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ABSTRACT

We present an experimental environment for working with
physically based sound models. We situate physical mod-
els in an interactive multi-modal space. Users may interact
with the models through touch, using tangible controllers,
or by setting up procedurally animated physical machines.
The system responds with both real-time sound and graph-
ics. A built-in strongly-timed scripting language allows for
a different kind of exploration. The scripting language may
be used to play the models with precise timing, to change
their relation, and to create new behaviors. This environ-
ment gives direct, concrete ways for users to learn about
how physical models work and begin to explore new mu-
sical ideas.

1. INTRODUCTION

Physically based sound synthesis is, for the user, both fa-
miliar and richly expressive. Physical models correspond
to real-world objects, and variations in instrument design
and playing style may be specified using real-world con-
cepts like shape, forces, and material properties.

In this paper we describe an experimental environment
for working with physical models. Interaction in our envi-
ronment is direct and concrete; it corresponds to real-world
experiences but goes beyond the strictly physical.

There are several ways the model can be affected. The
models are situated in a virtual space and may be played
using touch. Tangible controllers may be used to influence
the model or the space they reside in. Small “machines”
based on procedural animation and physics give another
way to explore relations between space, time, and rhythm.
A textual scripting language provides for more precise tim-
ing, deeper exploration, and extension of the system’s be-
havior.

Our environment is multi-modal: models respond both
aurally and visually in real time. We support touch in-
put (as well as conventional mouse input) and input from
different kinds of tangible controllers. We intend for the
users’ different senses - auditory, visual, and kinesthetic -
to work together to create a fuller interaction experience.

This work is certainly inspired by other sound systems
which use interactive touch, most notably the Reactable
[1]. The Reactable situates sound objects in spatial relation
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Figure 1. Several strings and plates in the direct-
manipulation environment.

and uses space to create rhythmic patterns. Its objects are
based on signal processing and abstract notation; our re-
search uses physically based models and a more concrete,
physical notion of space.

In what follows, we introduce the different kinds of in-
teraction supported by our system: direct manipulation,
tangible controllers, procedural animation, and textual script-
ing. We then conclude with a brief discussion of questions
to be addressed in future research.

1.1 Video and audio examples

Video examples (with sound) demonstrating several fea-
tures of our system are available on the web at
http://www.youtube.com/user/avworkspacesmc2010.

2. SPATIAL, MULTI-MODAL INTERACTION

Physical models, like their real-world counterparts, are sit-
uated in time and space. They make sound when things in-
teract with them in physical ways: plucking, bowing, strik-
ing, fretting. This suggests a graphical setting in which
models may be arranged spatially and interacted with us-
ing direct manipulation.

Our environment includes strings and plates as sound-
ing primitives. Figure 1 shows several strings and metal
plates. A user can play the strings by “plucking” them with
the mouse. Moving across several strings at once produces
a strum. Tapping on a plate makes a clanging sound.

Since the strings and the plate are implemented using
physical models, they respond realistically to differing in-
put. For example, real strings and plates produce different
sounds depending on where they are plucked or struck due
to the excitation of different vibrational modes. This is true

mailto:benschroeder@acm.org
mailto:ainger.1@osu.edu
mailto:parent@cse.ohio-state.edu
http://creativecommons.org/licenses/by/3.0/
http://www.youtube.com/user/avworkspacesmc2010


Figure 2. The system running on a diffuse-illumination
multitouch table.

of our models as well.
Sound in a physical model comes from the simulation

of an object’s vibration. The models in our system respond
visually as well as sonically, giving users a way to build
intuition about how changes in shape produce changes in
sound. (The visual response may be exaggerated in scale
far beyond what is realistic.) Time in the system may be
stretched into slow motion, allowing for close examina-
tion of how waves progress through an object. Most of the
graphics in our system are shown in a 2D diagrammatic
perspective, but plates may be tilted in 3D to provide a bet-
ter view of their complex vibrations.

Models may also be changed through simple direct ma-
nipulation. Strings and plates may be stretched to change
their size and hence the sound they produce. String tension
may be set by manipulating a string’s end as though using
a tuning peg. All of these changes are made interactively;
changes can even be made while an object is sounding.

A multitouch surface is a natural setting for this kind
of interaction, and we have experimented with running our
system on a diffuse-illumination multitouch table. (Our ta-
ble is shown in Figure 2; a brief description of the tech-
nology is given in Appendix B.) Although touch is not
strictly necessary for our system, the availability of mul-
tiple touches gives rise to additional kinds of interaction,
such as fretting a string to produce different notes. Fur-
thermore, the table setting allows multiple users to play at
once.

2.1 Physical model implementation

Our string and plate primitives are implemented using fi-
nite differences [2]. In principle, any physical modeling
technique could be used, as long as it accepts input in terms
of forces and positions and provides output in these same
terms.

Finite difference models work especially well in this re-
gard; physical quantities are calculated for each point on a
finite-difference grid at every time step, making it trivial to
use a model’s output for such things as real-time visualiza-
tion. Input is in terms of these same physical quantities. By
contrast, frequency-based techniques such as modal syn-
thesis accept input in terms of forces, but require more
computation in order to provide output in terms of phys-

ical quantities rather than fully synthesized waveforms.
We use a string model described by Chaigne and Asken-

felt [3] and a plate model given by Bilbao [4]. Our string
plucking model is a partial implementation of that described
by Cuzzucoli and Lombardo [5]. The main equations for
the string and plate are reproduced here for convenient ref-
erence and in order that we might mention the available
parameters; for full details, please see the appropriate pa-
pers.

The string model is given by the following equation,
which describes a string’s basic motion as well as inter-
nal and radiative damping. The equation also models dis-
persion due to stiffness, as occurs, for example, in piano
strings.
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In this equation, c is the speed of sound on the string,

which incorporates tension and the string’s mass density; L
is the string’s length; b1 and b3 are damping constants. The
coefficient ε describes the string’s stiffness. The function
f accounts for force interaction over time.

The plate model is similar but is given in two dimen-
sions.
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Here, κ describes the plate’s stiffness; c is again the

speed of sound due to any applied tension. The coeffi-
cients σ and b3 are damping constants 1 . The function f
again represents force interaction.

3. TANGIBLE CONTROLLERS

We have discussed one way to influence the system of sound-
ing objects: using touch and spatial motion. Another way
is to use tangible physical controllers and sensors. These
expand the expressivity of the system, giving us ways to
map things like 3D motion, shape, pressure, or tempera-
ture into our environment. In addition, such controllers
have a satisfying physical presence; even simple controls
like sliders and buttons can seem more “real” when made
out of actual plastic and steel rather than pixels.

Our environment can receive messages directly from
MIDI controllers and Wii remotes. It can also receive Jitter
network messages, allowing for the use of Max/MSP/Jitter
as a sort of pre-processing frontend. Messages of this sort
can easily be made to control the parameters of a model,
such as its tension, length, or position, or to induce actions
such as plucks.

More interestingly, controllers might be used to affect
the physical environment in broader ways. Figure 3 shows
a breath controller given a virtual presence. It may be
moved and turned like any other object via direct manipu-
lation. Blowing into the controller causes a “wind” of par-
ticles to enter the space. The particles pluck the strings and

1 Bilbao gives this coefficient as b1, but we have here used b3 for con-
sistency with the string model.



Figure 3. A “wind” of particles from a breath controller.

Figure 4. A basic procedural machine.

bounce off the plates. We might now consider using a cam-
era system and digital compass to map a person’s physical
location and orientation into the system, letting them in a
sense move through the simulated space, blowing wind as
they go.

4. PROCEDURAL MACHINES

Procedural animation techniques introduce more variety
into the graphical environment and give ways to explore
the role of algorithms in sound generation. We have al-
ready seen one example of this: the particle system of the
breath controller’s “wind”. As encapsulated algorithms,
procedural animations also allow for actions to be repeated
in more precise ways than direct interaction does, and for
the actions to be edited over time. This supports an itera-
tive style of design.

Figure 4 shows a basic procedural machine. In this sys-
tem, there is an emitter on the left that sends particles into
the environment at a regular rate, like a metronome. The
slab to its right rotates back and forth, bouncing the parti-
cles either to the top plate, made of metal, or to the bottom
plate, made of wood. Occasionally a particle ricochets off
the slab head-on and plucks the string behind the emitter.
By controlling the rate and angle of particle emission, the
user can make different rhythmic patterns and learn about
relationships between organized space, velocity, and time.

Other kinds of emitters are possible. For example, we
have built objects that split incoming particles into two.
Gravity (in any direction and strength) adds another twist

Figure 5. Procedural crawlers which fret strings.

to the possibilities of particle motion.
Physics is not the only way to interact algorithmically

with the system. In Figure 5, small robots crawl around
the space, moving to random locations on a grid. When a
crawler moves to a string, it latches on, fretting the string
for a time, before moving off in a random direction again.

5. INTERACTIVE PROGRAMMING

So far, we have described several high-level ways to in-
teract with sound models. Our environment also includes a
textual language which provides for low-level access to the
models. This has two purposes. First, textual scripting is
a flexible way to set up direct-manipulation environments
like those described above and to describe new procedural
elements. Scripts, like procedural animations, support iter-
ative design by allowing for the reuse and careful editing
of algorithms.

Second, while direct manipulation is approachable and
concrete, text is a good choice for describing more sophis-
ticated interactions. In particular, it is more apparent how
to use parameterization and abstraction in this context, and
timing may be made more precise.

The textual language is interactive and runs in conjunc-
tion with the direct manipulation environment. This allows
a user to go back and forth between the two as desired.

A complete reference is beyond the scope of this pa-
per. However, the examples that follow are intended to
give an idea of how the language works. We introduce the
examples with a short discussion of the textual language’s
general structure and philosophy.

5.1 Language structure and philosophy

The textual language is a prototype-based object-oriented
language; it is similar in many ways to Self [6] or Smalltalk.
Our concern in this environment is mainly for ad-hoc and
on-the-fly programming, rather than the construction of
larger software systems. We have therefore emphasized
programming facilities that support experimentation, rather
than ones that support longer-term efforts. Although the
underlying language is capable of representing complex
abstractions, we have mainly concentrated on its use in an
interactive context.



Figure 6. Scripting takes place through an interactive
workspace.

Most interaction with the language happens through a
text window called a “Workspace” (Figure 6). This is sim-
ilar to the interactive command line or read-eval-print loop
provided by some environments, but it retains more context
from step to step. Code in a Workspace can be executed
line-by-line; results may be printed; old code can be revis-
ited. In keeping with the philosophy of supporting experi-
mentation, variables set at the top level of our Workspaces
are defined automatically, allowing users to define names
as they go.

The textual environment runs concurrently with the direct-
manipulation environment and with audio output. In this
way, results from code execution can be seen immediately,
and changes in the output can be investigated more closely
using code. Users can move freely between the two levels
as needed; in a multi-user setting, one person might even
be playing an instrument using touch while the other mod-
ifies it using code.

Our language follows ChucK [7] in being strongly timed.
The simulation time for a given thread proceeds (and audio
samples are calculated) only when the programmer explic-
itly asks for it to do so. Code between such statements is
considered, from the perspective of the simulation, to exe-
cute instantaneously. In this way, the programmer is given
full control over timing and coordination.

In our environment, it is possible that no user-level code
is running at some particular time, but instead that all in-
teraction is taking place through the direct-manipulation
environment. In that case, simulation time proceeds along
with real time.

5.2 A simple example

Imagine that you wanted to try playing some notes on plucked
strings. You might start by making a string and tuning it.

stringD: stringModel make.
stringD frequency: 146.80.

This puts a string, tuned to D, on the screen, and assigns
it the variable name “stringD”. You can pluck the string by
hand or using code.

stringD pluckAtFraction: 0.7.

We can add a second string, positioning it a little be-
low the first. Plucking the strings at timed intervals while
changing their notes plays a familiar tune. (Quotes are used
below to add comments.)

stringA: stringModel make.
stringA frequency: 110.
stringA center: 0 @ -0.01.

stringD fretAtIndex: 2. "E"
stringD pluckAtFraction: 0.7.
simTime advance: 0.25 seconds.

stringD fretAtIndex: 0. "D"
stringD pluckAtFraction: 0.7.
simTime advance: 0.25 seconds.

stringA fretAtIndex: 3. "C"
stringA pluckAtFraction: 0.7.
simTime advance: 0.25 seconds.

stringD pluckAtFraction: 0.7.
simTime advance: 0.25 seconds.

stringD fretAtIndex: 2. "E"
3 timesRepeat:
[stringD pluckAtFraction: 0.7.
simTime advance: 0.25 seconds].

5.3 Making physical changes

One of the strengths of many physical models is their abil-
ity to represent different kinds of material. Strings are cre-
ated by default as nylon strings. We can change the strings
above to be steel strings by assigning new material proper-
ties.

{stringA. stringD} do:
[:each |
each
changeMaterialDensity: 7800.0
youngsModulus: 200e9].

For convenience, this keeps the strings at the same fre-
quency as before by adjusting their tension to match the
new material. The strings will sound slightly different due
to their new material properties and tension. Other prop-
erties of the models, such as damping coefficients, may be
changed as well.

5.4 Adding new behaviors

The lengths of the strings in the direct manipulation envi-
ronment can be changed; this also changes their frequency.
The tune in the code above is written in terms of the built-
in frets, which are proportional to the length of the string
(they are set at half-steps, like guitar frets). Therefore,
changing the length of the string would transpose the tune
up and down; this could be done while the tune was playing
to act as a sort of simple (if not strictly realistic) tremolo
arm (or “whammy bar”).



Figure 7. Facilities for running code in continuous loops.

However, the tune is written on two strings. It would be
difficult to change these in exactly the same way simply by
dragging. We can keep the second string up to date with
the first using the following code.

stringA learn:
(|
partner <- nil.
matchLength = (| delta |

delta: partner endPoint
- partner startPoint.

endPoint: startPoint + delta).
|).

stringA partner: stringD.

[[true] whileTrue:
[stringA matchLength.
simTime advance: 0.01 seconds]] fork.

This code first teaches the A string a new behavior, how
to match length with a partner. It then creates a new inde-
pendent thread which asks the string to match length every
hundredth of a second.

Note that this acts like a constraint, but it is only an ap-
proximation of one. In particular, it is not updated contin-
uously, and the custom matching code could be expensive
to run frequently. A facility for constraints is a topic for
future research.

Forking new continuously-running threads is useful for
many things. When working with threads, it is important to
be able to stop and start them at will, while retaining their
code. (In the example above, the thread never stops.) The
graphical environment therefore has a facility for running
continuously-looping code, as shown in Figure 7.

One could envision a way to express the length-matching
behavior via direct manipulation, such as attaching all of
the strings to a rigid bar and then moving the bar: a kind
of virtual tremolo arm to match the behavior. The script-
ing environment lets us prototype new ideas before adding
them at higher levels.

5.5 New procedural objects

Code may also be used to create new kinds of objects for
the procedural animation environment. Figure 8 shows
a simple but complete example of an emitter that sends

firework: proceduralElement make.
firework learn:
(|
emit = (| newBall. theta |
newBall: ball make.
newBall radius: 0.01.
newBall dragFactor: 0.01.
newBall beFading.
newBall position: position.

theta: ((24 atRandom) * 15.0)
asRadians.

newBall impulse:
(theta cos @ theta sin)

* (0.1 @ 0.1)).

burst = (||
40 timesRepeat:

[| waitTime |
emit.

waitTime: (5 + 5 atRandom)
milliseconds.

simTime advance: waitTime]).
|).

Figure 8. A “fireworks” animation object.

a burst of particles into the space at random angles and
speeds. It may be activated by executing fireworks
burst.

6. CONCLUSION AND FUTURE WORK

We have described our interactive environment for exper-
imenting with physical models in space and in code. The
environment supports several different kinds of interaction
with the models, from direct playing to the use of procedu-
ral animation and physics and exploration through code.

Our goal with this environment has been to provide for
easy, high-level experimentation with physical models. How-
ever, the range of expressiveness of physical models is
deep, and we have only scratched the surface.

For example, we might want facilities for creating new
models of a player’s interaction with a string: different
kinds of plucks, bowing, fretting models, playing string
harmonics, rasgueado, and more. We might consider phys-
ical models that change over time in unrealizable but phys-
ically plausible ways, such as a web of strings that shifts
around, splitting and reconnecting over time. Models might
be connected to one another and resonate. Input from more
sophisticated tangible controllers or even other instruments
might be used to drive models. In addition, several musi-
cally important concepts addressed in existing languages
go unaddressed here.

In our future research, we hope to address deeper ques-
tions such as these. We expect that new abstractions, meth-
ods of interaction, and language facilities will help make
the full power of physical models truly accessible.
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A. IMPLEMENTATION NOTES

Our system runs in real time on commodity Macintosh
hardware. We make use of several open-source libraries:
RtMidi and RtAudio [13], DarwiinRemote [10], and the
Box2D physics engine [8]. Our multi-touch implementa-
tion uses the CCV tracking system [9] and the TUIO mul-
titouch protocol [11].

Figure 9. A diffuse-illumination multitouch table.

B. DIFFUSE-ILLUMINATION MULTITOUCH

One setting for our system has been a diffuse-illumination
multitouch table. This appendix contains a brief discus-
sion of how such tables may be implemented. A more
complete description of this and other multitouch imple-
mentation techniques may be found in an excellent online
book by the NUI Group [12].

Multitouch tables allow for direct interaction with dis-
played images. A major question in the implementation
of such tables is therefore how to detect touches. Diffuse-
illumination tables detect touches via a camera system; to
distinguish between actual touches and changes in the dis-
play, they rely on the difference between visible and in-
frared light.

As shown in Figure 9, both a projector and a camera
are mounted below the table surface. A mirror may be
used (as shown here) to allow for larger projections without
requiring the table to be very deep.

The projector displays a video image on a projection
surface at the top of the table. This image is made up only
of visible light; commodity projectors typically do not emit
any infrared light. A number of infrared LED panels also
illuminate the projection surface. Since these only emit
light in the infrared spectrum, they are invisible to users of
the table. The illumination is meant to be spread evenly
across the surface. To some extent, the light is diffused by
the surface itself, which is semi-opaque; to further avoid
”hot spots” of illumination, light is often bounced off of a
wall or other surface before reaching the top of the table.

The camera is equipped with an infrared-passing filter;
it only “sees” infrared light and does not react to changes
in the visible part of the spectrum. If nothing is touching
the table, then, the camera sees a static image, even if the
video image displayed by the projector is changing.

If a user touches the table, light reflects more strongly
from the location of the touch. Techniques from computer
vision are used to isolate the area of the touch from the
surrounding static background. Multiple touches are seen
as separate areas in the resulting image. These touches are
tracked over time; their locations and shapes are passed to
higher-level software such as our system for further pro-
cessing.
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