
A FRAMEWORK FOR ECOSYSTEM-BASED GENERATIVE MUSIC

Oliver Bown
Centre for Electronic Media Art, Monash University, Clayton, Australia, 3800

oliver.bown@infotech.monash.edu.au

ABSTRACT

Ecosystem-based generative music is computer-generated
music that uses principles borrowed from evolution and
ecosystem dynamics. These are different from traditional
interactive genetic algorithms in a number of ways. The
possibilities of such an approach can be explored using
multi-agent systems. I discuss the background, motivations
and expectations of ecosystem-based generative music and
describe developments in building a software framework
aimed at facilitating the design of ecosystemic sonic art-
works, with examples of how such a system can be used
creatively.

1 INTRODUCTION

A traditional paradigm of generative and evolutionary mu-
sic is that of the interactive genetic algorithm (IGA), which
is based on the notion that an artist can evolve aestheti-
cally pleasing music by using their aesthetic judgement as
the ‘selective pressure’ in an artificial environment. More
recently, researchers in generative and evolutionary music
have started to broaden their interest to more collective be-
haviours, such as social learning, cultural dynamics, and
niche construction [9], in simulated multi-agent systems
[6, 11, 8]. This approach, which I will refer to generally
as ecosystemic 1 , abandons the goal of exerting direct con-
trol over evolving systems through aesthetic selection, re-
quiring a more complex creative interplay between software
and artist. For example, McCormack [7] has described mod-
elling processes such as niche construction as a kind of cre-
ative design pattern with which an artist can design com-
plex generative dynamics in an exploratory manner. One of
the major challenges in working with multi-agent systems is
that complexity of design rapidly gets in the way of deeper
exploratory investigation. Design patterns address this prob-
lem by helping us to break down and conceptualise systems,
providing general rules that could be applicable to a range

1 Arguably, ecosystem models are a more specific subset of this area.
The term is used here to refer more generally to any set of coevolving in-
terdependent elements.

SMC 2009, July 23-25, Porto, Portugal
Copyrights remain with the authors

of different situations. As such, they reduce the opacity of
complex systems.

The framework discussed here (also see [3]) comple-
ments this software engineering-inspired approach by of-
fering additional ways to reduce the opacity of complex
creative projects, primarily through tools that facilitate the
batch processing and analysis of systems in a range of sce-
narios. Such challenges are already being addressed by
frameworks developed for studying multi-agent systems,
particularly in the social sciences and in artificial life. But
none of these systems have been built to deal with the practi-
cal goals and typical methodologies of artists and musicians
in mind. Multi-agent modelling experiments are of little cre-
ative value if they cannot be successfully transferred to cre-
ative domains, or be used creatively. However, they have the
potential to form the basis for a new approach to works such
as compositions, installations and creative software, due to
the variety of behaviour that multi-agent systems exhibit that
is not seen in traditional software.

This paper begins by discussing the motivations for pur-
suing an ecosystemic approach to artificial evolutionary mu-
sic and art, as compared to existing approaches such as the
IGA. I then describe a framework for developing ecosys-
temic artworks and music, which integrates an experimental
multi-agent modelling environment with a real-time music
environment. Finally, I demonstrate how this framework can
be used to develop ecosystemic sonic artworks: installation
works in which audio is used as the basis for an evolutionary
environment.

2 BACKGROUND, MOTIVATION AND
EXPECTATIONS

Despite moderate successes, the IGA approach to evolution-
ary art falls somewhat short of its original hopes. In princi-
ple, by analogy with natural selection, it promised to pro-
duce complex outputs that are both pleasing to, but beyond
the understanding of the user, that the user wouldn’t have
thought of himself, and perhaps couldn’t even have imag-
ined. In practice, this goal has proven elusive.

These shortcomings can be discussed in terms of the
structure of the space that an IGA user navigates in his
search. Parameterising a generative system in order to make
parts of it evolutionary inherently defines a space – the pa-

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 195



rameter, or genotype, space of the system. This space may
be thought of as a network of points (genotypes) connected
by genetic mutations. The IGA user engages in a blind
and relatively passive process of evaluating and selecting,
which can be represented as a journey through this geno-
type space. Initially, an important question about the space
itself is whether it is structured such that the user can steer
the evolving system towards a certain target. If so, this is a
potentially powerful design tool. For example, even though
the target was pre-specified, it may have other interesting
incidental properties.

A more ambitious expectation for IGA software is that it
should also guide the user in interesting and surprising di-
rections. This prompts a second question about the design of
the genotype space: if interesting and surprising generative
artefacts appear on this journey, will they be positioned en
route to even more interesting and more surprising artefacts?
These questions highlight the importance of the parameteri-
sation of the system itself, suggesting that the art of design-
ing such systems lies in designing genotype spaces that lead
us to interesting places. Little development has been made
in this area, although examples, such as the Neuroevolution
of Adaptive Topologies (NEAT) project [12], have pointed
to ways in which evolutionary lineages could lead in diverse
aesthetic directions. NEAT specifies a procedure for neural
nets to increase in topological complexity during their evo-
lution. Here the evolved entities could be argued to have
accumulated a user’s preferences over time.

The aesthetic selection of computer generated art and
music by individual users is also bound for practical rea-
sons to the simple case where genotypes map directly to
phenotypes that can be treated as isolated units for evalu-
ation. Evolutionary entities with any kind of developmen-
tal process, environmental influence, or interaction between
the individuals within the population, are complex enough
to necessitate a different approach. One solution to this
fitness bottleneck [1] is to employ multiple users as aes-
thetic selectors. Recent research explores this avenue by
borrowing from areas such as social networking technol-
ogy, human computing 2 , and grid computing efforts such
as SETI@Home 3 , in order to find ways to distribute the pro-
cess of selection (e.g. Draves’ Electric Sheep 4 ).

The ecosystem approach attempts to rethink evolution-
ary art by focusing on the design of spaces which embody
coevolutionary processes such as niche construction 5 . In
IGAs, the passivity of users in their interaction with the

2 The use of human brains for data processing, such as in reCAPTCHA
[13]

3 SETI stands for the Search for Extra Terrestrial Intelligence. This
group maintains an ad hoc processing grid of subscribers’ home computers
for the brute-force analysis of cosmic radio data [5].

4 http://electricsheep.org
5 Coevolution typically refers to the mutual influence between the evo-

lution of two species, but can apply to a multitude of interacting evolving
entities, including the set of individuals within a species.

system is at odds with the supposed aesthetic influence
they have over it. Ecosystem models are primarily non-
interactive, but still face many of the same challenges as
the IGA approach: designing evolutionary spaces that lead
‘naturally’ to a diverse array of interesting states.

Nevertheless, sonic ecosystems also have great potential
for interactivity in more or less direct ways. In the inter-
active audio visual installation Eden, McCormack [6] used
audience presence as a resource for a population of evolving
agents, such that agents might evolve to draw the attention
of the audience.

In other forms, interaction with sonic ecosystems could
correspond more closely to the original goals of the IGA
approach. This follows the reasoning that the real world of
artistic and musical creativity itself resembles an ecosystem,
exhibiting heterogeneity, stability, interdependence and the
capacity for the components of the system to influence the
entire system’s future evolution in unpredictable ways. The
value of an artwork or piece of music is strongly tied to its
situatedness in a cultural context, which determines its rel-
evance [10]. If culturally determined relevance is a signif-
icant factor in determining the evaluation of artefacts, then
creative cultural domains can be said to involve a strong de-
gree of feedback. Prior experience affects our evaluation of
new music, and new music is discovered and consumed via
channels of authority that precede pure content-based eval-
uation. Evaluation of creative artefacts is constantly shift-
ing and heavily influenced by these factors. Accordingly,
in a future inhabited by fully fledged creative computational
systems, we would expect them not only to be adapted to
the cultural factors affecting value judgement, but also to
actively manipulate these factors through cultural interac-
tion. In short, it may be a mistake to assume that systems
designed to adapt to our preferences will actually produce
the most pleasing results.

This discussion highlights the extensibility of ecosys-
tem models towards more interactive and evaluative forms.
However, our present focus is on the more manageable
problem of creative ecosystems which are either closed or
loosely interactive. In this area, an obstacle to good de-
sign is that the behaviour of a multi-agent system is typi-
cally complex and requires detailed analysis of its macro-
scopic properties to be clearly understood. Put differently,
an ecosystemic approach is particularly interested in the cre-
ative exploration and use of exactly those models that are
complex and not immediately obvious, and the methodology
presented here is aimed at maximising the potential to ex-
plore interesting complex systems. In the sonic domain, this
might involve generative sonic works that continue to de-
velop and transform indefinitely, but with consistent struc-
tural and aesthetic properties.

The issues of complexity suggests the need for an it-
erative development process based on the analysis of be-
haviours in successive versions of a model. Similarly, dis-

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 196



cussing approaches to the relationship between artificial life
models and real-world complex systems, di Paolo et al [4]
propose a three-stage development process of exploration,
experimentation and explanation. The exploratory phase
sets out to see what is of interest and relevance in a model
and to record information about the model. In the exper-
imental phase, hypotheses are tested about the behaviour
of the model. In the explanatory phase, the understanding
gained from the experimental phase is applied to the natural
world. The different goals of creative model building mean
that there is no explanatory phase, and a more open-ended
flexible approach to exploration and experimentation (which
includes de-bugging and learning the relationship between a
model’s logical behaviour and its aesthetic outcomes). A
more detailed study of working practices in creative com-
puting would reveal how this kind of methodology could be
developed more explicitly in creative domains.

3 FRAMEWORK DESIGN

In [3], I discuss a number of design requirements for a
framework for creative ecosystemic models:

• Analysing system behaviours (e.g., comparing many
different parameters)

• Integrating multi-agent and sound components in one
development environment

• Facilitating the design of live algorithms [2] using a
multi-agent approach

• Creating flexible agents and configurations for multi-
ple contexts

• Probing and editing models interactively

• Facilitating new forms of software extensibility, such
as being able to embed models inside other models.

A preliminary design for a framework is introduced in
[3], with an example of a sonic ecosystem. Here I discuss
how the framework aims to integrate multi-agent modelling
principles and a computer music library. The framework
also offers libraries for more specific ecosystemic and evo-
lutionary functionality like genetic variation, resource man-
agement, and handling dynamically changing populations.

One of the main practical considerations for exploring
new types of creative generative and evolutionary method-
ologies is for models to be easily adapted for multiple target
applications, such as batch processing for analysis, interac-
tive exploration and real-time performance. For this rea-
son, and for the goal of achieving useful extensibility, pop-
ular object oriented programming languages were seen as
providing the most power and flexibility. Java was chosen
for the current framework, primarily because of its greater

user-friendliness. Extendable general-purpose development
environments, such as Eclipse 6 , also provide core project
management functionality that is desirable for the kinds of
complex projects that are likely to be needed.

An audio library, Beads 7 , was developed by the author
in pure Java with this framework and a number of other
computer music applications, including live performance, in
mind. This audio library follows the principle of good inte-
gration; that is, it is advantageous to work in a single devel-
opment environment when working experimentally. Popu-
lar real-time music environments such as MaxMSP 8 , Su-
perCollider 9 and JSyn 10 , use separate formats for high-
level and low-level (digital signal processing or DSP) el-
ements, requiring users to skip between different environ-
ments. For example, users can write externals for MaxMSP,
but must compile them in a development environment and
then launch them in MaxMSP (at least in the case of na-
tive C externals). A complete integrated environment al-
lows developers to add DSP routines straight into their code.
With a multi-agent modelling environment and sound envi-
ronment closely integrated, it is also easy to have modelling
processes triggered by audio-rate processes, as well as vice-
versa.

The current instantiation of the ecosystems framework
focuses on the basic requirements listed above. A hierarchi-
cal scheduling mechanism provides the core configurability
and addresses the requirement of extensibility by allowing
schedulers to be easily chained together. Using an XML
configuration file, an arrangement of schedulers and listen-
ers can be set up, with a master scheduler at the root. In the
most basic multi-agent scenario, this would consist of one
scheduler and a population of agents that are updated by
the scheduler. Additional listeners, such as a visualiser or
sonifier or tools for collecting simulation data from the pop-
ulation, can be specified in the configuration file or added
interactively. Thus different configuration files can specify
different use cases such as batch processing and live installa-
tion. A scheduler can also take its timing from an audio-rate
clock instead of the master simulation scheduler, meaning
that audio rate processes and higher level scheduling pro-
cesses run in the same ratio under different circumstances
(this is useful in the case of running real-time systems of-
fline). As well as allowing different configurations, the hier-
archical structuring of schedulers also facilitates interesting
experiments in the extensibility of existing systems, such as
the integration of two populations of agents in a common
environment, or the embedding of agents and their environ-
ments as subsets of bigger environments.

6 http://www.eclipse.org
7 http://www.beadsproject.net
8 http://www.cycling74.com
9 http://www.audiosynth.com

10 http://www.softsynth.com/jsyn

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 197



For logging data, a data logger class exists which uses
the Java Reflect API to probe agent classes. Thus if
agents have the field size, the logger can be told to log
the value “agent:size”. This will log all of the size val-
ues for all of the agents at each time step. This syntax
works for nested classes and data structures. If agent’s
have a field memory which in turn stores a variable length
array of known pitches, then telling the logger to log
“agent:memory:pitches” will log all of the pitches for each
agent at each time step, and so on. Loggers can be switched
on and off at different time steps. The logged data can
then be formatted to work with a plotting program such as
Gnuplot 11 or Mathematica 12 . No extra code has to be in-
serted into the agent except ‘getter’ methods for these fields,
which the data logger automatically discovers. For inter-
active probing of data, another class exists which unpacks
the entire configuration of schedulers and agents into a tree
view. The elements of the tree view can then be edited man-
ually (assuming the specified fields have ‘setter’ methods).
Alternatively, for any elements that are being visualsed, it
is easy to configure the system such that double clicking on
that element brings up a similar tree rooted at that element.

Such features are in an early stage of development and
the ultimate goal of this project is to develop the system and
its associated working methodology to the stage where the
framework can be used as a general purpose creative toolkit
for sonic ecosystems.

4 USING THE FRAMEWORK

An ecosystemic approach to evolutionary computer music
attempts to ground the design of an evolving artificial multi-
agent system in an environment that is intrinsically related
to the world of sound and music that we are familiar with.
As discussed in Section 2, this provides, at least in princi-
ple, a kind of coupling between the agents in the evolving
system and our experience, capable of guiding an artist’s
development of their work.

An ecosystem model typically consists of an environ-
ment containing resources (or also environmental condi-
tions), a population of evolvable agents, and a set of rules
defining the relationship between the resources and the
agents’ dynamics of survival and reproduction. This rela-
tionship is not the same as a specific fitness function for
individual isolated agents, typical of standard genetic algo-
rithms, since the population is involved in myriad interac-
tions amongst each other (directly, or via manipulation of
the environment), from which the exact conditions for sur-
vival emerge. This invites a variety of evolved relationships
of both co-operative and competitive natures. For example,
since parents and their offspring are closely related, their be-

11 http://www.gnuplot.info/
12 http://www.wolfram.com/

haviour, locality, and their dependence on resources is simi-
lar and can often be in conflict. Such emergent relationships
can be understood in terms of the theory of evolution, or
more specifically in terms of known artificial life models.
Often, models are unpredictable in the sense that the best
way to know what they will do is to run them. But it is pos-
sible to work out the underlying behaviour and adjust the
model accordingly (helped by the framework to the extent
that it satisfies the design requirements).

In order to embed the system in a sonic context, the
environmental resources should reflect acoustic features of
sound that is created or affected by the agents in the popu-
lation, but may also be mixed with sound coming into the
model from outside (there is no reason why this couldn’t be
done at a more abstract level, such as in a MIDI domain, but
sound is preferred as it makes fewer musical assumptions).
An example is to take a spectrogram of the sound and to
treat the level of each band as the literal quantity of a spe-
cific resource. Another is to take the amount of ‘space’ left
in each band (e.g., a max value minus the level of the band)
as the quantity of the resource, and rewarding health gains
to agents in proportion to the relative level of sound they
contributed to that band. In the latter case, the environment
becomes less inhabitable the more sound is being made, but
agents have to make sound to get fit. This contradiction in-
vites the possibility of an evolutionarily stable state or an
unstable dynamic process (see [3]).

Main : 
SCHEDULER

Agent World : 
SCHEDULER

Agent : 
SIM

Agent : 
SIM

Agent : 
SIM

Agent : 
SIM

Agent Visualiser : 
LISTENER

AudioIn

AudioOut

Interactive :
APP

Batch Proessing : 
APP

Realtime : 
APP

DATA_LOGGER : 
LISTENER

Figure 1. Different model configurations. In the real-time
configuration (contained by solid line), the simulation is run
with real-time audio and visualisation but no analysis. In the
batch processing configuration (contained by dashed line),
the simulation is run with non-real-time audio and analysis
but no visualisation.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 198



A basic sonic ecosystem is given by the structure in Fig-
ure 1. At the top, three different executable applications are
available, each of which sets up a master scheduler and runs
it. A configuration file specifying the set-up of the envi-
ronment and agents can be fed into one of the applications,
depending on the required context. The application reads
the configuration file and attaches the specified objects to
the master scheduler. In the batch processing case, addi-
tional configuration data is required (e.g., what parameters
to sweep over), but since the applications themselves are
only a few lines of code, it is easy to write dedicated appli-
cations for specific batch processes. Alternatively, a set of
configuration files, one for each parameter set, can be fed
into the batch processing application.

There are a number of ways that schedulers, agents and
scheduler listeners can be built to reflect the basic design
of environment and multi-agent population. In Figure 1,
this is achieved by making the environment itself a sched-
uler (labelled ‘agent world’), which sets up the audio con-
text, and then sets itself to be updated from an audio-rate
clock, instead of from the main scheduler (it is still con-
trolled from the main scheduler). That way we know that
environment and agents are always updated at the same ra-
tio with respect to the audio processing. When initialised,
the environment generates the initial population of agents
from the configuration file, and each agent is attached to
the environment’s scheduler, which triggers updates in the
agents. The scheduler can be configured to perform syn-
chronous or asynchronous updates of the population. After
the initial set-up, agents take care of automatically removing
themselves from the environment when they die, and adding
their offspring to the environment when they reproduce.

In the case of the region enclosed in the dotted line in
Figure 1, the population is run in a batch process without
real-time audio input and output (determined by the config-
uration file, but overridden by the batch processing applica-
tion). A data logger is also attached, which records infor-
mation about the agents. In the case of the region enclosed
in the solid line, the simulation is run in real-time with an
additional visualisation unit attached.

As constructed, the creative challenge for such models is
to work out how to manipulate aspects of the overall design,
such as the resource model, to achieve interesting dynami-
cal behaviour, and also satisfying sonic behaviour, without
letting one of these goals eclipse the other. It is assumed
that the dynamics of an evolutionary process could form
the basis for an interesting musical and harmonic structure:
one could construct a metaphor in which mass extinction
and adaptive radiation act as mechanisms of sudden change,
and gradual coevolution leads to complex and harmonic re-
lationships between components. Having glimpsed this pos-
sibility, the role of the framework is to facilitate the explo-
ration of the model’s behaviour with these combined goals
in mind. Since the environment of agents consists largely of

other agents, there is fair reason to assume that some vari-
ation of such a model exists in which the population con-
tinues to evolve over a long period of time, without settling
into a stable state, and perhaps even increasing in complex-
ity (this can be see as following a coevolution design pat-
tern).

I discuss an example of such a model, in the form of a
sonic installation artwork, in [3], which uses the ‘available
space’ resource model discussed above, and demonstrate an
example of running a parameter sweep across a number of
simulation settings in order to find configurations in which
the population of agents divides into two or more species
over time. Where such configurations were found, the spe-
ciation behaviour is also clear from the audio recording of
these runs. In other configurations it was common for sep-
arate species to emerge for brief periods, often collapsing
back to a single population. The ultimate victory of a sin-
gle population is a likely outcome of the ‘available space’
resource model, because agents gain fitness most easily by
being more noisy and hogging the audio spectrum: a species
that made the noisiest sound would ultimately out-compete
less noisy species. This still produced interesting dynamics
as the population evolved through various phases of noisi-
ness, often moving through a complex sequence of phases
before discovering the noise strategy.

5 SUMMARY

This paper begins by discussing the motivations behind de-
veloping new approaches to evolutionary computer music,
following an ecosystemic paradigm. Beyond the traditional
notion of aesthetic selection, I consider ways to integrate
tools from multi-agent evolutionary systems into creative
practices. I describe the design of a framework which ad-
dresses the design goals established by such an approach.
This framework integrates computer music and multi-agent
modelling tools into an existing development environment
and allows different model configurations to be interactively
explored and analysed in a flexible manner. Future work
will focus on explicitly formulating a stronger methodology
to back this kind of creative exploration, and continuing to
develop the framework with this in mind.

6 ACKNOWLEDGEMENTS

I wish to thank Jon McCormack for valuable discussions
that contributed to this paper. This research was funded by
the Australian Research Council under Discovery Project
grant DP0877320.

7 REFERENCES

[1] J. A. Biles, “Autonomous genjam: Elim-
inating the fitness bottleneck by elim-

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 199



inating fitness,” 2001, available from
http://www.it.rit.edu/j̃ab/GenJam.htmljab/GenJam.html.

[2] T. Blackwell and M. Young, “Live algorithms,”
http://www.timblackwell.com/, 2005.

[3] O. Bown, “Ecosystem models for real-time generative
music: A methodology and framework,” in Proceedings
of the 2009 International Computer Music Conference
(ICMC 2009), Montreal, Canada, forthcoming 2009.

[4] E. Di Paolo, J. Noble, and S. Bullock, “Simulation mod-
els as opaque thought experiments,” in Articial Life VII:
Proceedings of the Seventh International Conference
on Articial Life, M. A.Bedau, J. S. McCaskill, N. H.
Packard, and S. Rasmussen, Eds. Cambridge, MA:
MIT Press, 2000, pp. 497–506.

[5] E. Korpela, D. Werthimer, J. Kobb, and M. Lebof-
sky, “Seti@home – massively distributed computing for
seti,” Computing in Science and Engineering, vol. 3, pp.
78–83, 2001.

[6] J. McCormack, “Artificial ecosystems for creative dis-
covery,” in Proceedings of the 2007 Genetic and Evo-
lutionary Computation Conference, D. Thierens et al.,
Eds. ACM, New York, 2007, pp. 301–307.

[7] J. McCormack and O. Bown, “Life’s what you make:
Niche construction and evolutionary art,” in Applica-
tions of Evolutionary Computing: EvoWorkshops 2009,
2009.

[8] E. R. Miranda and P. M. Todd, “A-life and musical com-
position: A brief survey,” in IX Brazilian Symposium on
Computer Music: Music as Emeregnt Behaviour, 2003,
pp. 59–65.

[9] F. J. Odling-Smee, “Niche construction, evolution and
culture,” in Companion Encyclopedia of Antrhopology:
Humanity, Culture and Social Life, T. Ingold, Ed. Ox-
ford, UK: Routledge, 1994.

[10] V. S. Ramachandran, “The artful brain,” Talk given
at the 2003 BBC Reith Lectures, available from
http://www.bbc.co.uk/radio4/reith2003/lecture3.shtml,
2003.

[11] J. Romero and P. Machado, Eds., The Art of Artificial
Evolution: A Handbook on Evolutionary Art and Music.
Springer-Verlag: Heidelberg, Germany, 2008.

[12] K. O. Stanley and R. Miikkulainen, “Evolving neural
networks through augmenting topologies,” Evolutionary
Computation, vol. 10, no. 2, pp. 99–127, 2002.

[13] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and
M. Blum, “recaptcha: Human-based character recogni-
tion via web security measures,” Science, vol. 321, pp.
1465–1468, 2008.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 200


