
STYLE EMULATION OF DRUM PATTERNS BY
MEANS OF EVOLUTIONARY METHODS AND STA-

TISTICAL ANALYSIS
Gilberto Bernardes Caros Guedes Bruce Pennycook

Faculdade de Engenharia da Uni-
versidade do Porto

bernardes7@gmail.com

INESC, Porto
carlosguedes@mac.com

University of Texas, Austin
bpennycook@mail.utexas.edu

ABSTRACT
In this paper we present an application using an evolu-
tionary algorithm for real-time generation of polyphonic
drum loops in a particular style. The population of
rhythms is derived from analysis of MIDI drum loops,
which profile each style for subsequent automatic genera-
tion of rhythmic patterns that evolve over time through
genetic algorithm operators and user input data.

1. INTRODUCTION
Application kin.genalgorthythm is a Pd patch that uses a
genetic algorithm (GA) and statistical analysis data gath-
ered from pre-existing MIDI drum loops in order to per-
form automatic variations on existing drumming styles.
This is done in real time and is mainly intended for real-
time performance driven by user-controlled data.

GAs are known for being a powerful technique for
problem solving by searching in a vast space of possibili-
ties, created from conventional genetic operators such as
crossover and mutation, by means of a fitness function,
which typically consists of an objective function that is
able to rank all chromosomes in order to find an optimal
solution. This method has been widely used as a creative
tool in music, particularly for the development of varia-
tion of music sequences [1,2,3]. However, as noted by
Biles [1], encoding a fitness function in a GA for real-
time operation in music is a major issue due to the com-
plexity of the aesthetic judgments related to this task.

Papadopoulos and Wiggins [5] present a categoriza-
tion of musically-oriented GA applications based on the
use of fitness functions. They establish a major difference
between the use of an objective fitness function and a
human one. In other words, they discuss the difference
between evaluations of chromosomes based on formally
stated computable functions, or in human judgment as a
means of replacing the fitness function.

The solution we adopt here does not use a fitness
function, and encodes several musical constraints directly
in the GA’s operators involved in the generation of new
populations. This is done to avoid non-musical search
spaces.

Our approach is inspired on Arne Eigenfeldt’s Ki-
netic Engine [2,4] and focuses on two points: (1) an
elaboration on the crossover technique proposed by Ei-
genfeldt; (2) the introduction of a metrical-supervision
procedure on the mutation operator. Our elaboration on

the crossover technique proposed by Eigenfeldt considers
different lengths of the parental chromosome. The metri-
cal supervision procedure operated on the mutation op-
erator mutates the events according to the meter of the
drum loop by using the metric indispensability principle
presented by Clarence Barlow [6].

The output of the algorithm thus results from the se-
lection of the best candidate from an evolving population
of metrically coherent rhythms produced by the GA. Sub-
sequently, the user can further control the musical output
by introducing two parameters – density and complexity
of events. These parameters can be introduced in real or
non-real time, but they do not affect the metrical coher-
ence or the style of the rhythmic sequence.

2. SYSTEM DESIGN
Below we present the design scheme for
kin.genalgorhythm. The two blocks at the left (Analysis
and Stored analysis) deal with previous analysis and stor-
age of MIDI drum loops. The data gather and stored from
these blocks will feed and initialize the main block (Gen-
eration of metrically supervised population) that uses a
genetic algorithm containing two operators – crossover
and mutation. This central block is responsible for the
creation of a finite number of metrically coherent popula-
tions. Finally, at the right we have two blocks (User input
and Performance), which deal directly with the performa-
tive aspects of the algorithm. These blocks have two
roles. The first (User input) is to find the optimal solution
from the generated offspring population, based on user
input data – complexity and density. The second (Per-
formance) appropriately distributes the rhythmic phrase
among several drum parts.

Figure 1. The design scheme for kin.genalgorithm. Copyright: © 2010 Gilberto Bernardes et al. This is an open-access

article distributed under the terms of the Creative Commons Attribution
License 3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source
are credited.

3. INITIALIZATION
We do previous non-real-time analyses of poly-

phonic MIDI drum loops in a particular style in order to
inform the algorithm about the specificities of that style.
The analysis block of the algorithm will output the prob-
ability distribution of event occurrences for each individ-
ual part within a measure. In other words, each resulting
vector corresponds to the normalized histogram of events
that occur in each subdivision of a pre-defined measure.
A general vector, which takes into account all instrumen-
tal parts is also defined in order to gather the metrical
accent distribution of the style under analysis. We use
two different collections of MIDI loops containing style
and tempo annotations available in the Free Pack from
Groove Monkey [7] and Apple’s Logic Pro [8]. In Figure
2 we can observe the normalized probability distribution
for the Mambo loops from the Groove Monkey Pack [7].

 Figure 2. Normalized probability distribution obtained
with the analysis of the Mambo loops from the Groove
Monkey Pack [7] of the 16 pulses comprising the 16th
note level of a 4/4 meter.

Prior to the analysis, all the loops labeled with
the same style (e.g. “70s Street Drums”) are quantized,
assembled together in a MIDI sequencer, and subse-
quently exported as a sole MIDI file. Our application uses
a feature that can store the analyses and provide an in-
stant access for future use.

The analysis block is dependent on three vari-
ables that have to be introduced by the user: (1) the
tempo of the loop, indicated in beats per minute (BPM);
(2) the length of the chromosome to be analyzed, which
corresponds to the number of subdivisions in each meas-
ure (for example in a 4/4 meter at the 16th level, we
would have 16 subdivisions); and (3) the amount of sub-
divisions each pulse contains (drawing on the previous
example, and assuming that we have 16 subdivision, we
would have to inform the algorithm that each pulse con-
tains 4 subdivisions, in order to define a 4/4 meter at the
16th note level).

4. EVOLUTIONARY METHODS
The evolution of the GA is mainly governed by two prin-
ciples: crossover and mutation. In this section we present
the transformations we operated in principles advanced
by Eigenfeldt [2,4] as well as a novel model to metrically
supervise the mutation operator.

4.1 Crossover
Crossover is a standard evolutionary technique in GA, in

which portions of two individuals (parents) are spliced
together at random split points and rejoined inter-
changeably in order produce a new variation (children).
When combining the two parental chromosomes the idea
behind this operation is that the resulting chromosomes
may be better than both of the parents if it takes the best
characteristics from each of the parents.

As Eigenfeldt points [2,4], crossover is not a
usual developmental technique in music due to the arbi-
trary method used to determine the splitting point. In or-
der to circumvent this problem, Eigenfeldt proposes the
use of a single parent chromosome in which a first-order
Markov chain is applied to perform the crossover. How-
ever, since most styles analyzed here do not present much
variation, we found a tendency to obtain almost the exact
same sequence in all offspring populations. Several ex-
periments showed us that if we increase the dimension of
the parental chromosome, the amount of novelty in-
creases as well. Therefore, an average length 60 beats
(around 30 seconds of a sequence at 120 BPM) revealed
much more proficient results.

 The resulting chain of events is based on a tran-
sition table, which gives the probability of moving from
one state to another. The pairs of successive rhythmic
cells are coupled using the object anal that computes the
transition matrix. Object prob is then used to generate the
events according to the transition matrix. Both objects
belong to the cyclone external library in Pd-extended [9].
In order to compute the transition matrix, we convert the
binary representation of each rhythmic cell of the off-
spring chromosomes sequences to decimal (see Figure 3).
When making the analysis, the user already defines the
length of each rhythmic cell. Our method ignores the du-
ration of each note, as this does not affect the outcome –
we are dealing with percussive instruments with a natural
decay. Special attention is paid to beginnings of offspring
phrases, which are restricted to the first rhythmic cell of
the analyzed material.

Figure 3. Example of an offspring in musical, binary, and
decimal representations.

4.2 Mutation
The purpose of mutation is to introduce and preserve di-
versity in the offspring population in order to access a
wider range of possible musical densities. A common
usage of this technique, involves altering a certain num-
ber of arbitrary bits in a genetic sequence depending on
the level of desired mutation.

The method we use is a variation of a stochastic
algorithm, usually known as roulette-wheel selection
(RWS). For each bin, a random number is generated and
compared against a segment division, deciding if the sub-
division in cause should be mutated or not.

In our approach, we bias the mutation operator
in order to produce a metrically coherent output. This is

1.00 0.00 0.86 0.0.57 0.86 0.57 0.86 0.57 0.86 0.00 0.86 0.71 0.86 0.57 0.86 0.57

done using a decision-making process that takes into ac-
count Barlow’s metrical indispensability principle [6].
The amount of mutation is assigned by default to the
level of desired density as input by the user. Low and
high densities are assigned to low and high mutation ra-
tios respectively. The metrical coherence of the off-
springs is preserved independently from the mutation
ratio.

4.2.1 Metrically-supervised Mutation

Barlow’s metric indispensability principle defines the
probabilistic weight each accent at metrical level on a
given meter should have in order for that meter to be per-
ceived – i.e. how indispensible is each accent at a certain
metrical level for a meter to be felt.

The accents’ weights are calculated by a formula
that takes into account the meter (e.g. 4/4) and the metri-
cal level (e.g. 16th note) for which one wants to calculate
the indispensabilities. The metrical level is defined by a
unique product of prime factors which equals the number
of pulses at that metrical level, and takes into account the
division (binary or ternary) at higher levels. For example,
the six pulses comprising the 8th-note level in a ¾ meter
would be defined as 3x2 (representing the three quarter
notes at the quarter-note level that subdivide into two 8th-
notes at the level below), whereas the six pulses compris-
ing the 8th-note level in 6/8 would be represented as 2x3
(two dotted quarters that subdivide into three 8th-notes).
Below we show the normalized distribution for the 16
pulses comprising the 16th note level in 4/4.

Figure 4. Probability distribution given by Clarence Bar-
low’s indispensability formula for the 16 pulses compris-
ing the 16th note level of 4/4, which is defined as
2x2x2x2.

Barlow’s metrical indispensability algorithm has
been effectively used to automatically generate rhythm at
a certain meter. In this application, we use these distribu-
tions as a metrical template that is applied to the mutation
operator of the GA, by supplying the threshold mutation
values for each of the measure subdivisions.

Aside from metrical indispensability, we imple-
mented two other different vectors that can be used in-
stead. One is the probability distribution vector of each
analyzed style, and the other is the mean of the product of
the last vector and the metric indispensability vector. Fur-
ther research should explore other possible metrical tem-
plates by using other vectors. Empirically, we observe
almost the same quality results with the current three pos-
sibilities.

5. PERFORMANCE

Initially, the user must define the style she or he wants to
perform; either by selecting one of the pre-stored analy-
ses or by analyzing a midi drums sequence. In order to
create variation at the macro structural level the user can
assign values for two parameters (density and complex-
ity), either in real- or non-real time.

5.1 Density and complexity parameters
Whenever a genetic operator (crossover or mutation) is
applied to create offspring populations, the values of den-
sity and complexity for each offspring are calculated.
 The density of each rhythmic phrase corre-
sponds to the rate of the attacks per measure. For exam-
ple, if we have the following string: [1, 0, 0, 0, 1, 0, 1, 1,
1, 0, 1, 0, 1, 1, 1, 1], the density is calculated by diving
the sum of all the string values (10), and the total number
of values of the string (16), which gives a density of
0.625.
 The complexity parameter specifies the degree
of syncopation by weighting the events occurring at the
weaker pulses of the metric structure. It is calculated in
three steps: 1- by multiplying each offspring vector by
the symmetric of the indispensability vector around 0.5
(i.e. by subtracting each value from 1.0); 2- by summing
all the values resulting from the operation; and 3- by di-
viding the sum by the number of elements in the vector.
This way, vectors containing more events on weaker
pulses of the metrical level (i.e. more syncopated) have
higher complexity values. Figure 5 describes the proce-
dure.

Figure 5. Steps for computing the complexity of each
vector.

For each offspring population the program computes a
table like the one shown below.

Table 1. Example of a density and complexity measure-
ments.

1.00 0.00 0.53 0.27 0.80 0.13 0.67 0.40 0.93 0.07 0.60 0.30 0.87 0.02 0.73 0.47

Sequence Density Complexity
10000010 10001000 10000010 10100110 0.3125 3.77419
10000010 10101110 10001010 10001010 0.40625 4.93548
10000000 10001000 10000000 10100010 0.21875 3

5.2 Selection for Performance
The user must provide values corresponding to the den-
sity and complexity of the phrase for performance, so that
the algorithm at runtime chooses offsprings that are
closely related to the values input by the user.
 The selection is done by finding the offspring
that presents the highest correlation between a vector
defined by the two values given by the user (density,
complexity), and the correspondent vectors for all gener-
ated population. The density and complexity values can
be assigned and stored previously in a table or altered in
real-time. In Figure 6 we can observe the two different
input approaches: the non-real time methods that can be
stored in a timeline (graph on the top right of the win-
dow), and the real-time method by directly adapting the
density and complexity sliders (below the timeline). The
algorithm reads a new value on the beginning of each
new sequence.

Figure 6. Main window in Pure Data presetting the inter-
face where the user can both store the complexity and
density values in a timeline (in the upper right) or alter
the values in real-time directly on the sliders (below the
timeline).

5.3 Performance
At runtime, the algorithm (1) will sequentially read the
selected offspring, and (2) will evaluate in all probabilis-
tic distribution tables (each corresponding to a different
part: i.e. snare drum, hi-hat) to select if that part will play
or not.

We felt the necessity to implement two rules that
constrain the output in order to avoid certain non-musical
situations. The first was to avoid the coincidence of simi-
lar instruments, and the second was to avoid the exces-
sive appearance of phrase beginning accents such as
crash-cymbal hits. In order to solve the first situation we
restricted similar instruments to play in the same subdivi-
sion of the beat, opting for the strongest/sharpest one –
e.g. if we have for the same beat a snare drum and a steel
snare drum, we will only play the second one. For the
second situation, we restricted the appearance of strong
accents (such as crash cymbals) to the first of each four
phrases.

A special attention should be paid to the tempo of
the generative patterns, which by default is assigned to
the tempo the user has introduced during the analysis.
Certain styles have a clear BPM range associated with it,
and this factor can determinant for the perception of a
certain style. For example if we consider styles such as
House music and Funk, the tempo difference is crucial to
denote the difference between them, since they have al-
most the same generative profile.

6. CONCLUSION
In this paper we present an application that generates
rhythmic patterns in a specific style by means of a genetic
algorithm and statistical analysis. Major differences from
similar software include the focus on the emulation of
different styles and special attention is given to the metri-
cal coherence of the output. The use of Barlow’s indis-
pensability algorithm [6] proved to be an efficient method
for assuring metrical coherence in the offspring genera-
tion by mutation.

The software, analyses and generated samples used
in the study are available at:
http://sites.google.com/site/kineticproject09/home.

7. ACKNOWLEDGMENTS
This joint research project is made possible thanks to the
support from the Portuguese Foundation for Science and
Technology (grant UTAustin/CD/0052/2008) and the UT
Austin | Portugal Program in Digital Media [10].

8. REFERENCES
[1] Biles, J. (1994). GenJam: A Genetic Algorithm for

Generating Jazz Solos. Proceedings of the
International Computer Music Conference

[2] Eigenfeldt, A. (2009). The Evolution of Evolution-
ary Software Intelligent Rhythm Generation in Ki-
netic Engine. Proceedings of EvoMusArt 09, the
European Conference on Evolutionary Computing,
Tübingen, Germany.

[3] Martins, J. and Miranda, E. (2007). Emergent
rhythmic phrases in an A-Life environment. Pro-
ceedings of ECAL workshop on Music and Artificial
Life, Lisbon, 2007.

[4] Eigenfeldt, A. (2006). Kinetic Engine: Toward an
Intelligent Improvising Instrument. Proceedings of
Sound And Music Computing, Marseille, France.

[5] Papadopoulos, G. and Wiggins, G. (1999). AI Meth-
ods for Algorithmic Composition: A Survey, a Criti-
cal View and Future Prospects,” Proceedings of the
AISB’99 Symposium on Musical Creativity, Edin-
burgh, UK.

[6] Barlow, C. (1987). Two essays on theory. Computer
Music Journal, 11, 44-60.

[7] http://www.groovemonkee.com/home/
[8] http://www.apple.com/logicstudio/
[9] http://puredata.info/
[10] http://www.utaustinportugal.org/

