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ABSTRACT

This paper describes a novel system that combines machine
listening with evolutionary algorithms. The focus is on free
improvisation, wherein the interaction between player, sound
recognition and the evolutionary process provides an over-
all framework that guides the improvisation. The project is
also distinguished by the close attention paid to the nature
of the sound features, and the influence of their dynamics
on the resultant sound output. The particular features for
sound analysis were chosen in order to focus on timbral and
textural sound elements, while the notion of “sonic gesture”
is used as a framework for the note-level recognition of per-
former’s sound output, using a Hidden Markov Model based
approach. The paper discusses the design of the system, the
underlying musical philosophy that led to its construction
as well as the boundary between system and composition,
citing a recent composition as an example application.

1 INTRODUCTION

In the context of free improvisation, the language that per-
formers speak to one another and to the audience is devel-
oped throughout the course of a performance as well as re-
hearsal, listening to all facets of the sound that each player
produces. Timbral and textural sound features become strong
indicators of the musical form, and further it is the shape and
direction of these qualities through which performer’s speak
to one another, expressing their intention for the future as
much as their creation of the present moment or reaction to
the past.

With this in mind, we have developed an interactive sys-
tem for musical improvisation that analyzes the sonic con-
tent of performers, recognizes the nature of the sonic con-
tours being produced in real time, and uses this informa-
tion to drive a genetic algorithm. The output of this algo-
rithm may be mapped to sonic or visual processes, creating
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a feedback loop and interplay between performer, machine
recognition and a directed evolutionary process.

This particular choice of system design has arisen from
our personal experience as improvisers performing together
and with various other musicians, and observations made on
this mode of musical creation in general. In terms of design
constraints or what one might call “demands” of the system,
we built around the following features

1. A focus on timbral as well as textural information.
The former is clearly a strong building block for improvisers
defining their own performance language in concert. The
latter is more separable in time than timbre, and in more
sound-focused musics such as free improvisation becomes
a strong structural element that interplays with larger sonic
contours.
2. Sonic gestural undestanding.
We define note-to-phrase level sonic shapes as “sonic ges-
tures”, and feel that these convey the fundamental sense of
musical intention and direction in improvised music. In this
way, the refinement of the system focuses on the interplay
between the system’s response to this “immediate” informa-
tion and the nature of the output, rather than building recog-
nition of large-scale structural information that is less im-
portant in this context. In other words, the focus is shifted
in our system to the immediacy of sound awareness.
3. Continuous, on-line recognition with measure of cer-
tainty/uncertainty.
While many systems exists for recognition of musical tim-
bre, often the interest lies in the out-of-time acts of classi-
fying musical notes, excerpts, passages or pieces in a way
that is categorical. In contrast, our work builds an under-
standing or likely scenario of the type of sonic gesture that
is being played, with a continuous degree of certainty about
this understanding. In a sense, we are less interested in a
musical retrieval than using the process of musical retrieval
in a way that an improvising performer does, continually
updating their expectation.
4. Novel output from the system that is continuously influ-
enced by performer’s sonic gestures.
Our goal was a system that would continuously produce
spontaneous, novel, and what one might call “creative” events
at the same relatively low level on which we focus for anal-
ysis and recognition. Therefore we explored the use of pro-
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cesses that were directed while being under the influence of
randomness.

With these design constraints in mind, we have arrived
at a system in which continuous recognition of textural and
timbrally-focused sonic gestures are recognized with vary-
ing degree of probability and confidence. This understand-
ing then directs an evolutionary process that is finally mapped
to an appropriately-defined system output. The sound anal-
ysis, gestural recognition and search process together are
considered as an agent that reacts to the musical situation,
influencing it by some output which is treated as an applica-
tion of the agent rather than an inherent part of it.

2 RELATED WORK

There are several well-known examples of interactive sys-
tems for improvisation. One of the most prominent and
musically successful is George Lewis’ Voyager system [8],
which converts pitch to MIDI data in order for various inter-
nal processes to make decisions depending on the harmonic,
melodic and rhythmic content before producing symbolic
output to interact with the human performer. Similar work
can be see in Robert Rowe’s Cypher system [11], which
explores musical cognition and theory to form structuring
principles based again on analysis of MIDI data. There ex-
ist other examples of MIDI/symbolic music content analysis
systems, and the reader is directed to [11] as one point of
reference.

As noted, our current system differs in that we exam-
ine continuous signal-level timbral/textural features to drive
system output so that the system adapts to the changing au-
dio content – as in [7] or [9] – with added layers of com-
plexity from sonic gesture recognition and evolutionary pro-
cesses. Another approach to analysis of sonic gestures was
taken in [6] in which parameter curves for pitch, loudness,
noisiness, roughness, etc. were extracted, with captured se-
quences being stored in a database in order to drive synthe-
sized gestures having similar timbral contours. In this way
the system is similar to the musical gesture-driven process-
ing of [10], with the added layer that out-of-time gestural
inflection drives the system rather than direct online parame-
ters. Our system shares the conviction that sonic gestures are
important in human-machine interaction for improvisation.
However we differ in that the recognition itself is on-line
with our system, and continual adaptation to the anticipated
gesture is used as an element of the machine intelligence.

Finally, while the evolutionary paradigm has been widely
used for algorithmic composition and sound design, there
have also been several approaches to using evolutionary al-
gorithms in an improvisational context. Biles’ Genjam sys-
tem [2] used an interactive genetic algorithm (GA) to evolve
a system that learns to play jazz music along with a solo hu-
man player. The goal is to use the GA as a means to evolve
the final state, while our interest is in the GA process itself

as engaging with performer in improvisation. In a similar
spirit is the work of [3], in which pitch values become cen-
ters of attraction for a swarm intelligence algorithm, produc-
ing a melodic stream that moves about these input values.
Our system shares the interest of mutual influence between
evolutionary/biological process and performer’s sound out-
put, while we focus on dynamics of recognition as an added
layer to help guide this process.

3 SYSTEM OVERVIEW

The overall system, depicted in Figure 1, was written in
Max/MSP utilizing several custom externals as well as the
FTM, Gabor and MnM packages from IRCAM. In the first
step, the system continually extracts spectral and temporal
sound features. At the same time, onsets and offsets are
tracked on a filtered version of the signal, which act as dis-
crete cues for the system to begin recognizing sonic ges-
tures. When such a cue is received, a set of parallel Hidden
Markov Model (HMM) based gesture recognizers follow the
audio, with the specific number of these being chosen as a
product of needed resolution as well as processing power.
The recognition continually provides a vector of probabil-
ities relative to a “dictionary” of reference gestures. Pro-
cessing on this vector extracts features related to maximum
likelihood and confidence, and this information drives the
fitness, crossover, mutation and evolution rate of a GA pro-
cess acting on the parameter output space.

3.1 Sound Feature Analysis

The goal of the system is not to recognize a given sound
quality absolutely, but rather to differentiate between sounds
made by a performer along a continuum in several dimen-
sions. In particular we believe that in the free improvisa-
tion context that is our focus, that global spectral features
related to timbre are important for an immediate parsing
of sound, with further qualitative differences coming from
textures that are more separable in time and acting over a
larger time scale (e.g. less than 20ms vs. 20-1000ms). Sim-
ilarly, rather than the specificity of pitch values, the relative
strength or “pitchness” of a note becomes important, as well
as its register. In light of this we employed features that
can be broken down into global spectral, pitch strength and
textural.

For the first group we extract Spectral Centroid and Spec-
tral Deviation. The first is a commonly-used feature that has
proven to be a strong perceptual correlate of timbral bright-
ness in distinguishing between sounds, while the second
provides a useful means of differentiating between spec-
trally dense or sparse sounds. Deviation is calculated from
the second order central moment of the power spectrum.

For the pitch strength features we use the robust Yin model
[4], extracting Frequency, Energy, Periodicity and AC Ratio.
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Figure 1. System Overview including feature extraction,
recognition and mapping to GA process. The input param-
eters are used to tune the temporal response of system, and
can be used to update this in real-time.

Periodicity provides a degree of “pitchiness”, used as a mea-
sure of the confidence in the pitch estimate, while AC ratio is
a qualitatively different measure of regularity, coming from
the ratio of the first two autocorrelation coefficients.

The textural quality of the gestures is examined using the
3rd and 4th Order Moments of LPC Residual. As was dis-
cussed in [5], higher order moments from the excitation de-
scribe jitter properties of this signal, which relate to non-
linear frequency modulations of sustained partials and so to
textural phenomena. Therefore we extract the residual value
by way of LPC analysis, and compute 3rd and 4th order mo-
ments on these values in order to differentiate between dis-
parate musical textures. We have found that this measure is
very useful in separating voiced and unvoiced content.

3.2 Onset/Offset Detection

Our system uses onsets and offsets as cues to indicate that
a relevant event may have begun/ended, with the final de-
cision of whether an event is relevant being determined in
the recognition stage. Rather than model onset detection
for particular types of events, we employ a straightforward
approach that uses tuning parameters for thresholds and re-
sponse time. Specifically, we utilize the levelmeter object
from Max/MSP - which models a VU-style meter - to pro-

duce an RMS value of the input sound. The purpose of
using this object is that allows for tuning the ballistics of
attack/decay times, which strongly influences the onset de-
tection. After extracting the smoothed value, the difference
of successive values is taken, and if this difference is greater
than a given threshold an onset is considered to have oc-
curred. The same is done in the opposite direction with off-
set detection. This is represented in Figure 1 as the first two
stages of the left-most signal path. When an onset has been
detected, it opens up a gate which causes the system to be-
gin searching for sonic gestures that it may recognize from
the audio stream. The way that the individual gates close
depends either on an offset cue or on other factors related to
the recognition as we will discuss in section 3.3.4.

3.3 Sonic Gesture Recognition

Our sonic gesture recognizer is built on the efficient gesture-
follower [1] modules from the MnM library developed at
IRCAM. This implementation uses an HMM and dynamic
time warping to follow as well as recognize gestures in real-
time. While there are some trade-offs made with this imple-
mentation for efficiency and to allow use with a low number
of training examples, we have found it to work well in light
of our requirements 2 and 3 as stated in the introduction.
These modules work on any data that one can represent in
matrix form, leading us to adapt them for our sonic recogni-
tion stage. We use all eight of the employed sound features
as a singular multidimensional gestural representation, pro-
ducing a vector that will represent one state in the underly-
ing HMM model, defined using a left-to-right state topology
as is standard in applications such as speech recognition.

3.3.1 Gestural Dictionary

The gestural follower requires training examples as a basis
for future comparisons. Our interest is not to provide exem-
plary gestures that performers must later try to recreate - and
in this sense perhaps our approach is an outlier for HMM-
based recognition. Rather, our goal is to populate a space of
gestures that represent a general playing style, in disparate
parts of “gesture space”. That is, these sonic gestures should
be orthogonal in some musical sense, and this is regarded as
part of the composition for the system. From experience
of using the follower implementation, however, two impor-
tant considerations arise: the gestures should be roughly the
same length and there is a complexity limit (total of number
of states in the database) beyond which adding new gestures
makes recognition impossible.

3.3.2 Continuous, Dynamic Attention

After the recognizer is trained on a set of gestures, it is ready
to accept vectors of the same type for comparison, provid-
ing a probability for each member of the gestural dictio-
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Figure 2. Output probability vectors. Top value shows
strong certainty for one gesture while bottom shows con-
fusion over three possible gestures.

nary given the current input. In order to define the temporal
boundaries of a gesture from the current input, the recog-
nizer must be explicitly started and stopped, which we initi-
ate with onsets. Most importantly, once a start message has
been given the probabilities are updated in real-time for each
member of the gesture space, providing a form of dynamic
attention. This is important in the context of improvisation,
where one’s expectation of what a sonic gesture is at any
given moment is continually being updated. We use this in-
formation to drive system output, thereby mapping this dy-
namic attention into action as an engaged improviser would.

3.3.3 Probability Dynamics Processing

From the raw probability values for each gesture, we ex-
tract the normalized probability, the maximally-likely ges-
ture and the deviation between the maximum and the few
highest values. These latter values each give some indica-
tion of how strongly the system believes that the performed
gesture is one from the system. Both values are needed to
know uniqueness as well as strength of recognition, as illus-
trated by Figure 2.

At the same time, instantaneous recognition values are
not enough in order to usefully map the dynamics of recog-
nition, as the HMM produces sudden changes in the prob-
ability vector. For stable gestures this is normally a slow
oscillation between perceived values, but occasionally the
recognizer will change course abruptly. Therefore, a leaky
integrator is applied to the extracted maximum mk,i and de-
viation values dk,i to create a confidence value defined as

Cn,i = δ(mn,i − mn−1,i)
n∑

k=0

2
−1

λk,i (mk,idk,i).

This represents a building of confidence in a given ges-
ture’s likelihood over time n for gesture space i. If the
maximum probability value changes abruptly between two
members (i.e. if a strong “change of mind occurs”) then
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Figure 3. Probability dynamics for three most-likely ges-
tures and related confidence level.

the integrator is cleared by the binary δ function. Other-
wise, the value decays smoothly as determined by the re-
sponse time λn,i. Figure 3 illustrates a situation in which
uncertain movement keeps the confidence value low until
this subsides, when the confidence begins to build.

3.3.4 Parallel Gestural Spaces

Although the follower does use dynamic time warping in or-
der to provide a best guess of the gestural scale, the imple-
mentation is limited by the need to have similarly-sized ges-
tures in a given dictionary. Further, it is not trivial to track
the beginning and ending of gestures along differing tem-
poral scales in one analysis, as well as to make decisions on
what is considered a meaningful gesture as exceptional play-
ers often embed one type of gesture within another. In order
to examine these different levels of granularity, we create
gestural spaces that act on different time scales in parallel,
as noted in the diagram of Figure 1. The generality of the
diagram reflects the fact that the number may vary depend-
ing on computing power and musical context, while we have
found that using three different temporal scales has been ad-
equate for our own purposes thus far.

As noted we use onsets as a way to cue the recognition
process. When an onset is detected, recognition is trig-
gered using the shortest database of sonic gestures. If the
smoothed maximum value stays below a given threshold,
then the recognition stop after µi seconds, which represents
half of the average length of gestures from the ith set. Other-
wise, recognition ends after Mi, the maximum time over all
gestures in i. If no offset is detected, then the next N−1 lev-
els of recognizer immediately begin searching their databases.
If the accumulated confidence value Cn,i for space i is not
above a given threshold by µi, then the recognizer is re-set
to the beginning. Otherwise it is reset when Mi is reached.
For example, Figure 3 represents gestures from a database
where the average gestures length is 5 seconds, and µi =
2.5. In the initial portion from 0-1 seconds there is devia-
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tion between the three main gestures so that confidence Cn,i

remains low. However it increases rapidly after one gesture
asserts itself, easily passing any threshold the user may set.
If µi were instead 1 second, then the system would likely be
reset as confidence would be below any threshold value.

3.4 Gesture-Driven Evolutionary Process

While sonic gesture recognition is an important part of our
system, as noted it is ultimately the process of recognition
and understanding that is central to its musical behavior.
The goal is to have a continuous interplay between this pro-
cess and an output that guides performers in a feedback
loop as they in-turn guide this system. We have utilized
genetic algorithms as a goal-directed process that moves in
a globally predictable direction while maintaining random
elements on a local scale. Rather than set the goal a pri-
ori as one commonly would in a GA used for optimization
purposes, the “goal” changes as a product of the system’s
gestural recognition and confidence.

The underlying parameter space for our GA implemen-
tation is tied to the size of the gestural spaces employed.
As noted there is a limit to the size of each gestural space,
which we have found to be between 20-30 depending on the
time scale of the gestures. At the same time, the required
population size for a GA implementation is a product of the
problem complexity for optimization purposes. For our ap-
plication to real-time improvisation, we have found spaces
as small as 20 members to be effective in moving towards a
perceptible goal.

The reason that we constrain the population size to that
of the gestural space is that each member of the gene pool
is treated as an ideal output that should arise when a given
sonic gesture is believed to be present. Therefore, if a per-
former “plays into” a certain known gestural type, the sys-
tem will strongly recognize this and move the GA towards
an output that is intended for this type of playing. The way
that we achieve this is by mapping the probability for each
gesture in a dictionary into the fitness for the corresponding
member of the GA population. Thus, for example, in figure
2 if the top probability vector were in steady-state, then the
GA would converge towards the member associated with the
highly-probable member located in the center of the image.

While belief in a particular gesture causes output to con-
verge towards a particular parameter set, the dynamics of
this convergence are determined by the confidence value. As
the confidence raises, the probability of mutation (random-
ization of output parameters at crossover step) as well as the
depth of mutation (degree of randomization) decrease. Tak-
ing the example from figure 3, the fitness value would os-
cillate as a function of the three probability curves while the
mutation rate would be high due to the low confidence. This
would cause the members selected for breeding to move
into new areas of the parameter space. After the inflec-

tion point – when one gesture begins to dominate and the
confidence level starts to rise – the space would move to-
wards the highly-probable level, with less mutation applied
at each new generation. The rate of each generation (“rate
of evolution””) is context sensitive, being controlled by the
confidence level for large-scale gestures or by onsets for
small-scale gestures. The relative nature and dividing line of
“small” vs. “large” gestures is a product of musical context.
The reason for making this distinction is that we have found
that short, attack-focused gestures that occur with higher
frequency can evolve the space at a reasonable rate, and ap-
pear more musical as the change in output is tied to musical
events. Longer-scale gestures do not drive the space at a
fast enough rate. Further, improvisation and other sound-
focused music tends to listen for internal developments “in-
side” a given sound gesture as it unfolds, so that evolution
of system output should not be tied to the initial moment of
attack.

As with the gesture-follower, the GA implementation is
built up from abstractions written in Max/MSP, while the
core GA itself is a C external programmed with operators
that are unique to our application. This external is instanti-
ated with messages for population and member size. Each
member is a string of float values in the range 0-1. A list
of fitness values may be input – one for each member –
and a bang message causes a random sampling of members
of the population (with selection probability proportional to
fitness) for mating/crossover. A simple one-point crossover
occurs between members at a random location in the param-
eter list. This GA implementation is categorical in that each
member is tied to a particular member in the corresponding
gestural dictionary. Therefore, rather than using a random
replacement operator, care must be taken in order to replace
the proper parent from a previous generation with its chil-
dren, where the children inherit the fitness of the parent until
the recognition assigns a new value.as

4 CASE STUDY: ACOUSTICS/ELECTRONICS
TRIO

The premiere of our system in concert was in the context of
a new piece written by the first author for the New York City
Electroacoustic Music Festival (NYCEMF) 1 . The piece was
written for saxophone, accordion and laptop performer. The
electronics capture the sound of the acoustic performers in
real-time and transform them in order to define new sonic
gestures having their own timbre and texture. The soft-
ware system is a granular feedback-delay system written by
the first author as a performance tool, where input sound
may be scrubbed (via gestural control), time-stretched and
novel transformations applied through per-grain processing
and feedback-delay coupled with larger-scale (e.g. 5-15 sec-

1 http://www.nycemf.org/ - last accessed on June 8th, 2009.
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Figure 4. Gesture recognition to GA mapping. Composi-
tional choices are reflected, such as onsets to drive space 1,
and choice to mix or gate (depending on section) space 2
and 3 output depending on confidence values.

onds) delay modulations that return as independent gestures
rather than transformations on previous material. The struc-
ture of the piece was centered around how the sonic gestures
and sound processing should co-evolve over time, and how
much influence the agent exerted over the human electronics
performer. As such, “composing” took on several meanings.

The choice of sonic gestures with which to train the agent
was one of the strongest compositional choices. This de-
fined the central gestural types that the performer could then
choose to “play into”” or to “play around”. The system used
1, 5 and 10-second gestural spaces in parallel. The short
gestures focused on a variety in regards to brightness and
pitch material, while the 5-second gestures defined different
textural values in terms of voiced vs. unvoiced qualities and
rough vs. smooth tones. The 10-second gestures defined
forms that one might call phrases: differentiating between
fast, stunted patterns and slower drones, having different
timbral qualities.

A second compositional choice was made in terms of the
type of processing to map to each gesture space. The desire
was for shorter gestures having sudden attack to lead to a
variable number of output gestures that related timbrally to
the input while having their own unique gestural character.
This was achieved by mapping this smallest gestural space
to sound parameters that controlled an array of modulating
delay lines each with a unique modulation function, wherein

the number of active delay lines, their modulation rate and
depth, and memory size (i.e. how far back in time to look for
input) were controlled by the agent. Meanwhile, medium
and large-scale gestures were mapped into the granular pa-
rameters related to grain size, rate, inter-grain phasing, per-
grain feedback gain and delay time as well as interpolation
time between parameter changes. In this way, the extended
gestures with slower attack could be scrubbed by the lap-
top performer or time-stretched automatically depending on
the section, while the internal characteristics of the granular
processing evolved at a rate that depended on the anticipated
length of the gesture (i.e. whether driven from the 5 or 10
second gesture spaces). This application illustrates one of
the great strengths of our system: that a particular gestu-
ral type can be mapped into a sound processing parameter
set that is tailored to its dynamic sonic character. The na-
ture of the sound processing can then be changed for differ-
ent temporal scales of sonic gesture. Therefore, rather than
content-based processing where the audio quality directly
determines the transformation type (as in e.g. [10]), we have
added the layer in which the processing type is determined
by the audio feature content (indirectly) and type of gestu-
ral dynamics (directly) that the system believes is occurring,
creating an appropriate interplay for improvisation.
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