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ABSTRACT

This paper proposes a pattern classification approach to de-

tecting the pitches of multiple simultaneous sounds. In or-

der to deal with the octave ambiguity in pitch estimation, a

statistical classifier is trained which observes the value of a

detection function both at the position of a candidate pitch

period and at its integer multiples and submultiples, in order

to decide whether the candidate period should be accepted

or rejected. The method improved significantly over a refer-

ence method in simulations.

1 INTRODUCTION

A fundamental problem of basically all pitch detection func-

tions (such as the autocorrelation function) is that they do

not show a peak only at the position of the true pitch, but

also at twice and half the correct pitch, and often at all mul-

tiples and submultiples of it. This ambiguity is particu-

larly challenging in multipitch detection where the detection

function easily becomes congested with spurious peaks due

to the ambiguity associated with each component sound.

To tackle the problem, multipitch estimation methods typ-

ically search for a set of pitch frequencies that best explain

all the peaks in the detection function. Both joint estimation

of multiple pitches and iterative detection and cancellation

have been proposed (see [1, 2] for a review). A limitation

of many of these techniques is that they produce a discrete

set of detected pitch values, not a continuous function which

would show the likelihoods of all pitch candidates within a

given range. The latter would be more desirable for feature

extraction purposes, where the actual detection stage is post-

poned to processes that look at a larger time scale and may

include musicological constraints.

In this paper, we investigate a classification approach to

pitch analysis. This approach has been previously investi-

gated by Ellis and Poliner in [3], but they considered the

multipitch analysis for a specific instrument (piano) and the

applied technique was different from the present one.
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Figure 1. Overview of the method. See text for details.

2 METHOD

Figure 1 shows an overview of the proposed method. The

first two steps, spectral whitening and harmonic transform,

can be seen as preprocessing to distill information that is rel-

evant for pitch detection. The steps are similar to the front-

end used in [4] and produce a pitch salience function s(τ)
where peaks indicate potential pitch periods in the input.

The latter two steps, feature extraction and classification,

constitute the core of the method proposed here. They pro-

duce an enhanced salience function z(τ), where the peaks
that correspond to correct periods are emphasized and ex-

traneous ones are suppressed.

2.1 Level normalization and spectral whitening

The input audio signal x(n) is blocked into 93 ms anal-
ysis frames that are processed independently. The signal

within each frame is Hamming windowed, level-normalized

to unity variance, zero-padded to twice its length, and then

discrete Fourier transformed to obtain spectrum X(k).
Spectral whitening, or flattening, is applied on X(k) in

order to suppress timbral information and thereby make the

subsequent pitch analysis more robust to various sound sources.

This is achieved by calculating power σ2
c of the signal within

critical-band subbands c and by scaling the signal within
each band by γc = σν−1

c , where ν = 0.16 is a parameter de-
termining the amount of whitening. The resulting whitened

magnitude spectrum is denoted by Y (k).

2.2 Harmonic transform

A harmonic transform is applied on the spectrum Y (k) in
order to calculate the saliences s(τ) of pitch period candi-

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 225



dates τ :

s(τ) =
H∑

h=1

g(τ, h) max
k∈κτ,h

Y (k), (1)

where the set κτ,h defines a range of frequency bins in the

vicinity of the h:th overtone partial of the pitch candidate
fs/τ (fs denoting the sampling rate) andH = 20. More ex-
actly, κτ,h = {!hK/(τ + ∆τ/2)" , . . . , !hK/(τ − ∆τ/2)"} ,
where !·" denotes rounding to the nearest integer, K is the

length of the Fourier transform, and ∆τ = 0.5 denotes the
spacing between successive period candidates τ .
The weights g(τ, h) are defined after [4] and are of the

form g(τ, h) = (fs/τ+ε1)/(hfs/τ+ε2), where ε1 = 52Hz
and ε2 = 320 Hz. Note that the weights reduce to 1/h if the
moderation terms ε1 and ε2 are omitted.

2.3 Feature extraction

Peaks in the salience function s(τ) are useful for indicating
potential fundamental frequencies in the input signal. How-

ever, a pitched sound in the input does not only produce a

peak at the corresponding pitch period τ , but also at multi-
ples and submultiples of τ , complicating the pitch detection.
In order to do the detection more robustly, we observe

s(τ) at the candidate period τ , but also at its multiples and
submultiples. Let us define a vector aτ :

aτ = [1, s(τ), s(2τ), . . . , s(Jτ), s(τ/2), s(τ/3), . . . , s(τ/J)]T

where J = 5 is the maximum (sub)multiple of τ considered.
The length of aτ is 2J . We then form a feature vector

vτ =





b0(τ)aτ

b1(τ)aτ

.

.

.

bM−1(τ)aτ





where bm(τ) = [log(τ + 1)]m, m = 1, . . . , M , are basis

functions that depend on the period τ and allow the subse-
quent statistical model to treat short and long periods differ-

ently. The length of vτ is 2JM .

From here on, we consider data from different analysis

frames and use vi,τ to denote the feature vector correspond-

ing to period candidate τ in frame i. For the purpose of
training, we collect vi,τ corresponding to the true periods in

each frame, plus those corresponding to the 20 next-highest

“false” peaks in s(τ). The vectors vi,τ in different frames

and for different τ are stored as columns in a large matrix
V. The matrix is then processed by removing the uppermost
row which is b0(τ) · 1 ≡ 1 at all columns. The rest of the
rows are normalized to zero mean and unity variance. The

resulting normalized matrix is denoted byW. The columns

ofW correspond to individual feature vectors, wi,τ .

Finally, a linear transform is employed to decorrelate the

features and to reduce their dimensionality. We tested prin-

cipal component analysis (PCA) and linear discriminant anal-

ysis (LDA) for this purpose. They both produce a transform

matrixA of size ((2JM−1)×D). The transformed feature
vectors ui,τ with dimensionality D are obtained by

ui,τ = ATwi,τ . (2)

2.4 Classification

Gaussian mixture models (GMMs) are used to classify the

peaks in s(τ) either as “true” or “false” pitch periods. A
GMM is defined as

p(ui,τ |θ) =
J∑

j=1

βjN (ui,τ ;µj ,Σj), (3)

where N (u;µ,Σ) denotes Gaussian distribution with mean
µ and covariance Σ. The shorthand θ = {βj , µj ,Σj} is
used to refer to all the parameters of a GMM.

Two GMM models are trained, using the feature vec-

tors corresponding to the “true” and “false” periods, respec-

tively. The resulting model parameters are denoted by θT
and θF, respectively.
Enhanced salience zi(τ) of period candidate τ in frame i

is then defined as

zi(τ) = log p(ui,τ |θT) − log p(ui,τ |θF). (4)

The above formula calculates salience as the difference of

the log-likelihoods for the two models. It is important to use

the model for the false peaks as a “background” model in

(4): including only the first term on the right-hand side of (4)

would give a low salience for an exceptionally strong peak

since it does not fit ideally to the model of true peaks. Calcu-

lating the salience as the difference between the two models

corrects this problem, since these exceptionally strong cases

are even less likely in the background model.

3 RESULTS

The proposed method was tested on mixtures of 1, 2, 4, and

6 simultaneous sounds, randomly mixing sounds from 32

different musical instruments. Half of the data was contam-

inated with random drum sounds using 0 dB SNR. The mod-

els were trained using 2600 sound mixtures and tested using

a set of 1300 different mixtures. The results are averaged

over the test cases.

Instrument samples were obtained from the McGill Uni-

versity Master Samples collection, the University of Iowa

website, IRCAM Studio Online, and by making indepen-

dent recordings for the acoustic guitar. Instruments repre-

sented are the piano, the guitar, mallet percussions (marimba,

vibraphone), brass and reed instruments, strings, and flutes.
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Figure 2. The left panel shows precision and recall for the

proposed method with LDA (solid line), with PCA (dotted

line) and for the baseline method (dashed line). The right

panel shows F-measure as a function of precision.
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Figure 3. Recall and F-measure as a function of precision

for the proposed method with LDA. The four curves from

top to down correspond to polyphonies 1, 2, 4, and 6.

Figure 2 shows precision, recall, and F-measure for the

proposed enhanced salience function z(τ) and, for compar-
ison, for the raw salience function s(τ) used in [4] (here
the iterative pitch detection and cancellation was not em-

ployed). The results were obtained by fixing a threshold

value T , picking all the peaks above the threshold from all
the frames, and then calculating the resulting precision π,
recall ρ, and F-measure ϕ = 2πρ/(π + ρ). As can be seen,
the proposed method improves significantly over the base-

line method.

Figure 3 shows how the recall and F-measure behave

in different polyphonies, varying the number of concurrent

sounds from 1 to 6. The number of concurrent sounds in

the mixtures was not given, but a single threshold value was

again used (common to all polyphonies) and peaks above the

threshold were picked from the enhanced salience function.

4 CONCLUSIONS

The proposed method for calculating pitch salience improved

significantly over the baseline method in simulations. Fur-

thermore, LDA reduces the feature vector dimensionality to

one and does not require more than one Gaussian in the

GMM. This means that the proposed method is computa-

tionally efficient and can be applied at all points of the raw

salience function s(τ), not only at the positions of the main

peaks. This is particularly useful for smooth pitch content

visualization and feature extraction purposes.
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