
SCORE PLAYBACK DEVICES IN PWGL

Mikael Laurson

CMT, Sibelius Academy

laurson@siba.fi

Mika Kuuskankare

CMT, Sibelius Academy

mkuuskan@siba.fi

ABSTRACT

This paper presents a novel system that allows the user to

customize playback facilities in our computer-assisted envi-

ronment, PWGL. The scheme is based on a class hierarchy.

The behavior of an abstract root playback class containing a

set of methods can be customized through inheritance. This

procedure is demonstrated by a subclass that is capable of

playing MIDI data. This playback device allows to realize

automatically multi-instrument and micro-tonal scores by

using pitchbend setups and channel mappings. Also contin-

uous control information can be given in a score by adding

dynamics markings and/or special Score-BPF expressions

containing break-point functions. We give several complete

code examples that demonstrate how the user could further

change the playback behavior. We start with a simple play-

back device that allows to override channel information.

Next we discuss how to implement the popular keyswitch

mechanism in our system. This playback device is capable

of mapping high-level score information with commercial

orchestral database supporting keyswitch instruments. Our

final example shows how to override the default MIDI out-

put and delegate the play events to an external synthesizer

using OSC.

1 INTRODUCTION

Computer-assisted composition (CAC) systems ([1], [2],

[3]) have not focused on advanced playback facilities. Users

can typically audition scores and other musical raw-material

through basic MIDI playback routines that support simple

note-on, note-off, pitch and velocity data. A notable ex-

ception of this rule are special cases to handle micro-tonal

playback which is not well supported by the MIDI standard.

Commercial notation software packages (Sibelius, Fi-

nale, Igor), by contrast, do support tools that allow the user

to audition orchestral scores. With the advent of recent high-

quality orchestral sample databases (EastWest, Vienna In-

struments, Garritan) and/or instrument synthesizers (Wal-

lander Instruments, Synful) orchestral simulations are get-

ting more and more convincing. Thus notation software

SMC 2009, July 23-25, Porto, Portugal
Copyrights remain with the authors

systems combined with orchestral playback facilities have

quickly become everyday tools for composers and arrangers

not only in the film industry but also for musicians belong-

ing to the contemporary music genre.

In this paper we investigate possibilities that would al-

low the user to combine various playback options, such as

micro-interval playing and orchestral simulation in a CAC

environment. Also the output would not be bound to a given

orchestral database (as is the case in several notation sys-

tems where the samples are bundled with the application).

The user should be able to customize playing routines for

different libraries and synthesizers, and the control output

does not necessarily have to be MIDI-oriented.

PWGL has a long history in controlling physics-based

instruments [4] using our notation package ENP [5]. This

research has resulted in several tools that allow to enrich

basic score information, such as performance rules, script-

ing, tempo functions, and an enhanced set of expressions

that can be inserted in the score either algorithmically or

by hand. Other special extensions, such as the macro-note

scheme [6], allow the user to further modify and enrich ba-

sic score information. Sound examples can be found at:

www.siba.fi/pwgl/pwglsynth.html.

In the following we will concentrate on a novel extension

of the PWGL system that allows the user to define the be-

havior of the playback engine. Each time the user starts to

play a score the current playback device is evoked. PWGL

contains a library of predefined playback devices. This li-

brary is written in Common Lisp and CLOS and it can be

extended by subclassing one of the existing playback device

classes. Multiple inheritance can also be used to combine

features from several superclasses in the system. All play-

back devices support a standard protocol having four main

steps: (1) the system first calls an initial preparationmethod,

(2) then it collects the actual playback information, (3) next

a setup method is called, and finally (4) the collected data is

sent to the current output device.

The rest of the paper is organized as follows. First we

give some background information concerning the general

playback device scheme in PWGL. Then we discuss in more

detail the current status, and enumerate which devices are

already present in the system. After this we describe case

studies that will show how the user can override the default

behavior in order to customize her/his needs for auditioning

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 360



of musical scores.

2 GENERIC PLAYBACK DEVICE CLASS AND ITS

METHODS

Our playback system is based on a hierarchy of CLOS

classes. At the root we have a generic class called ’pwgl-

playback-device’. This class definition contains a set of pri-

mary methods to support the four main steps used by the

playback scheme. Typically, the user should not override

the primary methods (although this is also possible), but

should instead redefine the secondary methods. The sec-

ondary methods have identical names as the primary ones

except for an extension ’*’ at the end of the name. Next we

enumerate the most commonly used methods in the play-

back scheme.

The method ’prepare-playback’ is used to prepare score

playback before event calculation. This method can be used

to open a sample player application, load sound samples,

prepare an instrument setup, etc.

After this initial phase the system starts to collect play

data. By default it checks whether the current score has a

selection or not (note that ENP also supports discontinuous

selections). If a selection is found then only those notes that

belong to the selection are considered, otherwise all notes

are collected.

After this the system calls for each collected note the

methods ’add-playback-cc-events’ and ’add-playback-note-

event’. The first one is used to collect continuous control

information, and the second one is used for note events. (Be-

fore the ’add-playback-note-event’ also the special method

’add-playback-note-pre-event’ is called; we will come back

to this method later in this paper in Section 5.) These meth-

ods are similar as they should at the end collect association

lists (a list containing keyword/data pairs) that are meaning-

ful for the current playback output. For instance if the play

information is sent to MIDI then a note event list should

contain information dealing with bus (port), status, key and

velocity. Internally the ’add-playback-note-event’ method

calls the ’calc-playback-event’ method that builds the asso-

ciation list based on the data that is returned from the ’calc-

playback-chan/midi’ and ’calc-playback-vel’ methods.

Next, the system calls the ’setup-playback’ method that

is called after event calculation and before playback. This

method can be used, for instance, to send volume and pitch-

bend information just before playback.

Finally, the realtime playback starts and for each event

data list the system calls ’send-playback-event’. Normally

the method simply utilizes the pre-calculated association

lists and sends the appropriate information to the current

playback output.

3 THE DEFAULT PLAY DEVICE

As such ’pwgl-playback-device’ is an abstract class and

should be subclassed in order to be functional. In this sec-

tion we outline a typical subclass that is specialized for

MIDI output. This class is called ’midi-playback-device’,

and it is in fact the default play device in PWGL. ’midi-

playback-device’ has several options for output. First, the

final output can either be a realtime stream of MIDI events

or a MIDI file. Second, PWGL supports also a special mode

for Mac OS X users where play data can be sent directly to

a QuickTime synthesizer.

3.1 Micro-tonal playing

’midi-playback-device’ supports up to eight MIDI buses or

ports (in PWGL a note can have a channel number ranging

from 1 to 128, where by default channels from 1 to 16 are

sent to port 1, channels 17-32 to port 2, and so on).

During the setup phase ’midi-playback-device’ calls the

’setup-playback’ method that has two main tasks. First, the

user has an option to send a default MIDI volume value to

each channel. Second, ’setup-playback’ sends pitch-bend

data to detune channels in order to support micro-tonal play-

ing. This is done by first analyzing the pitch information of

the current score. If the score requires quarter-tone tuning

then even-numbered channels are detuned by 50 cents; in

case of eighth-tone tuning cannel 2 is detuned by 50 cents,

channel 3 by 25 cents and channel 4 by 75 cents, and so

on. Based on the micro-tonal content the mapping of MIDI

channels is done as follows: if the score is in equal tem-

perament (i.e. there are no micro-tones), then note channel

numbers will not change, i.e. channel 1 is played on chan-

nel 1, and so on; if the score requires quarter-tone resolution

then notes with channel number 1 are delegated either to

channel 1 or 2 depending on the pitch content, notes with

channel 2 are delegated to channel 3 and 4, and so on; in

case of eighth-tone resolution notes with channel number 1

are delegated to channel 1, 2, 3 and 4 depending on the pitch

content, and so on.

This scheme with detuning and channel delegation is

transparent to the user and it allows to play micro-tonal

and multi-instrument scores automatically. As the system

supports 128 channels we have a theoretical upper limit of

1/256-tone resolution for micro-tonal tuning. If the user

needs multi-instrument scores, this limit is of course low-

ered as each instrument needs a dedicated set of channels in

a micro-tonal context.

During the event data collection phase ’midi-playback-

device’ calls the method ’calc-playback-event’ that per-

forms MIDI port, channel and pitch mapping as described

above and returns an association list of rawMIDI data that is

optimized for realtime playing. Finally, the ’send-playback-

event’ method utilizes this information and calls in realtime

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 361



/midi-cc

Figure 1. Continuous control options in ENP: (1) crescendo

and diminuendo expressions, (2) Score-BPF expression

containing a break-point function.

the low-levelMIDI event routines in order to output the final

MIDI data.

3.2 Continuous control

’midi-playback-device’ supports also MIDI continuous con-

trol information. The PWGL preference pane has an option

that allows to convert automatically ENP expressions to a

stream of continuous control MIDI events. Figure 1 shows

a two-part score that has several interleaved crescendo and

diminuendo markings. When a dynamics expression is en-

countered in the score during the event calculations phase

the ’add-playback-cc-events’ method will be evoked. There

are two basic options how the dynamics expressions are in-

terpreted: (1) the system creates automatically a ramp that is

sampled to get discrete MIDI continuous control events; or

(2) the expression contains internally a break-point function

that has been edited by the user (ENP allows to open the ex-

pression and edit the internal breakpoint function with the

mouse). Continuous control information playback is also

supported by the special Score-BPF expression (see in Fig-

ure 1 the Score-BPF expression above the first staff with the

label ’midi-cc’). A Score-BPF can have up to three break-

point functions each with individual continuous control des-

ignations.

4 CHANNEL PLAYBACK DEVICE

In the following sections we discuss various case studies

where we change the behavior of the default PWGL play

device. For each case we give a class definition followed

by a redefinition of one of the methods discussed in Section

2. Finally we call ’add-playback-device’ in order to add the

new device to the PWGL playback device library.

We start with a simple case where the idea is to disregard

the standard channel information. Instead we check the ’in-

strument’ slot of the note whether it is found in a list of

woodwind and brass instruments. Working with symbolic

instrument names in conjunction with our notation tools is

often more convenient than working with abstract channel

numbers (see Figure 2). We use the Lisp function ’position’

Figure 2. A chord where each note has a different instru-

ment assignment.

to calculate the channel number (thus here ’flute’ will be

mapped with channel 1, ’oboe’ with 2, etc.).

(defclass channel-player (midi-playback-device) ())

(defmethod calc-playback-chan/midi*
((device channel-player ) (note note))

(let ((chan (position (instrument note)
’(:flute :oboe :clarinet :bassoon :trumpet
:french-horn :trombone :tuba))))

(values (if chan (1+ chan) (chan note)) (midi note))))

(add-playback-device ’channel-player "channel-player")

5 ENP EXPRESSIONS AND KEYSWITCH EVENTS

Next we discuss a generic playback class, called ’keyswitch-

player’, that is useful when working in conjunction with

orchestral databases. ’keyswitch-player’ is a subclass of

’midi-playback-device’ and thus inherits all features from

that class. The idea is to add support to the keyswitch mech-

anism supported by several commercial sample databases.

A keyswitch event is an additional note-on event where the

key value is outside the normal range of an instrument. The

keyswitch event is normally sent just before the actual note-

on event. This allows to instruct the sample database ap-

plication which specific articulation should be used for the

next normal note event. Thus, typically, a keyswitch event

having the low C0 as key value for a flute part could mean

’legato’, while D0 could mean ’staccato’, and so on.

The keyswitch mechanism is straightforward to imple-

ment in our scheme due to the ’add-playback-note-pre-

event’ method that is called just before the actual note event

calculation (Section 2). Furthermore, it fits nicely in our sys-

tem as ENP supports a wide range of expressions (see Figure

3). ’keyswitch-player’ adds two new generic methods to the

system called ’ksw-expression-no’ and ’ksw-offset-no’ that

should be refined by a subclass of ’keyswitch-player’. These

methods are used to calculate the final key value needed for

the keyswitch event.

Next we discuss a concrete problem how we can map an

instrumental score with expressions denoting various play-

ing techniques and articulations with a keyswitch instrument

found in the commercial EastWest sample library. For this

end we define a subclass of the ’keyswitch-player’ class

called ’ew-player ’. We need next to associate a keyswitch

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 362



Figure 3. An ENP score for solo viola. The expressions are automatically mapped with correct keyswitch events.

event with an instrument (here viola) and various expres-

sions (see Figure 3). This is done by defining several ver-

sions of the ’ksw-exp-no ’ method that are specialized for

each available expression name (’pizz’, ’col-legno, ’martel-

lato’, etc.). Each method returns a unique number that–

when added to the offset number returned by the ’ksw-

offset-no’ method–is used by the keyswitch event.

(defclass ew-player (keyswitch-player) ())

(defmethod ksw-offset-no
((device ew-player) (ins viola)) 24)

(defmethod ksw-exp-no
(device ew-player) (ins viola) exp) 0)

(defmethod ksw-exp-no
((device ew-player) (ins viola) (exp pizz)) 1)

(defmethod ksw-exp-no
((device ew-player) (ins viola) (exp col-legno)) 2)

(defmethod ksw-exp-no
((device ew-player) (ins viola) (exp martellato)) 3)

(defmethod ksw-exp-no
((device ew-player) (ins viola) (exp tremolo8)) 4)

(defmethod ksw-exp-no
((device ew-player) (ins viola) (exp bartok-pizzicato)) 5)

(defmethod ksw-exp-no
((device ew-player) (ins viola) (exp con-sordino)) 6)

(add-playback-device ’ew-KSW-player "ew-KSW-player")

As the ENP instrument database is also based on a CLOS

class hierarchy (thus ’viola’ is a subclass of ’bowed-strings’)

the code above can easily be modified so that the keyswitch

mechanism is valid for all bowed string instruments, for in-

stance:

(defmethod ksw-exp-no
((device ew-player) (ins bowed-strings) (exp pizz)) 1)

6 OSC PLAYBACK DEVICE

Our final example demonstrates how we can define a play-

back device that is not usingMIDI as output. This is done by

defining a subclass of ’midi-playback-device’ called ’OSC-

playback-device’. Here we want to send OSC [7] messages

to an external synthesizer (in this specific case to Super-

Collider, [8]). For this reason we redefine the ’send-midi-

event*’ method. Now, instead of calling the standard MIDI

routines, we use the association list information (’midi-

info’) collected by the event collector and convert the chan-

nel, the midi and the velocity data to OSC messages.

(defclass OSC-playback-device (midi-playback-device) ())

(defmethod send-midi-event
((device OSC-playback-device) midi-info &optional vel?)
(when-let (osc-stream (read-key :osc-stream))

(let ((chan (read-key midi-info :chan))
(midi (read-key midi-info :midi))
(vel (read-key midi-info :vel)))

(if (zerop vel)
(cl-osc:write-osc-message
osc-stream nil "/noteOff" midi chan)

(cl-osc:write-osc-message
osc-stream nil "/noteOn" midi vel chan)))))

(add-playback-device ’OSC-playback-device "osc")

7 CONCLUSIONS

The paper presents a playback scheme that allows to con-

vert high-level score information to event lists. The events

can be sent to MIDI or to external synthesizers using, for

example, the OSC protocol. The system is programmable

and through inheritance device subclasses can change the

standard behavior of the default playback device of PWGL.

This scheme offers many interesting applications such as

allowing ENP scores to control orchestral databases. The

new playback protocol, when combined with the other tools

found in PWGL (i.e. performance rules, scripting, tempo

functions, macro-notes), forms a unique system for score-

based playback control.

8 ACKNOWLEDGMENTS

The work of Mikael Laurson and Mika Kuuskankare has

been supported by the Academy of Finland (SA 114116 and

SA 105557).

9 REFERENCES

[1] Laurson, M., PATCHWORK: A Visual Programming
Language and some Musical Applications. Studia mu-
sica no.6, doctoral dissertation, Sibelius Academy,

Helsinki, 1996.

[2] Assayag, G., C. Rueda, M. Laurson, C. Agon, and

O. Delerue, “Computer Assisted Composition at IR-

CAM: From PatchWork to OpenMusic”, Computer Mu-
sic Journal, vol. 23, pp. 59–72, Fall 1999.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 363



[3] Laurson, M., M. Kuuskankare, and V. Norilo, “An

Overview of PWGL, a Visual Programming Environ-

ment for Music”, Computer Music Journal, vol. 33,
no. 1, 2009.

[4] Laurson, M., V. Norilo, and M. Kuuskankare,

“PWGLSynth: A Visual Synthesis Language for Virtual

Instrument Design and Control”, Computer Music Jour-
nal, vol. 29, pp. 29–41, Fall 2005.

[5] Kuuskankare, M. and M. Laurson, “Expressive Nota-

tion Package”, Computer Music Journal, vol. 30, no. 4,
pp. 67–79, 2006.

[6] Laurson, M. and M. Kuuskankare, “Towards Idiomatic

and Flexible Score-basedGestural Control with a Script-

ing Language”, Proceedings of NIME’08 Conference,
(Genova, Italy), pp. 34–37, 2008.

[7] Wright, M., “Open sound control: an enabling technol-

ogy for musical networking”,Organised Sound, vol. 10,
pp. 193–200, 2005.

[8] McCartney, J., “Continued Evolution of the SuperCol-

lider Real Time Environment”,Proceedings of ICMC’98
Conference, pp. 133–136, 1998.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 364


