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ABSTRACT

This paper presents an empirical study of the performance
of final ritards in classical piano music by a collection of
famous pianists. The particular approach taken here uses
Friberg and Sundberg’s kinematic rubato model in order to
characterize the variability of performed ritards across pieces
and pianists. The variability is studied in terms of the model
parameters controlling the depth and curvature of the ritard,
after the model has been fitted to the data. Apart from find-
ing a strong positive correlation of both parameters, we de-
rive curvature values from the current data set that are sub-
stantially higher than curvature values deemed appropriate
in previous studies. Although the model is too simple to
capture all meaningful fluctuations in tempo, its parameters
seem to be musically relevant, since performances of the
same piece tend to be strongly concentrated in the param-
eter space. Unsurprisingly, the model parameters are gen-
erally not discriminative for pianist identity. Still, in some
cases systematic differences between pianists are observed
between pianists.

1 INTRODUCTION AND RELATED WORK

One of clearest manifestations of expressive timing in mu-
sic is the final ritard, the slowing down toward the end of a
musical performance to conclude the piece (or a part of it)
gracefully. Several models have been proposed to account
for the specific form of the ritard. These models typically
come in the form of a mathematical function that describes
how the tempo of the performance changes with score po-
sition. For example, Repp [9] found a quadratic function
of score position to adequately describe IOI’s measured in
28 performances. Honing [6] proposes a different kind of
model, that consists in the combination of two computa-
tional models, one for tempo tracking, and one for rhythmic
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categorization. This model, rather than describing a single
tempo curve, predicts the upper and lower boundary of the
range of acceptable tempo curves for ritards. Since the two
constituent models are intended to mimic perceptual pro-
cesses involved in human listening, this can be called a per-
ceptual model of expressive timing.

Another kind of models has arisen from the analogy of
expressive timing with physical motion [11, 10, 3]. For
example, Todd [11] describes a model for expressive tim-
ing where tempo is treated as the velocity of a particle that
moves under constant acceleration or deceleration, depend-
ing on its position. The physical position of the particle is
equated to score position with respect to phrase boundaries.
Also lead by the analogy with physical motion, Friberg and
Sundberg [4], derive a model for the velocity of human mo-
tion, when halting after running. An evaluation of the run-
ner’s stopping movement in terms of aesthetic quality yields
that stopping motion with approximately constant decelera-
tion power is rated highest. From the assumption of constant
deceleration power, they derive a model of tempo as a func-
tion of score time.

As pointed out in [5], models that are dependent only on
score position are incomplete in the sense that they ignore
any characteristics of the musical material that is performed.
Also, the physical motion metaphor ignores perceptual and
production aspects of music performance that are relevant to
the shaping of musical tempo [2, 5].

Nevertheless, the kinematic rubato models described above
predict the evolution of tempo during the final ritard quite
accurately, when matched to empirical data [4, 11]. An ad-
ditional advantage of the models is their simplicity, both
conceptually (they contain few parameters) and computa-
tionally (they are easy to implement).

In this paper we study the variability in the final ritards of
Chopin’s Nocturnes performed by multiple famous pianists,
using Friberg and Sundberg’s kinematic model. Rather than
validating the model on empirical data, we use the model
to learn about the data (as in [12]). More specifically, we
investigate whether the identity of the piece or the pianist
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is reflected in the parameters of the model. Given the sim-
plicity of the two-parameter model, the existence of such an
effect would be surprising, but would also shed some light
on the interplay of personal interpretative freedom on the
one hand, and performance practice and conventions on the
other.

The data used for the study is described in section 2. Sec-
tion 3 deals with the kinematic model and how it is applied
to the measured data. Results are presented and discussed in
section 4. Finally, section 5 states conclusions and remain-
ing work.

2 DATA

The data used here consists in measurements of timing data
of musical performances taken from commercial CD record-
ings of Chopin’s Nocturnes. The contents of the data set are
specified in table 1. We have chosen Chopin’s Nocturnes
since they exemplify classical piano music from the roman-
tic period, a genre which is characterized by the prominent
role of expressive interpretation in terms of tempo and dy-
namics. Furthermore, the music is part of a well-known
repertoire, performed by many pianists, facilitating large
scale studies.

Tempo in music is usually estimated from the interon-
set intervals of successive events. A problematic aspect of
this is that when a musical passage contains few events, the
obtained tempo information is sparse, and possibly unreli-
able, thus not very suitable for studying tempo. Therefore,
through inspection of the score, we selected those Nocturnes
whose final passages have a relatively high note density, and
are more or less homogeneous in terms of rhythm. In two
cases (Op. 9 nr. 3 and Op. 48 nr. 1), the final passage con-
sists of two clearly separated parts, both of which are per-
formed individually with a ritard. These ritards are treated
separately (see table 1). In one case (Op. 27 nr. 1), the best-
suited passage is at the end of the first part, rather than at the
end (so strictly speaking, it is not a final ritard).

The data were obtained in a semi-automated manner, us-
ing a software tool [8] for automatic transcription of the au-
dio recordings. From the transcriptions generated in this
way, the segments corresponding to the final ritards were ex-
tracted and corrected manually by the authors, using Sonic
Visualizer, a software tool for audio annotation and analy-
sis [1].

3 METHOD

As mentioned in section 1, we wish to establish whether the
specific form of the final ritard in a musical performance
is dependent on the identity of the piece being played, or
the performing pianist. We address this question by fitting
a model to the data, and investigating the relation between

the piece/pianist identity and the parameter values of the fit-
ted model. We employ the kinematic model by Friberg &
Sundberg [4], mainly for it’s simplicity.

3.1 Friberg & Sundberg’s kinematic model

The model is based on the hypothesized analogy of musi-
cal tempo and physical motion, and is derived from a study
of the motion of runners when slowing down. From a va-
riety of decelerations by various runners, the decelerations
judged by a jury to be most aesthetically pleasing turned
out to be those where the deceleration force is held roughly
constant. This implies that velocity is proportional to square
root function of time, and to a cubic root function of posi-
tion. Equating physical position to score position, Friberg
and Sundberg use this velocity function as a model for tempo
in musical ritards. Thus, the model describes the tempo v(x)
of a ritard as a function of score position x:

v(x) = (1 + (wq − 1)x)1/q (1)

The parameter q is added to account for variation in cur-
vature (that is, the function is not necessarily a cubic root of
position). The parameter w represents the final tempo, and
was added since the tempo in music cannot reach zero. The
model is designed to work with normalized score position
and tempo. More specifically, the ritard is assumed to span
the score positions in the range [0, 1], and the initial tempo
is defined to be 1.

The effect of the parameters w and q is illustrated in fig-
ure 1, which shows plots of tempo curves defined by the
model for different values of w and q. Note that values of
q > 1 lead to convex tempo curves, whereas values of q < 1
lead to concave curves. The latter is not expected to occur
under normal circumstances, since tempo curves of ritards
are typically convex. Note also that w determines the verti-
cal end position of the curve.

3.2 Fitting the model to the data

The parameters of the model allow it to be fitted to ritards
performed by particular pianists. As explained above, for
this it is necessary to normalize the data. When normaliz-
ing the score position, it is important to make normalized
position 0 coincide with the actual start of the ritard. Al-
though in most cases there is a ritard instruction written in
the score, the ritard may start slightly before or after this in-
struction. A manual inspection of the data showed that the
starting position of the ritards strongly tended to coincide
among pianists. For each piece, the predominant starting
position was determined and the normalization of score po-
sitions was done accordingly.

When normalizing tempo, it is important to notice that
normalizing should be done globally for the data set, rather
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Pianist Year Op.9 nr.3 rit1 Op.9 nr.3 rit2 Op.15 nr.1 Op.15 nr.2 Op.27 nr.1 Op.27 nr.2 Op.48 nr.1 rit1 Op.48 nr.1 rit2
Argerich 1965 X
Arrau 1978 X X X X X X X X
Ashkenazy 1985 X X X X X X X X
Barenboim 1981 X X X X X X X X
Biret 1991 X X X X X X X X
Engerer 1993 X X X X X X X X
Falvai 1997 X X X X X X X X
Harasiewicz 1961 X X X X X X X X
Hewitt 2003 X X X X X X X X
Horowitz 1957 X X
Kissin 1993 X X
Kollar 2007 X X X X X X X
Leonskaja 1992 X X X X X X X X
Maisenberg 1995 X
Mertanen 2001 X X X X X X
Mertanen 2002 X X
Mertanen 2003 X X
Ohlsson 1979 X X X X X X X X
Perahia 1994 X
Pires 1996 X X X X X X X X
Pollini 2005 X X X X X X X X
Richter 1968 X
Rubinstein 1937 X X X X X X X X
Rubinstein 1965 X X X X X X X X
Tsong 1978 X X X X X X X X
Vasary 1966 X X X X X X X
Woodward 2006 X X X X X X X X
d´Ascoli 2005 X X X X X X X X

Table 1. Performances used in this study. The symbol “X” denotes the presence of the corresponding combination of pi-
anist/piece in the data set. The additions “rit1” and “rit2” refer to two distinct ritards within the same piece

q 
= 

-4

w = .3

q 
= 

1
q 

= 
5

w = .5 w = .7

Figure 1. Ritards produced by the model using different
values for the parameters w and q; In each plot, the x and y
axis represent score position and tempo respectively, both in
arbitrary units

than individually, since the latter would render the w param-
eter useless (the final tempo of every ritard would be 0). The
result of global normalization is that the tempo value 1 cor-
responds to the highest tempo occurring in the data set, and
the tempo value 0 to the lowest. Although this procedure
maintains the relative scaling of the ritards, the majority of
the ritards will not start with a tempo value of 1, whereas a
constraint of the model is that it starts at tempo 1. An ad-

ditional problem is that in some cases the first tempo value
is not always the maximal value. This implies that shift-
ing the data to make either the first value or the maximal
value equal to 1, will result in a poor fit. To illustrate this,
a problematic case is presented in the left plot of figure 2,
where the maximal tempo value is not equal to 1. The fit-
ted model is clearly a very poor approximation of the data.
To alleviate these problems, an additional offset parameter
is included added to the model while fitting. The right plot
of figure 2 shows the same data with the fitted model using
the offset parameter. Within its capabilities, the model now
fits the data relatively well. Note that the offset parameter is
only used for calibration purposes and is not regarded as a
meaningful part of the model.

The model is fitted to the data by non-linear least-squares
fitting through the Marquardt-Levenberg algorithm, using
the gnuplot implementation 1 . The model fitting is applied
to each performance individually, so for each combination
of pianist and piece a value is obtained for w, q, and the
root mean square of the error after fitting (this serves as a
goodness-of-fit measure).

4 RESULTS AND DISCUSSION

The values obtained from fitting are displayed as a scatter-
plot on the two-dimensional parameter space q versus w, in

1 The fitting must be done by numerical approximation since the model
is non-linear in the parameters w and q.
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Figure 2. The necessity of an offset parameter for fitting
the model (dashed line) to the data (‘+’ symbols). left: fit-
ting without offset compensation; right: fitting with offset
compensation (see text)
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Figure 3. Two extremes of the effective parameter space;
left: Rubinstein’s ritard in Op. 15 nr. 2 (low w, low q);
right: Mertanen’s ritard in Op. 27 nr. 2 (high w, high q)

figures 4 and 5. 2 To facilitate the interpretation of points in
specific locations of the plane, the reader is referred to fig-
ure 1, in which the relative location of the plots corresponds
to the topology of the w-q plane.

In figure 4, the symbols group the data points by piece,
such that the performances of the same piece by different pi-
anists have identical symbols. The sizes of the symbols are
proportional to the goodness-of-fit. That is, bigger symbols
are represent a better fit of the model to the data, and are
therefore to be considered more reliable than smaller sym-
bols.

The scatter plot reveals a strong positive correlation be-
tween the w and the q parameter. In musical terms, this
implies that the tempo decrease in deep ritards (low w) is
more gradual (low q), whereas in shallow ritards (high w),
the tempo decrease is more sudden, and postponed to the
last notes of the ritard (high q). These two situations are
illustrated by the ritards shown in figure 3.

Notable is also that virtually all performances correspond
to q values above 3. This value (marked in the figure as a
black horizontal line), corresponds to the model setting that
mimics the motion of a physical body under constant brak-

2 The figures are best viewed in color

ing power. This setting, together with q = 2 (constant brak-
ing force, assumed in [7] and [11]), is claimed by Friberg
and Sundberg [4] to yield ritards that are aesthetically pre-
ferred by listeners. They suggest that this preference is due
the fact that we are familiar with these conditions from our
perception of physical motion. In contrast, the higher q val-
ues that are measured in the current study suggest model
settings where braking power increases with time. Interest-
ingly, the scatter plot shows a strong ridge close to q = 4,
where the range above the boundary is highly populated,
whereas the range below it is virtually empty. This means
that, independent of the depth of the ritard, curvatures below
q = 4 (approximately the curvature displayed in the left plot
of figure 3) are very uncommon.

The distribution of the symbols indicate that, even if the
data points of some pieces overlap, they are clearly clustered
according to piece. For example, the performances of Op.
15 nr. 2, are all located in the lower ranges of w and q (deep
and gradual ritards), whereas those of Op. 27 nr. 2 are all in
the higher ranges (shallow and sudden ritards).

Another notable aspect of the results is that the ritards of
Op. 48 nr. 1 rit. 2 (except for one, by Leonskaja) are played
with various depths (w), but always with low curvature (q).

Figure 5 shows the same data, but labeled according to
pianist. In this case clustering is less apparent from the
plot. In part this may be due to the amount of different pi-
anists (and thus symbols) displayed in the figure. However,
since the data shows a considerable clustering along piece,
a strong clustering along pianists is not to be expected. Still,
upon more detailed inspection, the w-q plane conveys some
differences between pianists.

Firstly, some pianists tend to concentrate in distinct areas
of the w-q plane. This is the case for Leonskaja and Vasary.
Their performances are displayed jointly in figure 6. Note
that the pianists are almost separable based on their w and q
coordinates.

As a second example of differences between pianists,
consider the performances of Rubinstein and Pollini (fig-
ure 7). Rubinstein’s w-q coordinates span a much larger
part of the plane, suggesting that he plays ritards in a more
diverse ways, whereas Pollini’s coordinates are concentrated
in a smaller area, suggesting a more uniform way of playing
ritards. It is interesting to note that the relative locations of
the pieces are roughly the same for Rubinstein and Pollini.

5 CONCLUSIONS AND FUTURE WORK

In this study we have used a kinematic rubato model [4]
to investigate the performance of final ritards in Chopin’s
Nocturnes, played by 25 pianists. To our knowledge this
is the first application of the model to data gathered from
famous pianists. Studying the value range of model param-
eters that represent the measured ritards, we found that there
is a strong positive correlation between the depth of ritards
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Figure 4. Distribution of rubato model parameter values
over pieces; the size of the symbols is proportional to good-
ness of fit of the parameters to the data

(w) and their curvature (q). In addition, fitted q values are
only sporadically below 4. This contrasts with earlier stud-
ies stating q = 2 and q = 3 as plausible settings [4, 7, 11].

Furthermore, ritards of the same piece by different pi-
anists tend to be concentrated in the w-q plane, suggesting
that the musical material being played is an important fac-
tor in the determination of the depth and curvature of the
ritard. Although in general the model parameters are not
discriminative for pianists, in some cases the differences in
the parameter ranges for individual pianists are consider-
able. In order to make more decisive claims about pianist-
specific differences however, more performances per pianist
are needed.

An important issue that we have not addressed in this pa-
per is that in many cases the structure of the ritards are more
complex than the model can accommodate. More specifi-
cally, the measured tempo data in addition to a simple tempo
decrease often shows internal structure that seems to be re-
lated to rhythmical patterns or motivic grouping in the mu-
sic. This affects the goodness-of-fit of the model, and shows
the need for a more elaborate modeling approach, either by
using more sophisticated models (such as the one proposed
by [6]), or by an analysis of the residual information after
the model has been fitted.

Figure 5. Distribution of rubato model parameter values
over pianists; the size of the symbols is proportional to
goodness of fit of the parameters to the data
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