
A FRAMEWORK FOR MUSICAL MULTIAGENT SYSTEMS

Leandro Ferrari Thomaz and Marcelo Queiroz
Department of Computer Science - University of São Paulo

{lfthomaz | mqz}@ime.usp.br

ABSTRACT

Multiagent system technology is a promising new venue for
interactive musical performance. In recent works, this tech-
nology has been tailored to solve specific, limited scope mu-
sical problems, such as pulse detection, instrument simula-
tion or automatic accompaniment. In this paper, we present
a taxonomy of such musical multiagent systems, and an im-
plementation of a computational framework that subsumes
previous works and addresses general-interest low-level
problems such as real-time synchronization, sound commu-
nication and spatial agent mobility. By using it, a user may
develop a musical multiagent system focusing primarily in
his/her musical needs, while leaving most of the technical
problems to the framework. To validate this framework,
we implemented and discussed two cases studies that ex-
plored several aspects of musical multiagent systems, such
as MIDI and audio communication, spatial trajectories and
acoustical simulation, and artificial life constructs like ge-
netic codes and reproduction, thus indicating the usefulness
of this framework in a variety of musical applications.

1 INTRODUCTION

Agent technology is particularly suited for musical applica-
tions due to the possibility of associating a computational
agent with the role of a singer or instrumentalist. With these
associations one can map features such as performance, per-
ception, adaptation and improvisation on one side, and arti-
ficial processes on the other. Moreover, it is possible to de-
fine forms of social interrelationship between agents, which
brings this technology even closer to collaborative musical
performance. By focusing the discussion on multiagent sys-
tems we purposely leave aside any aesthetic issues specific
to the choice of compositional algorithms for each agent,
and concentrate on the study of communication and inter-
action (i.e., sociology) of musical agents in the collective
musical production context [1, 2].

Most of the previous work involving computer music and
multiagent systems is generally very limited in its scope,
dealing with problems such as generation and evaluation of

SMC 2009, July 23-25, Porto, Portugal
Copyrights remain with the authors

melodies [3], pulse detection [4], simulation of specific in-
struments [5] or automatic accompaniment and collective
performance in a tonal context [6, 7]. A more ellaborate
example may be found in Living Melodies [8], in which
the authors build an artificial world of music players with
a well-defined spatial structure (including sound propaga-
tion), as well as rules for walking, interacting and music-
making. Works that aim at more general settings are the
MAMA architecture [9], where agents communicate using
a symbolic representation of the piece being performed, and
the Andante project [10], that allows agents to migrate be-
tween machines in a distributed computer environment.

This work aims at both a definition and an implementa-
tion of a general framework for musical multiagent systems,
as well as a study of their inherent problems. We extend on
[9] by allowing synchronous and asynchronous communica-
tion of various sorts (audio signals, symbolic music streams,
video signals and other forms), artificial life concepts (life,
death and reproduction of agents) and physical simulation
(sound propagation and motion of agents). Our musical
agents can also benefit from the migrating abilities of An-
dante’s agents [10], since both systems are written in Java.

A central issue in this project is the treatment of space,
a musical attribute of utmost importance in contemporary
musical composition, which has been superficially explored
in the context of multiagent systems in previous works [8].
Thus, one of the main goals of our framework is to allow the
simulation of sound propagation in a virtual environment,
automatically adjusting the sound information received by
each agent, depending on its position and listening condi-
tions.

Through the observation of common elements among ex-
isting musical multiagent systems and by proposing new
features and tools, we intend to put forward both a con-
ceptual and a computational framework that eases the task
of implementing a musical multiagent system that best fits
a given musical application. On one hand, simulation of
existing musical multiagent applications should be straight-
forward by using the framework with its basic components;
on the other hand, extending the framework by adding new
features such as compositional algorithms, music and sound
analysers and synthesisers, or rules for handling artificial
life aspects of the virtual musical agent society, should be
made easy by freeing the user from low-level implemen-

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 119



tation details such as synchronization and communication
protocols, and allowing him/her to concentrate on the con-
ceptual level of the musical project.

2 A TAXONOMY FOR MUSICAL AGENTS
SYSTEMS

This section presents a preliminary taxonomy of musical
multiagent systems that has been generalized from previous
musical multiagent works [8, 9, 10, 5, 6, 11, 7, 4], as well as
other works that deal with related issues [3, 12].

The higher level categories considered in a musical mul-
tiagent system are the musical agent, the virtual environ-
ment, and interactions (both among musical agents and be-
tween musical agent and virtual environment). Figure 1
summarizes these categories and their components.

2.1 Virtual Environment

An environment in the context of a musical multiagent sys-
tem can be defined as a virtual space in which computational
agents are immersed and interact with it by means of sensors
and actuators.

Physical Representation. An environment’s physical
representation includes the definition of a virtual world to-
gether with every physical information that is relevant to the
musical application. These may include space representa-
tion (dimensionality, connectedness), sound representation
(MIDI, audio) and propagation (including acoustical effects
such as air absorption, reflection, diffraction or Doppler ef-
fect), and mechanical laws (gravity, inertia, attraction and
collisions).

Ecological Representation. Systems inspired in Artifi-
cial Life [8, 3] often use some representation for energy to
control a few aspects in an agent’s life, such as eating, walk-
ing, growing old, among others. Energy may be defined and
used to control which actions (requiring some amount of
energy) an agent may perform, if it needs refueling (through
food consumption, for instance) or rest, or if it is able to
reproduce.

2.2 Musical Agent

The musical agent is a computational agent specialized in
processing sound and musical information. Typically, this
agent is capable of analysing incoming sound, performing
some sort of musical reasoning, and creating a response by
means of sound processing and synthesis. Figure 2 shows
a musical agent and its components, described below, im-
mersed in a virtual environment.

Knowledge Base. The knowledge base is a storage area
where the agent keeps everything related to its know-how
in music-making as well as its memory of past events. This

includes algorithms for composition, music theories, non-
musical facts about the environment and other agents, tech-
niques for music or sound encoding and processing, linguis-
tics, ontology, among others.

Reasoning. We denote by Reasoning the set of mecha-
nisms an agent uses to decide its future actions, musical or
otherwise. An agent’s output may combine several compo-
sitional strategies, such as playback of recorded fragments,
context-based reactions to musical input, or analysis and
synthesis tools within a structural plan to achieve a com-
positional goal.

Sensors and Actuators. Sensors capture information
from the environment and forward it to the cognitive center
(Knowledge Base + Reasoning) of the agent. They are usu-
ally specialized in receiveing a particular type of sensorial
information, for instance auditory sensors, visual sensors or
tactile sensors. An agent may have several similar sensors
(e.g. two ears, two eyes) to aid its cognitive capabilites (e.g.
to perceive direction or distance of a sound source).

Actuators are the active counterparts to sensors, and are
responsible for affecting the environment, driven by the
agent’s reasoning. They produce sound, perform movement,
and generate events that may change the way the world is
perceived by other agents.

Analysis and Synthesis. In addition to any kind of anal-
ysis automatically done by an agent’s sensors, higher level
analysis may be requested by the agent’s reasoning in order
to achieve its musical goals. These may include contextual
analysis (comparing instantaneous inputs to previous data)
and planning of future events (comparing possible outputs
to expected outputs by other agents), and may include a
number of specific techniques of signal processing such as
temporal and spectral analysis, analysis of psychoacoustical
phenomena (such as pitch detection or perceived loudness)
and musical analyses of all sorts (rhythmic, melodic and har-
monic analysis, or analysis of genre, style and expression).

Synthesis may be regarded as the most fundamental part
of a musical agent, since through it an agent partakes mu-
sically in a collective performance. It includes symbolic
synthesis of high-level events (as in MIDI or MusicXML),
sound synthesis and signal processing techniques, but also
non-musical information such as spatial trajectories or graph-
ical output (to communicate visually with other agents or as
a visual counterpart to the musical performance).

2.3 Interactions in the Environment

In a collaborative musical performance there are many kinds
of interaction that may be simulated in a musical multiagent
system. Besides the obvious exchange of sound informa-
tion during performance (through hearing and playing to-
gether), other information may be exchanged, such as ges-
tures for guiding the performance (for instance in slowing

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 120



Musical Agent

Environment
Physical Representation

Ecological Representation

Spatial Representation

Sound Representation

Energy

Dimension, Structure and Form
Physical Laws
Sound Codi!cation
Acoustic E"ects

Reasoning

Knowledge Base

Physical Actuators

Sound Emitter
Quantity and Position

Emission Pattern

PreprocessingActuators

Tactile Sensors
Visual Sensors
Audition Sensors

Quantity and Position

Captation Pattern

PreprocessingSensors

Audio Synthesis

Symbolic Synthesis
Synthesisers

Image Analysis

Sound Analysis

Temporal and Spectral Analysis

Psychoacoustical Features Extraction

Higher-level Musical Analysis

Analysers

Interactions
Visual Communication
Physical Communication
Sound Communication

Communication

Physical Interactions

Biological Interactions

Figure 1. Taxonomy of Musical Multiagent Systems

the tempo down), or may be agreed upon before the actual
performance starts (such as a musical score or a general plan
for the composition).

When the simulation includes physical or biological el-
ements, other interactions may be observed, among agents
or between agent and environment, that affect their states.
These include mobility of agents through external forces or
free-will, feeding and reproduction, to name a few.

3 FRAMEWORK’S ARCHITECTURE AND
IMPLEMENTATION

The present architecture was designed with plugability in
mind, that is, it should be possible for a user to develop new
components which are easily added to the original frame-
work, and also connect component instances to an agent in
execution time. For instance, a running system might con-
sist of simple agents with one sensor for receiving sound
and one actuator for emitting sound; later on, the user might
want to change those into anthropomorphic musical agents,
by plugging another sound sensor at a different position in
the agent’s body, and creating a component that analyses
incoming sounds received by both sensors and infer sound
source positions.

The framework presuposes the utilization of a multiagent
system middleware that provides the required infrastructure
for maintaining agent execution and controlling messages
exchanged among agents. The current implementation uses
JADE 3.6 1 with the Java 6 programming language.

1 available at http://jade.tilab.com/. 13 april 2009.

3.1 Framework’s Actors

Relying on the taxonomy described in the last section, a
musical agent is modeled as an aggregate of linked com-
ponents, such as reasoning, knowledge base, sensors, actua-
tors, analysers and synthesisers. In order to create a musical
agent, one defines its components either by reusing existing
ones, or by extending basic classes to create new compo-
nents.

The virtual environment is represented by a unique agent
called environment agent. This agent is composed by a phys-
ical representation of the virtual world in which the agents
live, and by event server components. Interactions are rep-
resented by events that flow between musical agents and the
environment agent, where each event type represents a par-
ticular kind of interaction, such as sound exchange, verbal
messages, gestures, and so on.

An external agent is a human or an outside system that
interacts with the framework in runtime. It is embodied in
the virtual world by a regular musical agent, so that it in-
teracts with the environment and other musical agents using
the default mechanisms. For instance, a compositional algo-
rithm implemented in Pure Data 2 might communicate with
the framework using sockets, by sending a stream of notes
to be played through the agent’s actuator.

3.2 Virtual Time

Time in the virtual environment is controlled by a virtual
clock that allows agents to obtain the current time and sched-
ule tasks. This virtual clock may be managed in two differ-
ent ways: by the internal clock, which means that the virtual
clock is tied to the computer’s internal clock and so to the

2 available at http://crca.ucsd.edu/˜msp/software.
html. 13 april 2009.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 121



Virtual Environment
Physical Representation

Physical Interactions

Ecological Representation

Biological Interactions

Musical Agent

Musical Agent

Musical Agent

Musical Agent

Musical Agent
Musical Agent

Analysis Synthesis

Reasoning

Sensors

Actuators

Knowledge
Base

Communication

Figure 2. Musical Agents in the Virtual Environment

external flow of time; and by the user, which means that
the user, usually through the environment agent, updates the
clock, giving rise to non-homogeneous time measurements.

3.3 Communications

Communication in the multiagent middleware serves two
different purposes: to enable the operation and control of
the framework, and to implement the aforementioned inter-
actions in the virtual world. The first purpose is addressed
by commands, while the latter correspond to communica-
tion via events.

Commands. A command is a message passed between
agents that controls the framework’s internal functioning.
Every agent has a dedicated asynchronous communication
channel that is able to send and receive commands, and is
used to pass control messages such as registering an agent,
informing a change of turn (see 3.4), or updating a public
fact in its knowledge base.

Events. Interactions between musical agents and the en-
vironment is done by means of exchange of events, which is
always controlled by the environment’s event servers. Events
are used to model all sorts of interactions in the virtual world,
such as exchange of audio chunks, an agent’s collision with
an obstacle, non-musical messages between agents, among
others.

There are two exchange modes for events: sporadic events,
such as gestures or verbal messages, can be sent at any rate
and instant; and periodic events, such as audio chunks, which
must obey a frequency of exchange that is previously agreed
upon by all components that use that event type.

The periodic exchange mode is a synchronous commu-
nication process involving a set of sensors, actuators and an
event server. In this case, virtual time is divided in frames
of the same period as the periodic event, and processing is
always done ahead of time, i.e. while an event is happening
in the environment, reasonings and actuators are working

Deadline Description
t0 frameTime Frame start time.
t1 needAction In this instant, the actuator automatically

warns its registered reasonings that an action
must be taken to produce the next frame.

t2 agentDeadline Deadline for actuators to send frames to the
event server.

t3 receiveDeadline Deadline for events sent by actuators to ar-
rive at the event server; after this time, arriv-
ing events are discarded.

t4 sendDeadline Deadline for the event server to send events
back to registered sensors.

t5 period End of current frame, and simultaneous start
of the next one.

Table 1. Deadlines for periodic exchange mode

to send the event corresponding to the next frame. Actua-
tors and event servers have state machines that tell them to
work or to wait for some response from other agents, and
their internal states are affected by scheduled tasks which
are triggered at user-defined times. The deadlines for agents
and event server is detailed in table 1.

The communication interface, present in every sensor,
actuator and event server, is responsible for sending and re-
ceiving events by means of the callback methods send() and
receive(), respectively. Two interfaces were implemented
and compared: communication by messages, that uses the
message passing system native to JADE, based on FIPA-
ACL messages; it works by encapsulating an event inside a
message and relaying its delivery to JADE; this kind of com-
munication can be used in networked systems, but it may
be slow and therefore not suited to time-sensitive events;
and communication by direct calls, implemented as a single
JADE service instance that can be accessed by every agent;
a component must register its access point in this service,
which will be used by the service to deliver the event by
a direct call to the interface’s sense() method; this imple-
mentation has the advantage of being much faster than the
traditional message passing method, but on the other hand it
blocks the service process while sense() does not return, so

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 122



it must be carefully and thoughtfully used.

3.4 Execution Mode

There are two possible execution modes: Batch mode, where
time is discrete and divided in turns, and is updated by the
environment agent only after every agent responds with what-
ever it is supposed to produce in that turn, with no time con-
straints whatsoever. It can be used when there is a need to
control the sequence of actions, or it can be used in computa-
tionally intense non-interative processes to create a musical
output for later appreciation; and Real-Time mode, where
time is controlled by the internal clock, and every agent is
responsible for producing their outputs ahead of time, or
else they will be silent, i.e. the environment agent does not
wait every agent to complete its action, and only forwards
events that arrived up to each deadline. Agents may rely on
some fallback strategy that sends previously computed out-
puts whenever a certain real-time deadline cannot be met.

4 CASE STUDY

To validate the current stage of the framework development,
two different systems were implemented, to test the frame-
work for user programmability, robustness and computa-
tional performance. These two systems were chosen in or-
der to explore the use of both symbolic and audio commu-
nication streams, both batch mode and real-time execution
modes, and artificial life concepts.

4.1 Living Melodies

The Living Melodies [8] system is a complex example of
musical multiagent system having various kinds of sensors
and actuators that deal with sound, energy, life cycle, move-
ment, and contact. Agents sing, walk, reproduce and die,
and their physiology includes not only hearing and singing
devices, but also tactile sensors, genetic codes, preference
rules for reproduction and energy management. The sys-
tem uses a symbolic codification of sound as musical events,
which are propagated through a bidimensional discrete space
in a manner similar to wave fronts.

The simulation of the Living Melodies system was based
on an article [8] and a software 3 . Although not explicitly
said by the authors, it seems to use a monolithic non-real-
time architecture, in which the processing of agents’ actions
is made in a round-robin fashion by a single thread. The
mapping to the framework required the use of the batch ex-
ecution mode.

The re-implementation of this system within our frame-
work allows the user to fine-tune many parameters of the

3 available at http://www.ituniv.se/˜palle/projects/
living-melodies/. 13 april 2009.

simulation, including the number of agents, genetical mate-
rial, agent’s age limits, sound absorption by the air, world
size, among many others. It also features a graphical user
interface that shows the spatial distribution of the agents in
the world, as well as wavefronts of sound propagation.

4.2 Audio Exchange and Acoustical Simulation

A simple audio system was conceived to test the framework
capabilites in dealing with real-time audio exchange. Musi-
cal agents are positioned in a virtual two-dimensional space,
and produce audio streams that are constantly broadcasted to
other agents. Each agent receive a mixture of the sound in
the environment, considering the effects of delay and atten-
uation of every other signal according to relative distances
between agents. The user may be immersed in the virtual
environment, disguised as a special musical agent, who cap-
tures all sound received at its virtual position, and renders
it through an audio interface. As an example of applica-
tion, this system might be used for placing several human
musicians in a virtual environment, and letting them play
together in real-time, hearing each other as they would in
the virtual acoustic space.

In real-time terminology, this kind of audio exchange is
classified as soft real-time since the loss of a deadline is not
catastrophic for the system. Such a loss simply implies that
an agent will be mute during a time frame. On the other
hand, the loss of a deadline by the event server is more seri-
ous because it will cause all agents to be mute for a frame.
To test for robustness and performance of the system, we
measured the number of successful fragments delivered to
the event server, as a function of both the number of agents
and the size of the audio chunks. Table 2 shows the results
over 25 seconds of digital audio delivered by each agent 4 .

Samples Period # Musical Agents
(ms) 1 5 10 25 50 100

44100 1000 100 100 100 100 100 100
22050 500 100 100 100 100 98 77
11025 250 100 100 100 97 75 *
4096 90 100 100 100 86 * *
1024 23 100 100 93 * * *
512 11 100 100 67 * * *
256 5 100 90 * * * *

Table 2. Percentage of fragments received by the Event
Server. Stars represent simulations that could not keep a
constant audio exchange rate.

As expected, there is a tradeoff between the number of
agents and the size of audio chunks, in order to keep full
functionality. When the number of agents increases past
a certain point, the system performance lowers due to the
increased number of threads and, consequently, of process
time and memory. Also, very small chunks increase the

4 Using a Intel Core 2 Quad 2.40 GHz, 4 GB of and Windows Vista.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 123



rate of loss because there is less processing time available
to agents within each time frame. Since this implementa-
tion uses a temporal resolution to schedule tasks of the or-
der of miliseconds, and the deadlines are too close to each
other, this lack of precision can sometimes desynchronize
the agents’ state machines.

5 DISCUSSION AND FUTURE WORK

The implementation of two systems (Living Melodies and
Audio Exchange and Acoustical Simulation) has shown that
the current state of framework development is capable of
covering systems that have different demands, such as real-
time digital audio and exchange of symbolic sound infor-
mation. Features made available by the framework allow
the user to concentrate in solving his/her specific musical
problem without worrying about lower level problems, such
as communication between agents and synchronization.

As for the exchange of periodic events, tests have shown
that it is possible to accomplish real-time audio exchange
between agents, keeping a constant audio rate, by carefully
choosing the size of the audio chunks as a function of the
number of agents needed. However, since audio chunk size
determines the overall latency in agents’ perception of each
other’s performance, it is desirable to improve the communi-
cation mechanism in order to allow for smaller audio chunks
with larger number of agents.

Apart from refinements in the current implementation of
the framework that might lead to a better performance, an-
other more structural approach to this problem is to use the
Real-Time Java Specification 5 , which provides a high reso-
lution time clock (in nanoseconds), and the possibility to do
real-time scheduling with this resolution. Although using a
real-time operating system and a real-time Java infrastruc-
ture to execute the application should produce better results,
we intend to keep both implementations available, so as not
to impose complicate system requirements on the common
user.

From the user interface point-of-view, we intend to pro-
vide access for users of various levels of expertise. Users
with no programming experience or who only need existing
components can define a musical multiagent system simply
by writing a text description, which is interpreted and exe-
cuted by the framework. This script only points out which
components (names, quantity and parameters) belong to
each kind of musical agent and environment agent, and the
global parameters of the simulation. This might also be done
through a graphic interface, where one manipulates existing
components, their interconnections and parameters. During
the execution of the system, it would be possible to visualize
a representation of the virtual environment with its agents,
and to plug-in new components in runtime. Advanced users

5 available at http://java.sun.com/javase/
technologies/realtime/index.jsp. 13 april 2009.

with programming skills may extend the framework by pro-
gramming new components with special features using Java,
either adapting existing codes to their needs or writing out
new components and maybe new features for the architec-
ture.

6 REFERENCES

[1] H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On act-
ing together. Proceedings of the Eighth National Con-
ference on Artificial Intelligence (AAAI-90), page 9499,
1990.

[2] N. R. Jennings. Commitments and conventions: The
foundation of coordination in multi-agent systems. The
Knowledge Engineering Review, 8(3):223–250, 1993.

[3] E. R. Miranda. Emergent sound repertoires in virtual so-
cieties. Computer Music Journal, 26(2):77–90, 2002.

[4] S. Dixon. A lightweight multi-agent musical beat track-
ing system. PRICAI 2000: Proceedings of the Pacific
Rim International Conference on Artificial Intelligence,
page 778788, 2000.

[5] L.L. Costalonga, R.M. Vicari, and E.M. Miletto. Agent-
based guitar performance simulation. Journal of the
Brazilian Computer Society, 14:19–29, 2008.

[6] G. L. Ramalho, P. Y. Rolland, and J. G. Ganascia. An ar-
tificially intelligent jazz performer. Journal of New Mu-
sic Research, 28(2):105–129, 1999.

[7] R. D. Wulfhorst, L. Nakayama, and R. M. Vicari. A mul-
tiagent approach for musical interactive systems. Pro-
ceedings of the second international joint conference on
Autonomous agents and multiagent systems, pages 584–
591, 2003.

[8] P. Dahlstedt and M. G. Nordahl. Living melodies:
Coevolution of sonic communication. Leonardo,
34(3):243–248, 2001.

[9] D. Murray-Rust, A. Smaill, and M. Edwards. Mama: An
architecture for interactive musical agents. In Ecai 2006,
2006.

[10] L.K. Ueda and F. Kon. Mobile musical agents: the an-
dante project. In Conference on Object Oriented Pro-
gramming Systems Languages and Applications, pages
206–207. ACM New York, NY, USA, 2004.

[11] P.A. Sampaio, G. Ramalho, and P. Tedesco. CinBalada:
a multiagent rhythm factory. Journal of the Brazilian
Computer Society, 14:31–49, 2008.

[12] P. M. Todd and G. M. Werner. Frankensteinian methods
for evolutionary music composition. Musical Networks:
Parallel Distributed Perception and Performance, 1999.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 124


