
MUSICJSON: A REPRESENTATION FOR THE
COMPUTER MUSIC CLOUD

Jesus L. Alvaro Beatriz Barros

Computer Music Lab
fauno.org, Madrid, Spain

Dpto. Lenguajes y Ciencias de la Computación
UMA, Málaga, Spain

JesusLAlvaro@gmail.com bbarros@lcc.uma.es

ABSTRACT
New cloud computing ways open a new paradigm for
music composition. Our music composing system is now
distributed on the Web shaping what we call as Computer
Music Cloud (CMC). This approach benefits from the
technological advantages involved in distributed
computing and the possibility of implementing specialized
and independent music services which may in turn be
part of multiple CMCs. The music representation used in
a CMC plays a key role in successful integration. This
paper analyses the requirements for efficient music
representation for CMC composition: high music
representativity, database storage, and textual form.
Finally, it focuses on its textual shape, presenting
MusicJSON, a format for music information interchange
among the different services composing a CMC.
MusicJSON and database-shaped representation, both
based on an experienced sound and complete music
representation, offer an innovative proposal for music
cloud representation.

1 . INTRODUCTION
Cloud Computing, a new term defined in varied ways [7],
involves a new paradigm in which computer infrastructure
and software are provided as a service [5]. This services
themselves are referred to as Software as a Service (SaaS).
Google Apps is a clear example of SaaS [8]. Computation
infrastructure is also offered as a service (IaaS), thus
enabling the user to run the customer software.

This new paradigm offers new possibilities for the
design of composition systems. Fig. 1 shows the
Computer Music Cloud (CMC) approach where the
system is distributed across specialized online services
[2]. The user interface is now a web application running
in a standard browser (1). A storage service is used as
an edition memory (2). An intelligent-dedicated service
is allocated for music calculation and development (3).
Output formats such as MIDI, graphic score and sound file
are rendered by independent services exclusively devoted
to this task (4). The web application includes user sessions
to allow multiple users to use the system. Both public
and user libraries (5) are also provided for music objects.
Intermediary music elements can be stored in the library
and also serialized into a MusicJSON format file, as
described below.

Fig. 1. Basic Structure of a Composition Music
Cloud

This CMC approach has several advantages. Some of
them come from Cloud Computing, such as scalability,
optimization and reuse of available resources. Others
come from web applications, such as decentralized
information, being able to work from any computer with
a standard Internet connection and browser, and the
inherited code. Also, the division of the music system
into services allows for the design and implementation of
independent services with the most appropriate tools, It is
apart from the availability of a service for different CMC
systems. Since services can be shared, the design of new
music systems is facilitated by the joint work of different
services controlled by a web application.

The key factor in successful integration is the use of
a well-defined music representation for music data
interchange. This is also the objective of this paper:
presenting a proposal for the interchange of music
information among the services which shape a music
composition cloud. In the next section, the types of
services included in this cloud are analysed as a base
to define the requirements to be fulfilled by the selected
music representation, tackled in Section 3. Section 4
describes the MusicJSON format as a textual form of
the used representation, while Section 5 describes some
use examples. The paper ends with some conclusions and
some points referred to related work.

2 . MUSIC SERVICES IN THE CMC
In a simple form, Music Web Services are servers
receiving a request and performing a task. At the end
of a task the resulting objects are returned to the stream

Copyright: © 2010 Jesus L. Alvaro. This is an open-access article
distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

or stored in an interchange database. The access to this
database is a valuable feature for services since it is a
shared workspace where the componets of music
composition are represented. The Music Services of the
cloud can be classified according to their function. These
services are described in the following subsections.

2.1 Input
This group includes the services aimed particularly at
incorporating new music elements and translating them
from other input formats.

2.2 Agents
They are those services which are capable of inspecting
and modifying music composition, as well as introducing
new elements. They include human user interfaces, but
they may also consider other intelligent elements taking
part in music composition[4]: introducing decisions,
suggestions or modifications. In our prototype, we have
developed a web application [2] acting as a user interface
through the edition of music objects.

2.3 Storage
There are two main types of storage services: libraries and
composition environments. Libraries store music objects
which shall be used in different compositions. There are
general libraries and user libraries. Main lib stores shared
music elements as global definitions. This content
comprises music elements shared by all users as a shared
music language. User-related music objects are stored in
the User lib and include composer-defined music objects
which can be reused in several parts or compositions.

Composition environments are the storage services
where the piece is progressively composed. This database
contains the composition environment (i.e., everything
related to the piece currently under composition), and does
not only act as a space for information interchange, but
also as a real and shared music environment with which
several services can interact simultaneously and
coordinatedly.

2.4 Development
The services in this group perform development processes.
As explained in [1], development is the process by which
higher-abstraction symbolic elements are turned into
lower-abstraction ones. High-abstraction symbols are
implemented as meta-events and represent music objects
such as motives, segments, and other composing
abstractions [1]. Algorithmic composition developers and
other intelligent services, such as constraint solvers or
genetic algorithms, are examples of this type of music
development service .

2.5 Output
These services produce output formats as a response to
requests from other services. They render formats from
the element currently under edition for immediate
composer feedback as well as the whole score or audio.
The MIDI file for audio playing and standard notation in

a graphic format are two clear examples of this. Other
output formats are also possible by integrating a suitable
translation service.

3 . MUSIC REPRESENTATION FOR THE
CMC

To achieve an effective integration of all elements in the
cloud for music composition, all services must share the
same music representation. This representation must meet
three main requirements: satisfactorily represent the basic
elements of music composition in a solid hierarchy of
classes; present a representation form for storing music
objects in a database; and count on a textual form which
facilitates the interchange of music objects among the
different services. Besides, the cloud's distributed nature
must also be taken into account by incorporating the
possibility of distribution in the data. All these elements
are described in the following subsections.

Fig. 2. Abstract, Database and Textual Forms
of Music Representation

3.1 EVMusic Representation
The proposal is based on EVMusic representation [1]. It
is a robust model with high multi-level representativity,
multiple topologies and meticulous, detailed
representation of music pitch, as well as full compatibility
with traditional music notation. Likewise, its multi-level
nature and expandability allow for representing music
elements at varied abstraction levels.

EVMusic representation counts on a complete
hierarchical organization of classes designed in the
platform-independent UML [13], which allows for its use
in multiple programming languages. Figure 3 shows a
brief extract from the UML representation, showing only
some of the classes present in the music fragment in
Figure 6, which shall work as a reference for subsequent
examples. The present paper is not aimed at contributing
a detailed analysis of EVMusic classes. Nevertheless, we
shall contribute a brief description of some of the most
relevant aspects shown in this figure, particularly the
relations.

In a UML Class Diagram [12], the inheritance relation
among classes is represented with a hollow pointed arrow.
Thus, it can be observed in this figure that a scoreelement
is an event, which in turn is a treeobj just like singlepitch.
Inheritance relations can also be multiple, as it occurs with

the note class. Thus, it can be deduced that a note is either
a score element with a unique pitch ,or a pitch temporarily
placed on the score.

Containment relations are indicated by means of
rhombus-shaped arrows and the name of the relation.
Thus, it can be observed in the figure that an object of
the aggregate class includes an attribute known as pitches,
which is a container of singlepitch-like elements.
Therefore, a chord (an nchord-like object) which inherits
the aggregate properties is a scoreelement which contains
several singlepitches. Grace notes are also represented
with a content relation: they are a sequence of
singlepitches which ornament a scoreelement and are
stored in its slot known as graces. Finally, the structure of
similar objects is also indicated by the content relation. In
EVMusic, each event is by default a group of subevents,
as clearly reflected in the fractal-like structure of music
time. Thus, these subevents are stored in the slot events of
the main event. The tree structure is represented by means
of the treeobj class and its parent relation. It is extended
to all representation elements and shall be commented on
in the following section.

Fig. 3. UML Diagram with some classes of
EvMusic Representation

3.2 Database Stored Representation
Database storage allows several services to share the same
data and collaborate in the composition process. The
information stored in a database is organized in tables
of records. The database representation must achieve two
objectives: store music instances and store the relations
among these forms.

Figure 4 shows a simplified scheme with some
database fields. To represent the objects of a particular
class, the table of the database incorporates the field
objclass, which contains the name of the object class.
The attributes of each class are usually represented by

fields with the name of the attribute. In this figure, these
attributes are indicated in the rows of predefined attributes
(AttributeA, AttributeB,...) Importantly, appropriate
representations must enable the incorporation of new
elements, even those which have not been defined yet.
Some pairs of generic fields have been provided with
this purpose. These pairs of generic fields store both the
name of the attribute and its value. They are indicated in
the central rows of this figure as Expandable Attributes.
For instance, if we want to incorporate a new attribute
known as "zattrib", the register will contain "zattrib" in the
field attrib1name, and its value in the field attrib1value.
Thus, implementing a new storage system is not necessary
when a new class, with its new attributes, is defined.

Fig. 4. Record Structure of Data Base

The relations among the music objects are also
represented in the database. Among all of them, the
containment or belonging relation is likely to be the most
important one. As we have already mentioned, the music
objects of the abstract EVMusic representation are usually
tree-shaped related. To be stored in a database, these tree
structures must be previously converted into records. For
this purpose, the three main classes of EV representation
are subclassed from a tree node class treeobj, shown in
Fig. 3. Thus, every object is identified by a unique
reference and a parent attribute. This allows to represent
a large tree structure of nested events as a set of records for
individual retrieval or update. By default, the slot parent
always refers to the containment relation. However, other
relation can be used for this main tree. The field
parentrelationship (abbreviated as rel) was incorporated
with this aim. For instance, the last row in Table 1, shows
how the grace note indicates the main note nt03 as parent,
but the parent relationship in this case is not a temporary
structure, but a grace-note structure, so its value in the
field rel is "grace".

The representation of relations has been completed by
incorporating new relatives. As it can be observed in
Figure 4, the main relation parent was added pairs of
fields aimed at indicating new relatives. Thus, for
instance, a new relation r1 can be incorporated by
indicating the reference of the referred object in the field
relative1 and the relation between them in the field
r1relationship. The incorporation of new relations in the

http://docs.google.com/File?id=df84tzcv_239dbbbj8hn_b
http://docs.google.com/File?id=df84tzcv_239dbbbj8hn_b

database contributes an important degree of
representativity since it opens new creative and
representative possibilities, such as, for instance, the
opportunity of representing constraints among music
objects or the definition of some objects according to
others. Multiple relations also allow for the coexistence
of several organizations of objects, letting , for instance,
the same note belong to both a temporary structure
(represented by the relation parent) and a harmonic
structure (represented by an extended relation)
simultaneously.

Table 1. Database Content for a simple
example

Table 1 shows the database content for the music example
notated in Figure 6. The objclass field indicates the class
of every instance. Note the relation with the music
example and the following listing code in Section 4.1

The music objects described in the database of a music
storage service can belong either to the environment of the
music piece currently under composition, or to a general
or user library. Library objects are referred to by other
objects by putting the prefixes x.lib and the reference of
the library before the reference of the object, as we shall
see in the following examples.

3.3 MusicJSON Textual Representation
The third specification which must be met by the CMC
representation is counting on a textual form which allows
music information to be interchanged among services
through web streams.

When it comes to design an appropriate textual format
for data, basing on formats already widely-used in the
Internet seems a rather convenient strategy. Web
applications usually use XML and JSON (Java Script
Object Notation) [11] for data interchange. Both formats
meet the requirements. XML has been successfully used
for score representation [15]. However, we opted for
JSON, mainly due to the large JSON-compatible tool
library available at the time of writing this paper, and
the fact that JSON is the interchange format for some of
the main Internet web services such as Google or Yahoo.
In addition, JSON provides great features such as human
readability and dynamic unclosed object support, a very
valuable feature inherited from the prototype-based nature
of JavaScript [10]. To facilitate communication, JSON
also offers JSONP [9] and its corresponding libraries for

web applications, which extends interaction flexibility
among web services.

As mentioned in [11], "JSON is a lightweight data-
interchange format. It is easy for humans to read and
write. It is easy for machines to parse and generate.[...]
JSON is built on two structures:

• A collection of name/value pairs. In various
languages, this is realized as an object, record,
structure, dictionary, hash table, keyed list, or
associative array

• An ordered list of values. In most languages,
this is realized as an array, vector, list, or
sequence."

These universal data structures in JSON can be used to
describe EvMusic objects and communicate among web
music services. MusicJSON is the name given to this use.
Once the database-shaped representation has been
detailed, MusicJSON is easily understandable since they
are directly and closely related. MusicJSON can be
understood as a serialization of database content.
MusicJSON objects are therefore collections of key/value
pairs which have been assigned the afore-described
attribute objclass, so each object always declares its class.

Fig. 5. A note instance in UML, database and
MusicJSON representation

To give a simple example, Figure 5 shows the same object
as an instance in a ULM diagram, as an entry in the
database, and as a MusicJSON text. Please observe that
the textual representation includes the attribute objclass
with the value "note".

The code in Section 4.1 shows a more illustrative
example applied to a brief music fragment. Compared to
its standard notation in Figure 6, and Table 1, MusicJSON
code is easily understandable. In order to improve the
readability, some data semantics are allowed in
MusicJSON, like the use of pitch names instead of
numbers, as shown in the code.

In MusicJSON not all the attributes of the object are
necessary, but only the relevant ones (i.e., those necessary
for object definition and abstract-instance construction).
If the values corresponding to a necessary property are
not indicated, the default values of its corresponding class,
or even specific default values defined for a particular
group of objects shall be taken. The key defaultcontent is
provided with this purpose.

Regarding structures, represented in the database as
content relations among entries, MusicJSON is not a mere
serialization of each database register. It can represent
arrays or lists, so structures are presented directly in a
deployed form. This tree structure can be observed in the
listing code in Section 4.1, which spreads completely the
tree score -> section -> staff -> part -> note.

Table 2. Extended references in MusicJSON

Other valuable feature of MusicJSON is related to its
distributed nature: extended references. Like a hyper-
document, MusicJSON allows for the use of external
objects either from a library or directly. A new kind of xref
object was defined with this purpose. The following table
shows some types of extended references such as external
objects by means of URL, elements of an imported library,
elements defined in a variable, or contextual elements.

Referred objects can be used in two ways: either
defining an xref-type object (as shown by the third
column), or using directly the extended reference with the
notation of prefixes separated by dots (as shown in the
last column). The former section has already shown how
library objects are referred to with the prefix x-lib. The
extended reference for an external object is denoted by
the prefix x.url followed by the URL of the object. The
individual and direct references to a previously-defined
object are indicated by the prefix x.def followed by the
reference previously defined within the same context.

The incorporation of xref objects and extended
references is an important value added to textual
representation since it allows for combining varied
elements which can be distributed in the Web. Arguably,
this makes it a valuable feature for a knowlegde
representation for the Cloud. In addition the use of
extended references, is open to the definition of new
references by using new prefixes. For instance, the last
row in Table 2 shows a reference to the context of musical
time, denoted by the prefix x.ctx.mtime. The time context
of a music object is very important, as in harmony. For
instance, an extended reference of this type enables the
definition of an object which depends on the current
harmonic context.

4 . MUSICJSON IN EXAMPLES
This section shows some illustrative examples of the use
of MusicJSON.

4.1 Music Fragment in Traditional Notation
As previously stated, MusicJSON is compatible with the
traditional notation. For the sake of illustration, we
include a simple example of traditional notation of a brief
music fragment and its corresponding representation in
the MusicJSON format. All music objects in the example
are represented in the UML diagram of Figure 3. Note
MusicJSON's high readability and clear relation to
traditional notation. Also note the generic tree structure
of a score: score -> section -> staff -> part -> note, at
the beginning of the code, and the relation to the database
content in Table 1 representing the same music example.

Fig. 6. Score notation of the example

{
"objclass": "score",
"pos": 0,
"events": [{

"objclass": "section",
"pos": 1,
"events": [{

"objclass": "staff",
"name": "Violin",
"pspellorder": 1,

"events": [{
"objclass": "part",
"track": 1,
"pos": 1,
"events": [{

"objclass": "note",
"pos": 0,
"dur": "0.5",
"pitch": 69,
"art": "st"
"dyn": "mf",

},
{

"objclass": "note",
"pos": 0.5,
"dur": "0.5",
"pitch": 69,
"art": "st"

},
{

"objclass": "note",
"pos": 1,
"dur": "0.75",
"pitch": "d5",
"legato": "start",
"graces": [{

"objclass": "spitch",
"pitch": 76

}]
},
{

"objclass": "note",
"pos": 1.75,
"dur": "0.25",
"pitch": 73,
"legato": "end"

},
{

"objclass": "note",
"pos": 2,
"dur": "0.5",
"pitch": 74,
"art": "st"

},
{

"objclass": "note",
"pos": 2.5,
"dur": "0.5",
"pitch": 76,
"art": "st"

},
{

"objclass": "nchord",
"pos": 3,
"dur": "1",
"pitches": [{

"objclass": "spitch",
"pitch": "f#5"

},
{

"objclass": "spitch",
"pitch": 69

}
]

}
]

}]
}]

}]
}

4.2 Storage Service Access
The interchange of musical information between the
services of the CMC can be done directly, but it is also
possible to exchange it in a shared form through the
database. Any exchange of information with the Storage
Service is done in MuiscJSON format; not just musical
objects, but also the communication protocol. The storage
service responds to standard GET requests with a URL
that ends with the function to perform, usually a CRUD
function (Create, Retrieve, Update, Delete). The request
is accompanied by two parameters: a data parameter with
information in MusicJSON format and a second parameter
named callback, as the JSONP function to be returned.
To give an example, Table 3 shows a complete update
request to change the duration of note with ref "note_84"
to a new value of 12.

url http://evmusic.fauno.org/storage03/
update

callback stcCallback1002

data {"duration":12,"ref":"note_84"}

Table 3. MusicJSON request parameters

After updating the corresponding data in the storage
service, the returned response has the following form:

Callback({"message": "Message Content",
"data":[responsed data], "success": true})

This means that the returned data are sent back along with
a status message confirming the transaction, everything
encapsulated in a function with the name of the callback,
as required by the JSONP data transaction, so the service
can accept AJAX requests from other domains. In our
example, here is is the response received to the update
request above:

stcCallback1002({"message": "Updated
record", "data": {"track": "1", "objclass":
"note", "pitch": "39", "start": 6,
"duration": 12, "ref": "note_84", "id":
84}, "success": true}

4.3 Library Use
Library services can make use of predefined musical
objects. To use a library service, this must be declared
in lib section of the document in a key-value pair. The
reference name for that library is assigned as the key,
while the URL that returns the library itself, usually
encapsulated as JSONP, is assigned as the value.

"lib": {
"main": "http://evmusic.fauno.org/lib/

main/instruments",
... ,

}

The content of the library returned from the given address
is:

LibraryCallBack({
"message":"Sent data: 45 entries",
"data":{
"flute":{

"objclass":"pinstrument",
"families":[

"wind", "air",
"wood", "woodwind"],

"clef":"treble",
"transpose":0,
"stafforder":1.2,
"constraints":{

"minpitch":"c4",
"maxpitch":"c7",
"usualpitch":"g5",
"polyphony":1,
"maxtime":12,
"maxspeed":90,
"maxlegatointerval":17
},

"techniques":[
"frullato", "whistle",
"air", "keysound"]

},
"oboe":{

"objclass":"pinstrument",
...
}

...
},
"success":"true"})

In this case, the complete library is returned, but it is
also possible to ask for only one object from the library,
by completing the URL with the key that corresponds
to that object. Thus, instead of downloading the whole
library, we save memory by downloading only the data
we need. For instance, in order to access only the flute
instrument, we would use the following URL:
"http://evmusic.fauno.org/lib/main/instruments/
flute".

In order to use an object from the library, the x.lib
prefix followed by the library key must be indicated as
reference, as shown in Table 2. The MusicJSON code
of the referred object will replace the library call during
parsing:

{
"objclass": "scoinstrument",
"name": "Flauta",
"value": "x.lib.main.flute"
}

4.4 MusicJSON File
Every EvMusic object, from single notes to complex
structures, can be serialized into a MusicJSON text and
subsequently transmitted through the Web. In addition,
MusicJSON can be used as a music format for local
storage of compositions. Next listing code shows a draft
example of the proposed description of an EvMusic file.

{"objclass":"evmusicfile","ver":"1002",
"content":

{"lib":{

"instruments":"http://evmusic.fauno.org/lib/
main/instruments",

"pcstypes":

"http://evmusic.fauno.org/lib/main/
pcstypes",

"mypcs": "http://evmusic.fauno.org/
lib/jesus/pcstypes",

"mymotives":
"http://evmusic.fauno.org/lib/jesus/motives"

},
"def":{

"ma": {"objclass":"motive",
"symbol":[0,7, 5,4,2,0],
"slength": "+-+- +-++ +---"},

"flamenco": {"objclass":"pcstype",
"pcs":[0,5,7,13],},

},
"orc":{

"flauta": {"objclass":"instrument",

"value":"x.lib.instruments.flute",
"role":"r1"}

"cello": {"objclass":"instrument",

"value":"x.lib.instruments.cello",
"role":"r2"}

},
"score":{

"objclass": "score",
"pos": 0,
"events": [{

"objclass": "section",
"pos": 1,
"events": [{

"objclass": "staff",
"name": "flauta",
"pspellorder": 1,
"events": [{

"objclass": "part",
"track": 1,
"pos": 1,
"events": [{

"objclass": "note",
"pos": 0,
"dur": "0.5",
"pitch": 62,
"art": "st"

},
...

...]},
{"objclass":"section","pos": 60,

...
},],}}}

}}

The code shows four sections in the content. The second
section named lib is a dictionary of libraries to be loaded.
Both main and user libraries can be addressed. The
following section includes local definitions of objects. As
an example, a motive and a chord type are defined. Next
section establishes instrumentation assignments by means
of the arrangement object role. Last section is the score
itself, where all events are placed in a tree structure using
parts. Using MusicJSON as the intermediary
communication format enables us to connect several
music services forming a cloud composition system.

5 . CONCLUSION
This paper puts forward a model of musical representation
for the Computer Music Cloud, a new paradigm in which
musical computing systems are distributed in several

musical services over a computing cloud. This new
environment allows to build new systems by putting
various services to work together. We present a new
architecture which allows to design specialized
autonomous musical services that can be implemented
separately in different platforms, and may even serve
multiple systems simultaneously.

Effective integration of such musical services in the
CMC depends on the definition of a music representation
that they all share and that will enable efficient exchange
of musical information. Musical representation should
fulfill three main requirements:1) to have a high and
flexible representativity for music composition, 2) to
provide a form allowing music objects to be stored as
entries of a database; and 3) to count on a text format that
facilitates information exchange, as well as the integration
of different data sources.

Our new proposal is based on the robust musical
representation for EvMusic composition described in
UML which has proved effective in actual composition
experiments [1,3]. Above this abstract model of classes,
the database form representation and the textual
representation MusicJSON have been incorporated.

MusicJSON can represent the complete EvMusic class
system together with its different topologies and its
comprehensive treatment of musical pitch. In addition to
being compatible with conventional musical notation, it
can represent higher abstraction structures at multiple
levels. It is not only a simple format for exchange of
musical objects in text form, but it also integrates musical
information from different services. It can also handle
references to external objects and libraries. Several
examples of use have been shown: representing a music
fragment, protocol for sharing musical elements between
services, use of libraries and the file format. MusicJSON
is based on JSON, an increasingly used format on the
Internet. Therefore it inherits its expandability and
prototyping features, and benefits from its extensive
library of available tools and services.

MusicJSON, EvMusic representation and the database
musical format have been tested in real CMC prototypes
that incorporate different types of music services [2].
Significantly, it is one of the first proposals for music
representation in the new paradigm of Musical
Composition in the Cloud. This CMC approach also opens
multiple possibilities for derivative work. Once you define
an efficient shared music representation for the cloud, any
music service can be easily incorporated into the new
paradigm: services that translate input and output
representations, some applications for collaborative
composition among multiple users, musical teaching
assistants, and even the integration of true intelligent
composition agents. It provides a promising environment
for the research in Musical Artificial Intelligence (MAI),
where specialised agents can cooperate in a music
composition environment sharing the same music
representation [4]. Likewise, the paradigm shift that
involves the CMC, offers new interesting possibilities for

web applications acting as user interfaces in the Computer
Music Cloud, taking advantage of new technological
developments such as the upcoming HTML5 [14]

REFERENCES
1. Alvaro, J.L., Miranda, E.R., Barros, B. "Music

Knowledge Analysis: Towards an Efficient
Representation for Composition", Current
Topics in Artificial Intelligence; LNCS 4177,
Springer-Verlag, pp. 331-341(2006)

2. Alvaro, J.L. and Barros, B. "Composing Music
in the Cloud", Proceedings of the International
Symposium on Computer Music Modeling and
Retrieval, Málaga 2010

3. Alvaro, J.L. : "Painting Music with Motives,
Twelve Years of Symbolic Pitch Composition".
Under Review

4. Alvaro, J.L. : "Intelligent Music Clouds". To be
Appeared

5. Armbrust, M., Fox, A., Griffith, R., Joseph, A.
D., Katz, R. H., Konwinski, A., Lee, G.,
Patterson, D. A., Rabkin, A., Stoica, I., and
Zaharia, M. "Above the Clouds: A Berkeley
View of Cloud Computing" {White Paper}
http://www.eecs.berkeley.edu/Pubs/TechRpts/
2009/EECS-2009-28.pdf.

6. ECMAScript Language Specification,
http://www.ecma-international.org/
publications/standards/Ecma-262.htm

7. Geelan, J: "Twenty Experts Define Cloud
Computing", Cloud Computing Journal, SYS-
CON Media Inc. (2008)
http://cloudcomputing.sys-con.com/node/
612375/print

8. Google Apps. http://www.google.com/apps/
9. Ippolito, B. "Remote JSON - JSONP- JSON

with Padding" (2005)
http://bob.pythonmac.org/archives/2005/12/05/
remote-json-jsonp/

10. JavaScript. http://en.wikipedia.org/wiki/
JavaScript.

11. Introducing JSON: http://www.json.org/
12. Martin, R.C. :"UML Class Diagrams" Object

Mentor articles (1997)
http://www.objectmentor.com/resources/
articles/umlClassDiagrams.pdf

13. OMG,. Unified Modeling Language:
Superstructure. Version 2.1.1, Retrieved from:
<http://www.omg.org/uml>, (2007).

14. W3C "HTML5 A vocabulary and associated
APIs for HTML and XHTML" W3C Editor's
Draft http://dev.w3.org/html5/spec/

15. Walter B. Hewlett and Eleanor Selfridge-Field
(eds) "The Virtual Score". MIT Press (2001)

