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ABSTRACT

This paper focuses on a real-time Max/MSP implementa-
tion of a gesture recognition tool based on Dynamic Time
Warping (DTW). We present an original ”multi-grid” DTW
algorithm, that does not require prior segmentation. The
num.dtw object will be downloadable on the numediart
website both for Max/MSP and for Pure Data. Though this
research was conducted in the framework described below,
with wearable sensors, we believe it could be useful in many
other contexts. We are for instance starting a new project
where we will evaluate our DTW object on video tracking
data as well as on a combination of video tracking and wear-
able sensors data.

1 INTRODUCTION

The ”Dancing Viola” project, described in more details in
[7], was led at the Faculté Polytechnique de Mons within
the numediartprogram and is linked to viola player Do-
minica Eyckmans. It covers some of the aspects of the long-
term project ”Extension du corps sonore” launched by
Musiques Nouvelles, a contemporary music ensemble in
Mons, that aims at giving intrumental music performers an
extended control over the sound of their instrument. The
intention is to extend the understanding of the sound body
from the instrument only to the combination of the instru-
ment and the whole body of the performer. Whereas usual
augmented instruments designs track the gestures used to
play the instrument to expand its possibilities, this specific
project focuses on using non-musical gestures to transform
the sound of the instrument. Our approach is dictated by
the nature of Dominica’s project: she is actually dancing
while playing the viola and we track her dancing move-
ments rather than her hands movements. But the recogni-
tion algorithm we present here is not limited in any way by
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this specific context, as we have successfully demonstrated
using a database of hands gestures measured with sensors
placed on the hands. Gesture recognition is a welcome ad-
dition to an interactive performance and can be used to trig-
ger events, to adapt the response of the virtual instruments
according to the detected gestures, or to move through the
various steps of a performance. As other modules like hit
detection, mapping, interpolation (also developed within the
”Dancing Viola” project and described in [8]) or sound syn-
thesis and transformations, must be running simultaneously
on the same computer, it is essential to minimize the com-
putational load. This Max/MSP object is being integrated in
the ARTeM software framework for the concerts with Do-
minica Eyckmans, as well as for other artistic works.

While using similar hardware (cf. 2.1), the atomic ges-
ture recognition algorithm developed by Benbasat and Par-
adiso [1] is not suitable in our project: as dance movements
are usually chained without pauses and cannot be decom-
posed in a concatenation of elementary movements along
one accelerometer axis only, we have to consider an algo-
rithm that can deal with unconstrained fluid motions, with-
out the knowledge of the start and end of a gesture.

As for Automatic Speech Recognition (ASR) applica-
tions, the most popular algorithms used for gesture recog-
nition are Dynamic Time Warping (DTW) [5, 4] and Hid-
den Markov Models (HMMs) [2]. In our framework, the
aim is to develop a user-dependent recognition system with
a small gesture vocabulary and a database of limited size.
As some gestures should be added, removed, enabled, or
disabled easily and quickly, without any training procedure,
we chose for the DTW algorithm, which we adapted to make
it usable in real-time without the need for segmentation.

This report is divided in following sections: after a brief
description of the system, we present the gesture recognition
module, by describing our ”multi-grid” DTW algorithm and
its real-time Max/MSP implementation, as well as some pre-
liminary results, and we conclude with future investigations.
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2 SYSTEM

2.1 Sensors

The sensor system allows for the data of two sensors (each
a combination of a 3-axes accelerometer and a 2-axes gyro-
scope), placed on both ankles of the performer, to be trans-
mitted every 8ms wirelessly over Wi-Fi. More details on the
sensors can be found in [7]. The placement on the ankles
presents a minimal hinderance even for movements on the
ground. Depending on the results of further experimentation
with the new software tools we will consider the need, the
type, and the placing of additional sensors on Dominica’s
body.

2.2 Software framework

The ARTeM software, developed inside the Max/MSP envi-
ronment to map sensor data to parameters of various sound
transformation algorithms, is organized around a modular
concept: the audio paths of the various virtual instruments
are connected through a matrix, with external inputs and
outputs of virtual instruments injected from the top and redi-
rected with selectable level, to the inputs of the virtual in-
struments and the external sound outputs.

Figure 1. A data recording: 3-axes accelerometer (black)
and 2-axes gyroscopic data (green) for left and right ankles.

The sensors data (Figure 1) are received as UDP packets
through the normal Wi-Fi interface. An external decodes
the custom protocol, scales the raw data and defines a name
space depending on configuration messages sent to its input
and outputs data as messages. All samples are then made
available through a send/receive scheme throughout all the
patches.

3 GESTURE RECOGNITION

3.1 DTW algorithm

The classical DTW algorithm uses Dynamic Programming
(DP) principles to determine the best nonlinear mapping

(Figure 2) between the temporal indices of the test sequence
(i = 1..I) and those of the reference sequence (j = 1..J),
assuming that both these sequences have been segmented.
We denote by d(i, j) the (non-negative) ”local distance” (or
dissimilarity measure) between the test frame Ti and the ref-
erence frame Rj (where a frame is composed of the data of
all sensors and axes at a given time), and by D(i, j) the ”ac-
cumulated distance” along the sub-path between the origin
and the current node (i, j). The algorithm aims at minimiz-
ing these accumulated distance values and/or at extracting
the associated best path (i.e., the sequence of nodes) in the
DTW grid (Figure 2). A classical way of computing the ac-
cumulated distance value D(i, j) along a sequence of nodes
(ik, jk) (k = 1..K) consists in weighting the local dis-
tance elements d(ik, jk) with transition costs that depend on
the predecessor (ik−1, jk−1), and summing up the weighted
values:

D(i, j) =
K∑

k=1

W (ik, jk; ik−1, jk−1) d(ik, jk) (1)

These transition costs raise the issue of normalization when
computing paths of different lengths (e.g. when a test ges-
ture is compared with several reference gestures of unequal
duration). Dividing the optimal distance by the ”path length”
(i.e. the sum of all weights along the path) leads to the math-
ematical expression of an average ”cost per node” and, using
the following symmetric transition cost type [6]:

Wk = (ik − ik−1) + (jk − jk−1) (2)

the normalization factor (I + J) is path-independent. The
question of the weight of the local distance corresponding
to the first node is solved by computing the transition cost
between a ”fictitious” original node (0, 0) and the first node.
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Figure 2. Mapping between two time series and DTW grid.
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3.1.1 DTW search constraints

• Monotonicity and strict endpoint constraint. In its
strictest form, any candidate path must not only be
monotonic, meaning that ik−1 ≤ ik and jk−1 ≤ jk,
but also begin at (1, 1) and end at (I, J) exactly.

• Global path constraints. Itakura [3] suggests the spec-
ification of the maximum allowable compression and
expansion factors (λmax ≥ 1 and λmin ≤ 1, with
e.g. λmin = 1/λmax ), whereby all paths must en-
tirely lie within a parallelogram (Figure 3a). Another
global constraint, proposed by Sakoe and Chiba [6],
requires that the paths lie within a simple strip around
a purely linear path: |jk − ik| ≤ R, where R is the
”window width” (Figure 3c).

Figure 3. Global constraints: (a) Itakura, (b) Itakura (re-
laxed), (c) Sakoe and Chiba

• Local path constraints. The expansion or compression
ratio between test and reference can also be limited
locally, in the neighbourhood of each node. These
local constraints are usually defined by listing the le-
gal transitions. Equations 3 and 4 show the local path
constraint implemented, where each node (ik, jk) can
be reached from three different sets of predecessors
(Figure 4):

D(ik, jk) = min( D1, D2, D3) (3)

with:

D1 = D(ik − 1, jk − 2) + 2d(ik, jk − 1) + d(ik, jk)
D2 = D(ik − 2, jk − 1) + 2d(ik − 1, jk) + d(ik, jk)
D3 = D(ik − 1, jk − 1) + 2d(ik, jk)

(4)

• Relaxed endpoint constraint. To address the issue of
locating accurately and in real-time the endpoints of
a test sequence, the constraints are relaxed by permit-
ting the path to start from one of the following nodes:
(1, 1) to (1+εi1 , 1), or (1, 1) to (1, 1+εj1), and to end
at one of the following nodes: (I − εi2 , J) to (I, J),
or (I, J − εj2) to (I, J) (Figure 3b). Consequently,
the different paths associated to each of the candidate

Figure 4. Local constraints

terminal nodes are compared on the basis of their nor-
malized accumulated distances, where the global nor-
malization factor (iK + jK) is determined by the final
coordinates only.

When only the starting point is approximately known,
lower and upper bounds of the other endpoint may
be found: e.g. Imin = J/2 and Imax = 2J , when
the expansion/compression ratio lies in the range be-
tween 1/2 and 2 (if we neglect εi1 and εj1 values). In
this context, since the ending point is a priori almost
unknown, we decide to remove the margin parame-
ters εi2 and εj2 , as well as to remove the global con-
straints that were linked to that ending point (i.e. two
straight lines in Figure 3b). Finally, the gesture is re-
stricted to end somewhere between the bounds Imin

and Imax along the i axis, and strictly at J along the j
axis (Figure 5). In other words, the warping consists
in aligning the whole reference sequence with a test
sequence (or subsequence) that may be up to twice as
long or twice as short.

Figure 5. Final global constraints (with R = ∞) and set of
admissible ending points

Figure 6 shows an example of local (left) and normalized
accumulated (right) distance matrices for similar (top) and
different (bottom) gestures, with following parameter val-
ues: εi1 = 8, εj1 = 0, λmin = 0.5, λmax = 2, and R = ∞.
Low distance values (depicted by blue pixels) are obtained
when comparing similar gestures. Conversely, high dissimi-
larities are observed when the tested gesture is very different
from the reference one, resulting in a worse matching score.
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Figure 6. Local (left) and Normalized Accumulated (right)
Distance Matrices for similar (top) and different (bottom)
gestures

3.1.2 ”Multi-grid” DTW algorithm and real-time Max/MSP
implementation

Only few implementations of DTW do not require prior seg-
mentation. Oka [5] presents a continuous DP algorithm,
which is an efficient real-time method as the different paths
originating from all possible starting points are simultane-
ously competing in the same DTW grid (one per reference
gesture). However, he does not explain how to include global
constraints. On the other hand, Ko [4] describes a method
including these constraints, but at the cost of a higher com-
putational load, as whole new paths are calculated from each
new starting point (i.e. at every time instant) in the accumu-
lated distance matrix (for each reference gesture).

Our ”multi-grid” DTW algorithm provides a compromise
solution. The method uses simultaneously a set of shifted
DTW grids, each one hypothesizing another starting point
(or set of consecutive starting point candidates when
εi1 %= 0) for the test sequence. The time shift between two
successive DTW grids will generally be equal to
hop size = 1 + εi1. The number of simultaneously active
grids can be limited to the following quantity:
Smax = ceil(Imax/hop size). As J may vary from one
gesture to the other, Imax and Smax are also depending on
the specific reference gesture. At every time instant, one
best score (possibly ”infinite” at the beginning) is computed
in each shifted grid, and the minimum value of all these nor-
malized accumulated distances is assigned to the given ref-
erence gesture. Despite the computation of several shifted
grids, a low complexity can be achieved via an iterative im-
plementation (like in [4]), where only one partial column
D(i, j) is evaluated in each grid at a given time i (for each
reference gesture), instead of all (partial) preceding columns
from the starting point.

Figure 7 illustrates normalized accumulated distance ma-
trices for successive shifted DTW grids when test and refer-
ence gestures are similar. A good matching score is obtained

for the low shift values, while it becomes worse when the
delay increases.

Figure 7. Normalized Accumulated Distance Matrices for
successive shifted DTW grids (similar gestures)

Figure 8 also illustrates normalized accumulated distance
matrices for successive shifted DTW grids, but when test
and reference gestures are different. Again, the matching
scores obtained in this latter figure are worse than the scores
obtained in the former one.

Figure 8. Normalized Accumulated Distance Matrices for
successive shifted DTW grids (different gestures)

Finally, the overall gesture recognition module has been
implemented as a Max/MSP external (see Figure 9), which
includes the ”multi-grid” DTW algorithm, as well as the
pre- and post-processing stages described hereafter. It also
evaluates and displays the time compression/expansion ra-
tio, providing feedback to the artist (e.g. during rehearsals).

3.2 Pre-processing and distance metrics

The pre-processing of the sensors data and the calculation
of the local distances are not part of the DTW algorithm
itself, but their computation is a preliminary stage, briefly
explained in this subsection.

The current version of our system implements a down-
sampling stage (with a factor 4), preceded by a lowpass fil-
tering step, and uses the L1-distance, whose computation is
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Figure 9. num.dtw Max/MSP external

very efficient as its expression is made of a (weighted) sum
of the absolute value of differences. During this calculation,
the sensors data are weighted, as some of them are varying
within completely different ranges of values and expressed
in different units (e.g. accelerometer data ±2g and angular
velocity ±500◦/s). The easiest way consists in normalizing
the samples axis per axis (e.g. dividing them by 2 and 500,
respectively).

3.3 Post-processing

In the current Max/MSP implementation, the post-processing
consists in selecting, at each moment, the gesture with the
lowest normalized accumulated distance and validating its
recognition if this value is below a user-defined global thresh-
old.

3.4 Preliminary results

We first tested our ”multi-grid” DTW algorithm offline, on a
small database composed of recordings of 44 isolated dance
gestures (with a sampling period of 8ms). Each individ-
ual unsegmented test gesture was compared with each seg-
mented reference gesture.

As a result of all these pair-wise comparisons, we ob-
tained a ”pseudo confusion matrix” (Figure 10), the small
amount of recorded data preventing us from deriving actual
statistics. However, one can see that the main diagonal is
in blue colour, because each gesture is very similar to itself,
and the blocks of blue pixels are explained by the presence

Figure 10. Gesture ”pseudo confusion matrix”
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of several occurences of the same gesture in our database.
This representation allowed us to examine the ambiguity
between some different pre-defined gestures and to get in-
formation about an appropriate fixed global threshold or a
series of gesture-based threshold values.

Our DTW algorithm was also used in a second applica-
tion. The sensors were attached to the wrists of the second
author and a dozen of left and/or right arm movements were
successfully recognized in real-time. The post-processing
was slightly modified into an N-best strategy (N = 3), that
is, displaying continuously the three best matched gestures.
However, the correct gesture was always classified in first
position, except when the execution was too fast (e.g. more
than two times faster, while a factor 2 was the maximum
fixed by local and global constraints).

4 CONCLUSION AND FUTURE WORK

A real-time DTW-based gesture recognition tool has been
developed, with a great flexibility provided by its set of pa-
rameters (minimum and maximum expansion and compres-
sion ratios, ”window width”, sensor axes weights, user-
defined global threshold, etc.) and it has been successfully
tested on two different small databases. We are finalizing
the port of the external to Pd.

Algorithmic improvements include the addition of other
local constraints types (only equation 4 is implemented now)
and the ability to activate and/or deactivate specific refer-
ence gestures on the fly.

Some investigations are worth trying as far as the pre-
processing is concerned: e.g. removing the gravity com-
ponent to derive tilt-invariant features, testing different lev-
els of downsampling, applying nonlinear quantification, etc.
Some work could also be accomplished to improve post-
processing: the single global distance threshold might be re-
placed by gesture-dependent threshold values and the mea-
sured time expansion/compression ratio could be taken into
account.
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