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ABSTRACT

In a stereophonic music production, music producers seek
to impart impressions of one or more virtual spaces upon
the recording with two channels of audio. Our goal is to
map spaciousness in stereophonic music to objective sig-
nal attributes. This is accomplished by building predictive
functions by exemplar-based learning. First, spaciousness
of recorded stereophonic music is parameterized by three
discrete dimensions of perception—the width of the source
ensemble, the extent of reverberation, and the extent of im-
mersion. A data set of 50 song excerpts is collected and
annotated by humans for each dimension of spaciousness.
A verbose feature set is generated on the music recordings
and correlation-based feature selection is used to reduce the
feature spaces. Exemplar-based support vector regression
maps the feature sets to perceived spaciousness. We show
that the predictive algorithms perform well on all dimen-
sions and that perceived spaciousness can be successfully
mapped to objective attributes of the audio signal.

1 INTRODUCTION

Auditory spatial impression, or the concept of type and size
of an actual or simulated space [1], helps a listener form
judgements about auditory events and where those events
occur. In natural acoustic settings, the relative positions of
sound sources to each other, the relative positions of sound
sources to a listener, the listener’s and sources’ relative po-
sitions to the surfaces of the listening environment, and the
physical composition of the structures that form and fill the
listening environment are factors that contribute to spatial
impression.

In a stereophonic music production, music producers seek
to impart impressions of one or more virtual spaces upon
the recording with two channels of audio. Spatial cues are
captured, manipulated, and added in order to provide the lis-
tener with impressions of simulated acoustic spaces, whether
intentionally natural or unnatural sounding. The artful han-
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dling of these cues by producers can affect enjoyability of
the listening experience.

Our goal is to successfully predict the spatial impression
that stereophonic recorded music imparts. A robust predic-
tive system can empower music producers, listeners, and
consumers with perceptually meaningful ways to evaluate,
manipulate, and manage their music. Top-down controls for
spaciousness may help music makers sculpt their sound. Ca-
sual listeners may customize their experience by using “spa-
ciousness” controls similar to the EQ controls ubiquitous in
consumer reproduction systems. By giving humans such re-
sources, the music making and listening experience will be-
come more flexible and interactive.

We set about our task by parameterizing the concept of
spaciousness with three dimensions. A data set of stereo-
phonic music recordings is collected and subsequently an-
notated for each dimension of spaciousness. We then use
exemplar-based learning to build functions that map objec-
tive measurements of digital audio to the annotated music
recordings.

We have structured this paper as follows: Section 2 gives
some background as to how others have dealt with spacious-
ness and describes our approach to predicting spatial im-
pression. In Section 3, we detail the processes of music
selection and annotation. Section 4 describes the learning
algorithms that are used and their parameterizations. The
algorithms are tested and subsequent results are discussed
in Section 5. We end with concluding remarks and sugges-
tions for future work in Section 6.

2 BACKGROUND AND APPROACH

Our approach is summarized in Figure 1. We begin with a
set of musical recordings and end with three spatial dimen-
sions, or “target concepts”—the width of the source ensem-
ble, the extent of reverberation, and the extent of immersion
(defined in Table 1). Prediction is accomplished by map-
ping subjective ratings to objective measurements by ma-
chine learning.

In this paper, we focus on three relations between lis-
tener and music—the source relation (width of ensemble),
the environment relation (reverberation), and the global re-
lation (immersion). They have been selected from an amal-
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Figure 1. Framework for predicting perceived spaciousness
of music recordings.

gamation of perceived attributes found in literature on nat-
ural acoustics and sound capture/reproduction. For both of
these areas, there is an implicit need to rate the spatial qual-
ity of such systems. To do so, researchers must know the
dimensions of spaciousness that are most salient to human
listeners and to have a means of evaluating spatial quality
along these dimensions.

In natural acoustics, spatial impression is divided into
two primary dimensions, Apparent Source Width (ASW)
and Listener Envelopment (LEV) [2, 3]. In sound capture
and reproduction, the dimensionality of spaciousness is fur-
ther demarcated. For example, [4] groups spatial attributes
into descriptions that are related to sources, groups of sources,
environments, and global scene parameters. We borrow from
the literature of both fields for identifying salient spatial di-
mensions. ASW is defined as “the apparent auditory width
of the sound field created by a performing entity” in [5] and
“ensemble width” is the “overall width of a defined group
of sources” in [4]. Both of these definitions connote one at-
tribute that entails the width of the source ensemble. The ex-
tent of reverberation is directly linked to LEV in [5]. How-
ever, we use “immersion” to describe an attribute that en-
capsulates several kinds of envelopment, as is done in [4],
and we treat immersion and reverberation independently, as
is done in [6].

Once we have defined the spatial dimensions, or target
concepts, we need a means of quantitatively evaluating them.
In natural acoustics, objective measurements have been sug-
gested numerous times, for example in [5] and [7]. Such
measures quantify acoustic properties of physical space and
relate these to perceived spaciousness. As recorded music
only represents physical space virtually, measurements like

• The “width of the source ensemble” of a sound is
how widely spread the ensemble of sound sources
appears to be.

• The “extent of reverberation” of a sound is the
overall impression of how apparent the reverber-
ant field is.

• The “extent of immersion” is how much the sound
appears to surround one’s head.

Table 1. Definitions of learning concepts.

these do not serve our goals. To the best of our knowledge,
the perception of spatial attributes has been addressed qual-
itatively, but not quantitatively, in sound capture and repro-
duction.

It is therefor necessary for us to newly construct a set
of annotated music recordings and determine a quantitative
relation. The target concepts cannot be divided into a se-
mantically meaningful finite number of categories, so we
impose a bounded arbitrary continuum and build a regres-
sion model for each concept. With the exception of listener
experience, perceived attributes discussed in the literature
are consistently related to sound sources or their environ-
ment, rather than personal properties like gender. These are
universal in nature and therefor support a model which maps
spaciousness to objective measurements of the recorded sig-
nal.

3 MUSIC SELECTION AND ANNOTATION

3.1 Music Selection and Segmentation

Fifty songs were selected from an online music database [8].
The songs were equally distributed across seven genre
groups: “Alt/Punk,” “Classical,” “Electronic-Dance,” “Hip-
Hop,” “R&B/Soul,” and “Rock/Pop.” An equal propagation
of chorus, verse, and bridge segments were spread across
the pool. A seven second segment was excerpted from each
of the songs. The duration was chosen, by informal eval-
uation, to be long enough to develop concrete impressions
of spaciousness, yet short enough to prevent much tempo-
ral variation in spaciousness within the excerpt. None of
the recordings were from commercially available songs; it
is therefore unlikely that songs would be recognizable and
induce bias during human annotation.

3.2 Labeling

Human subject studies were conducted online and in a lab-
oratory. In each, subjects were required to use headphones.
First, basic demographic data was collected. Participants
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were mostly experienced music listeners, but varied in coun-
try of residence, age, gender, profession, and other attributes
of demography. Subjects were given explicit explanations
and definitions of the dimensions that they were to evalu-
ate. For each of the terms, participants were asked to listen
to a non-musical mixture of sources (a room of applause).
This training phase was designed to give participants time
to familiarize themselves with the concepts and focus their
listening on a simple stimulus. The nonmusical recordings
exhibited the spatial dimensions but, to avoid pre-biasing
their judgments of spaciousness, participants were not told
how spacious the recordings were to be perceived.

Subjects were asked to rate, on a bipolar 5-ordered Lik-
ert scale from “Less” to “Neutral” to “More,” each of the
dimensions for each song. There were a total of 98 par-
ticipants providing 2,523 total ratings. Ratings were trans-
formed from a Likert space to a numerical space by assign-
ing the 5-ordered response categories integer values. For
each song and dimension, all responses that were at least 3
standard deviations from the mean were removed as outliers.
Any participant who had more than two outliers for a di-
mension was removed from that dimension. The responses
for each dimension were standardized to zero mean and unit
variance, and the mean for each dimension and song was
calculated. The pairwise correlation coefficient R was cal-
culated between ratings for the learning concepts. Width–
immersion R was 0.87 and reverberation–immersion R was
0.57. Concepts width–reverberation were the least corre-
lated, with a coefficient of 0.32, suggesting that subjects
perceived differences between these dimensions unambigu-
ously.

4 MACHINE LEARNING

A block diagram for building our objective-to-subjective map-
ping function is shown in Figure 2. At the beginning, we
have a large feature space that objectively describes the mu-
sic recordings. At the end, we have a support vector machine
that needs optimization to accurately predict subjective rat-
ings. In between, a correlation-based feature selection and
subset voting scheme are used to narrow down the feature
space. Then a grid search for the best parameterization of
the support vector regression function is conducted. Each
stage is described in detail below.

4.1 Feature Generation

A verbose set of attributes was batch-generated on the Left-
Right difference signal of the data set using the MIR Tool-
box [9] and two additional features. The batch-generated
features include many that are widely used, like MFCCs,
Spectral Centroid, and Spectral Flatness. The two addi-
tional features, which we have reported in [10], are non-
standard but describe spatial characteristics of a signal.

Category Feature
Dynamics RMS energy
Rhythm Fluctuation Peak Position*, Fluctuation Peak

Magnitude*, Fluctuation Spectral Centroid*, Tempo,
Tempo Envelope Autocorrelation Peak Position,
Tempo Envelope Autocorrelation Peak Magnitude,
Attack Time, Attack Time Onset Curve Peak Position*,
Attack Time Onset Peak Magnitude*, Attack Slope,
Attack Slope Onset Curve Peak Position*, Attack Slope
Onset Curve Peak Magnitude*

Timbre Zero-Cross Rate, Spectral Centroid, Brightness, Spec-
tral Spread, Spectral Skewness, Spectral Kurtosis, Roll-
Off (95% threshold), Roll-Off (85% threshold), Spec-
tral Entropy, Spectral Flatness, Roughness, Roughness
Spectrum Peak Position, Roughness Spectrum Peak
Magnitude, Spectral Irregularity, Irregularity Spectrum
Peak Position, Irregularity Peak Magnitude, Inhar-
monicity, MFCCs, ∆ MFCCs, ∆∆ MFCCs, Low
Energy*, Low Energy RMS, Spectral Flux

Pitch Salient Pitch, Chromagram Peak Position, Chromagram
Peak Magnitude, Chromagram Centroid, Key Clarity,
Mode, Harmonic Change Detection

Spatial Wideness Estimation*, Reverberation Estimation*

Summary
Functions

Mean, Standard Deviation, Slope, Period Frequency,
Period Amplitude, Period Entropy

Table 2. List of audio features, their categories, and sum-
mary functions. Features with an asterisk (*) only had their
mean calculated.

The first blindly estimates, through magnitude cancellation
techniques, how widely a mixture of sources is distributed
within the stereo field. The second uses the residual of a
linear predictor as an indicator of how much reverberation a
signal contains.

For most features, the recording was frame-decomposed
and feature extraction was performed on each frame. Some
features, such as Fluctuation, were calculated on the en-
tire segment. The frame-level features were summarized by
their mean and standard deviation. Additionally, their pe-
riodicity was estimated by autocorrelation, and period fre-
quency, amplitude, and entropy was calculated. The size
of the final feature space extracted from the recordings was
430 dimensions. The entire set of features, which can be
sub-divided into categories of Dynamics, Rhythm, Timbre,
Pitch, and Spatial, is listed in Table 2.

4.2 Pre-Processing

The feature space was normalized to the range [0, 1] and
transformed into a principal components space. The non-
principal components that accounted for the 5% least vari-
ance in the data set were discarded, and the data set was
transformed back to its original symbolic attribute space.
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Figure 2. Block diagram for building and optimizing the mapping function.

4.3 Feature Selection

For each target concept, Correlation-Based Feature Selec-
tion (CFS) was performed with a greedy step-wise forward
search heuristic. CFS chooses attributes that are well corre-
lated to the learning target, yet exhibit low intercorrelation
with each other. It has been shown to be good for filtering
out irrelevant and redundant features [11].

However, supervised attribute selection can over-fit at-
tributes to their learning concept when the same data set is
used for training and testing [12]. To minimize subset se-
lection bias, a percentile-based voting scheme with 10 ×
10-fold cross-validated attribute subset selection was per-
formed. Multiple cross-validation (CV) is a robust way of
estimating the predictive power of a machine when only a
small data set is available. As each fold generated a differ-
ent feature set, some features were selected more often than
others. For each run, features were placed in a percentile bin
based upon how many times that feature had been selected.
Up to 11 new data sets with monotonically increasing fea-
ture spaces were generated in this way.

Each feature space was then used to learn a non-optimized
support vector regression algorithm for each dimension. The
subset that performed the best for each learning concept was
voted as the final subset for further system optimization and
training.

4.4 Regression

For each concept, a support vector regression model was im-
plemented with the Sequential Minimal Optimization (SMO)
algorithm [13]. Support vector machines have shown to
generalize well to a number of classification and regression
tasks. Our support vector models employed a polynomial
kernel, K(x, y) = (< x, y > +1)p, chosen as the best in an
informal kernel search. Support vector machines perform,
to some extent, similarly well independent of kernel type if
the kernel’s parameters are well-chosen [14]. An exhaus-
tive grid search for the optimal values of the support vec-

tor machine complexity (C) and its kernel exponent (p) was
conducted after the optimal feature space had been selected.

5 EXPERIMENTS AND RESULTS

For each dimension of spaciousness, the best feature space
was found by using Multiple CV. Then we systematically
searched for the support vector parameterization that yielded
the lowest error for each concept. Success was evaluated by
relative absolute error (RAE), which is insensitive to scale.
RAE is the sum of all the errors normalized by the sum of
the errors of a baseline prediction function, Zero-R. Zero-R
picks the mean value of the test fold for every instance. An
error of 0% would denote perfect prediction.

Figure 3 shows the results of testing for the best feature
space percentile. All predictors show two local minima:
Width at the 20th and 50th percentiles; reverberation at the
10th and 40th percentiles; and immersion at the 20th and
70th percentiles. This indicates that there might have been
more than one optimal feature subset percentile to use. We
have chosen the percentile that yielded the lowest RAE for
the algorithm, without testing all local minima. The steep-
ness of the error curves between the 0 and 10th percentiles
shows that simply using the entire feature set without any
feature selection would greatly inhibit the performance of
the support vector algorithm.

The final test results are depicted in Table 3. The mean
absolute error (MAE), which is dependent on scale, was no
more than 0.11 for any of the predictors. The average MAE
for the Zero-R predictor is shown for comparison at the bot-
tom of the table. The predictive capability of each of the ma-
chines was well above chance, as indicated by the RAE. All
predictors had a correlation coefficient R of 0.73 or higher.
An R value of 0.0 would denote a complete lack of correla-
tion between the predicted and actual values. The predictor
for wideness of source ensemble performed the poorest, but
still well above chance. By all measurements of accuracy,
the predictor for extent of reverberation performed the best.
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Figure 3. Performance of non-optimized machine on mono-
tonically decreasing feature spaces.

Its coefficient of determination (R2) indicates that the func-
tion accounted for 62% of the variance in the test set.

A summary of the final feature subset percentile used for
learning each concept is shown in Table 4. While most fea-
tures are probably not individually useful, the correct com-
bination of features is. Features that were selected for more
than one learning concept are shown in boldface. The width
and immersion dimensions shared the most features in com-
mon; this is understandable, as these dimensions shared the
highest correlation among annotations. Selected features for
all three concepts were largely from the Timbre category.
We find it interesting that the reverberation predictor picked
three features from the Pitch category. We also note that the
spatial estimators for wideness and reverberation were auto-
matically chosen for the tasks of predicting source ensemble
wideness and extent of immersion.

The error surfaces for parameterizations of each of the
machines is shown in Figure 4. These surfaces show the
RAE for each value in our grid search for optimal C and p
values. It can be seen that the surfaces are not flat and that
a globally optimal parameterization can be found for each.
Yet they depict few local minima and are relatively smooth,
suggesting that other parameter choices in between the grid

Width Rev. Imm.
RAE(%) 62.63 67.20 64.36
MAE 0.11 0.10 0.11
R 0.73 0.79 0.76
R2 0.53 0.62 0.58
MAE (Zero-R) 0.19 0.17 0.18

Table 3. The final mean absolute error (MAE), relative ab-
solute error (RAE), correlation coefficient (R), and coeffi-
cient of determination (R2) of the learning machines are
given. The MAE for a baseline regression function, Zero-
R, is given for comparison. All results are averaged from
Multiple CV.

Concept Features
(%-tile)
Width
(50 %)

Tempo Envelope Autocorrelation Peak Magnitude
Period Frequency, Spectral Flatness Period Ampli-
tude, Wideness Estimation Mean, Reverb Estimation
Mean, ∆ MFCC Slope 5, ∆∆ MFCC Mean 11

Reverb.
(40 %)

MFCC Mean 3, MFCC Period Entropy 3, MFCC Slope
3, ∆∆ MFCC Period Amplitude 13, Key Clarity Slope,
Chromagram Peak Magnitude Period Frequency, Har-
monic Change Detection Function Period Amplitude,
Spectral Flux Period Amplitude, Pitch Period Ampli-
tude, ∆ MFCC Slope 10, ∆ MFCC Period Frequency
10, ∆ MFCC Slope 13

Imm.
(20 %)

MFCC Period Entropy 6, Spectral Centroid Period En-
tropy, Tempo Envelope Autocorrelation Peak Magni-
tude Period Frequency, Spectral Flatness Period Am-
plitude, Spectral Kurtosis Standard Deviation, Wide-
ness Estimation Mean, Reverb Estimation Mean,
Mode Period Entropy, Pitch Period Frequency, ∆ MFCC
Slope 7, ∆ MFCC Slope 5, ∆ MFCC Slope 11, ∆
MFCC Mean 11, ∆∆MFCC Mean 11

Table 4. Selected feature spaces after running on non-
optimized machine. Features in boldface were picked for
more than one learning concept.

marks would not have significantly improved results. It is
worth noting that the flattest error surface, that for extent of
reverberation, is also the one that performed the best, indi-
cating robustness against parameter choices.

6 CONCLUSIONS AND FUTURE WORK

We have presented a model for the automatic prediction of
spaciousness in stereophonic music. We first parameterized
the concept of “spaciousness” with the dimensions of source
ensemble width, extent of reverberation, and extent of im-
mersion. A verbose feature space of objective measure-
ments was generated on a data set of human-annoted mu-
sic recordings. Feature subset selection by percentile vot-
ing was used to narrow the feature space. The three target
concepts were effectively learned by support vector regres-
sion with a polynomial basis function, achieving a direct
mapping between signal attribute and subjective perception.
Prediction for the extent of reverberation performed the best,
while predictions for the wideness of the ensemble source
and the extent of immersion performed slightly poorer rela-
tive to reverberation. All concept predictions exhibited RAE
much better than chance.

This work is based on an assumption of independence
between the learning concepts. Future work will include
deeper examination of dimensional interdependency, explo-
ration of other regressors, kernels, and feature selection al-
gorithms, and increasing the size of our database.

The accuracies of the models suggest that objective mea-
surements of digital audio can be successfully mapped to
new dimensions of music perception. Such mappings may
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Figure 4. Relative absolute error surface for machine pa-
rameter grid search of kernel exponent p and machine com-
plexity C.

allow music producers to have more control over their do-
main, including feature-driven audio synthesis and percep-
tually meaningful sound-sculpting. In addition, this work
examines signal properties and perceptual attributes that can
be tied directly to studio production of recorded music. Spa-
ciousness is manipulated by the music engineer by applying
a number of recording and signal processing techniques. By
directly mapping signal attributes to the perceptual domain,
music producers may gain new resources for their trade. We
believe that the perceptual components of music listening
that are affected by processes that occur in the production
studio are a rich, yet under-exploited information stream to
harvest.
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