−4[1 + b + . . .] +

Y (z)RL(−k)z−2, (2)

where
b = R0(z)kz−2. (3)

Equation (2) is the sum of three terms corresponding to the
possible signal flow paths toY (z), with the first two terms
including the infinite series generated by the circulating path
in the first waveguide segment. Using the closed form resp-
resentation and substituting (3) into (2) yields all-pole filter
transfer function

H(z) = Y (z)/X(z)

=
(1 + k)z−2

1 + k(RL(z) − R0(z))z−2 − RL(z)R0(z)z−4
.

(4)

Setting end reflection functions

R0(z) = 1, and RL(z) = −1

makes the system lossless with transfer function

Ĥ(z) =
(1 + k)z−2

1 − 2kz−2 + z−4
, (5)

preserves the harmonic structure of an open end tube, and
allows for observation of the effects of the junction.

Factoring the denominator in (5) yields the intermediate
complex conjugate pair,

ρ = k + j
√

1 − k2 ρ∗ = k − j
√

1 − k2, (6)

and ultimately the four roots/poles of the filter given by

p1 =
√

ρ, p2 = −√
ρ, p3 = p∗

1
, p4 = p∗

2
. (7)

Figure 2 shows how the poles shift as a function ofk and
thus in response to a change in cross-sectional area. Shift-
ing poles corresponds to a shift of harmonic peaks in the
magnitude which, when more sections with varying cross-
section are considered, leads to regions in the spectrum with
increased and decreased energy, and the appearance of for-
mant peaks during vowel production.

Increasing the number of segments increases the num-
ber of poles in the vocal tract transfer function. As shown
in (6) and (7), filter poles are a function of the reflection



−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y 
P

ar
t

k = 0 (uniform tube)

k = 0.8, A
n
 = [0.1 1]

k = −0.8, A
n
 = [1 0.1]

k = 0.33, A
n
 = [0.5 1]

k = −0.33, A
n
 = [1 0.5]

Figure 2. The four poles of transfer function (5) plotted for
five values of reflection coefficientk. The uniform cylin-
drical tube has a reflection coefficient ofk = 0 and corre-
sponds to a uniform/harmonic spacing of poles (or peaks in
the magnitude spectrum). A change ink corresponds to a
change in the cross-sectional area to the tube and the ob-
served shifting of poles in the vocal tract transfer function.

coefficient, allowing a change in cross-sectional area to be
inferred directly from filter poles. The complexity involved
in this recursive problem however, is unnecessarily expen-
sive (though not prohibitively so) for real-time applications,
and yields far more data than is required to identify the vo-
cal tract shape with the accuracy desired here. Rather, it was
found that a vocal tract shape could be sufficiently charac-
terized using only up four formant peaks in the magnitude
of its frequency response.

3 TRACKING FORMANTS IN VOCAL OUTPUT

An incoming sample frame of recorded voice is windowed
and processed to extract its spectral envelope—a curve as-
sumed to approximate the magnitude of the vocal tract fre-
quency response—with formants peaks in the spectra being
identified by tracking curve local maxima.

Notice from the log spectrum in Figure 3 (upper curve)
that the position of weaker formants is sometimes obscured
by the presence of more pronounced formants having greater
amplitude and bandwidth. As shown by the broken-line
curve in Figure 3 (lower curve), the second derivative of
the log magnitude spectrum may be taken to produce more
prominent bends in the curve contour at peak locations, ef-
fectively reducing the formant bandwidth and accentuating
the position of “merged” formants [13]. Though is also pos-
sible to take the third derivative of the phase spectrum [8]
to yield further improvement in bandwidth attenuation and
peak accentuation, this method was found to be less success-
ful in tracking merged formants with significantly different
amplitudes, and thus produced less consistent results.

Once the most prominent formant peaks are detected,
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Figure 3. The log magnitude spectrum of an input sam-
ple frame (upper solid line) and its second derivative (lower
broken line), with the latter accentuating the position of
“merged” formants.

they are placed into formant streams that track the move-
ment of a formant number from frame to frame. These for-
mant streams are necessary to account for dropped formants
and improve usability and performance as discussed in Sec-
tion 4. Limiting the streams to a maximum of four was suffi-
cient to uniquely identify a corresponding vocal tract model.

Figure 4. Example of formant stream assignment: Analysis
of current frameFn yields two detected formant peaks at
154 Hz and 2492 Hz. The first peak at 154 Hz is closest to
the first formant of the previous frameFn−1 and is thus as-
signed to the first formant streamf1(n). Similarly, the peak
at 2492 Hz is assigned to the third formant streamf3(n).
To accommodate for the “dropped” formant in the second
stream, the last value assigned from the previous frame is
held over to the current frame.

To determine to which stream a formant peak should be
assigned, a distance measure is taken between the estimated
formant peak of a current frameFn and the stream-assigned
neighbouring formants of the previous frame,Fn−1, with



the formant being assigned to the stream of its neighbour
closest in frequency. If the difference between formant fre-
quencies exceeds a threshold, an additional formant stream
becomes active. Though it is possible to have up to four
streams, it is most common to use only three.

The process is illustrated by the example in Figure 4,
where only two peaks have been detected with three active
streams, flagging the possibility that a formant was unin-
tentionally “dropped”. Accounting for such absent formant
peaks, as described in Section 4, further improves usability
of the system.

4 MINIMUM ACTION FOR IMPROVED
USABILITY

There are the two situations in which a formant may unin-
tentionally temporarily disappear from one sample frame to
the next: 1) when the algorithm fails to detect it for a partic-
ular frame or more likely 2) an untrained voice is unable to
consistently sustain the quality of the produced sound. As
shown in Figure 5 (top), either instance generates a sharp
null in the formant tracking curve.

To accommodate for this, minimum action is assumed,
and such significant temporary drops in the curve are con-
sidered unlikely or unintentional (with minimum action sug-
gesting too much effort would be required to intentionally
produce such a drastic change). Consider again the exam-
ple shown in Figure 4, which shows only two peaks be-
ing detected in the presence of three active formant curves.
Since the detected peak is placed in the third stream, it is
the second formant that was dropped. In this case, the last
value in the second stream is held over to the current frame,
f2(n) = f2(n− 1). In this way, when/if the formant returns
in subsequent frame analysis, it will be placed in the cor-
rect stream and the sharp nulls in the curves will be avoided
(see top and middle of Figure 5). The repetition of formants
within a stream can occur up to four times before the stream
is deemed inactive.

Algorithm performance and visual feedback to the user is
further improved by applying a smoothing filter to the for-
mant tracking curves, effectively stabilizing the movement
of the formants and compensating for unintentional waver-
ing of the less-trained voice. An amplitude envelope fol-
lower given by,

f̂m(n) = (1 − ν)|fm(n)| + νf̂m(n − 1), (8)

is applied to the formant streamsfm(n), whereν determines
how quickly changes infm(n) are tracked. Ifν is close to
one, changes are tracked slowly, making the smoothed curve
f̂m(n) less sensitive to change. Ifν is close to zero,fm(n)

has an immediate influence on̂fm(n). A higherν, therefore
may be appropriate for untrained voices, but with practice,
the parameter value may be decreased to allow for better
detection of subtle nuances.
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Figure 5. Three active formant streams with the third stream
having sharp nulls due to temporarily dropped formants
(top). Nulls are avoided by holding values from the pre-
vious frame when a formant is flagged as being dropped
(middle). Further smoothing is applied to compensate for
unintentional wavering in the less-trained voice (bottom).

Regardless of ability, formants shift rapidly during an
onset of (or change in) the vocal/vowel sound, and thus
detected formants are added to streams only once the for-
mants have settled and the speech waveform is more sus-
tained. (This creates latency in the visual feedback to the
user equal to the onset duration). Extensive methods for de-
tecting attacks in sounds from musical instruments are not
necessary here, particularly since they are considered to be
less effective when applied to the voice [4]. Figure 6 shows
the waveform recorded when a speaker produces the vowel
sounds /ee/ to /oo/ and back to /ee/. In spite of the speaker’s
attempt to keep the amplitude constant, the waveform enve-
lope clearly shows a change in energy at the locations of the
changing events. This result is expected when considering
that the waxing and waning in the frequency spectrum due
to shifting formants will have an equivalent effect on the sig-
nal’s energy in both time and frequency domains (Parseval’s
theorem).

The onset of an event is therefore identified solely by
tracking steep slopes in the amplitude envelope of the speech
signal. At an event onset, the formant peaks are still de-
tected, but with their rate of change being recorded from
frame to frame. Once this value is sufficiently reduced and
the position of the speaker/singer’s formants settle, the onset
region is considered to have passed and the algorithm may
resume with the process of formant stream assignment and
vocal tract shape estimation.

5 ESTIMATION OF THE VOCAL TRACT SHAPE

With the estimated formant streams in place, the final step is
to search the database produced by the output of the model
configured to various shapes, and find the most likely can-
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Figure 6. Amplitude envelope produced when voicing vow-
els /ee/ then /oo/ then back to /ee/ while attempting to keep
the amplitude (loudness) constant. The amplitude envelope
clearly shows the locations of these event changes.

didate.
A piecewise cylindrical waveguide model, similar to that

shown in Figure 1, was developed havingNs sections, each
with NA possible cross-sectional area values, yieldingNNs

A

possible combinations. Considering all possible combina-
tions yields duplicate shapes however, fewer corresponding
vocal tract area functions are produced by considering only
the change in cross section. Here,Ns = 7 andNA = 5
seemed to produce the best results when considering perfor-
mance, usability and accuracy, and the intended application
of real-time musical control.

A table maps the model’s vocal tract area function to the
formant frequencies in its output spectra. The table is sorted
by grouping the shapes based on the number of detected for-
mants. The formants detected from the incoming speech
signal (as described in Section 3) are compared to the en-
tire portion of the database having the same number of for-
mants. The Euclidean distanced(fU, fM) is used to mea-
sure which set of formants generated by the modelfMm

best match those generated by the userfUm:

d(fU, fM) =

√

√

√

√

M
∑

m=1

(fUm − fMm)2, (9)

whereM is the number of detected formants. The estimated
vocal tract shape displayed to the user remains static until
another event onset is detected. Once a new shape is identi-
fied, linear interpolation is performed over the next frame to
smooth the transition, and thus the visual display, between
the two shapes.

6 RESULTS AND CONCLUSIONS

Figures 7 and 8 provide vocal tract estimation examples of
sung vowels /au/ and /ee/. The lower plots of the two fig-
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Figure 7. Estimation of vocal tract shape for vowel sound
/au/.
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Figure 8. Estimation of vocal tract shape for vowel sound
/ee/.

Figure 9. Pure Data object displaying /au/ example



ures compare the spectral envelope of the voice signal to
the spectral envelope generated by the vocal tract model of
the estimated shape. The differences between the spectral
envelope of the voice and the model can be attributed to
simplifications of the source-filter model, the wave propaga-
tion losses and unknown termination reflection/transmission
functions (as discussed in Section 1). Also a factor is the
limited resolution of the vocal tract model look-up table.
Though increasing the resolution would produce more spec-
tral envelopes for comparison, it would increase the number
of permutations and possibly adversely affect real-time per-
formance without necessarily improving estimate accuracy.

With this method, we provide a vocal tract area function
estimation algorithm that offers a suitable level of sensitiv-
ity for users having varying abilities. The use of formant
streams enable a formant’s movement to be tracked over
time so that the vocal tract shape may be stabilized by ac-
counting for unintended action, thereby improving its use
for musical control.

Strategies for mapping the vocal tract area function data
to control other music applications are left to the user. The
authors are currently interfacing this work to the control of
parametric synthesis models and polyphonic virtual instru-
ments.

The algorithm is implemented in PureData (Pd) [1], a
real-time audio programming environment popular among
musicians. This facilitates control data acquisition, visual
and audio feedback display, as well as mappings to other
music and sound synthesis applications. The object will be
made available to the public upon request.
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