
SOUND OBJECT CLASSIFICATION FOR SYMBOLIC AUDIO MOSAICING:
A PROOF-OF-CONCEPT

Jordi Janer, Martin Haro, Gerard Roma
Universitat Pompeu Fabra

{firstname.lastname}@upf.edu

Takuya Fujishima
Yamaha Corporation

fujishim@beat.yamaha.co.jp

Naoaki Kojima
Media Artist

animatedmotion@gmail.com

ABSTRACT

Sample-based music composition often involves the task
of manually searching appropriate samples from existing
audio. Audio mosaicing can be regarded as a way to autom-
atize this process by specifying the desired audio attributes,
so that sound snippets that match these attributes are con-
catenated in a synthesis engine. These attributes are typ-
ically derived from a target audio sequence, which might
limit the musical control of the user.

In our approach, we replace the target audio sequence by
a symbolic sequence constructed with pre-defined sound ob-
ject categories. These sound objects are extracted by means
of automatic classification techniques. Three steps are in-
volved in the sound object extraction process: supervised
training, automatic classification and user-assisted selection.
Two sound object categories are considered: percussive and
noisy. We present an analysis/synthesis framework, where
the user explores first a song collection using symbolic con-
cepts to create a set of sound objects. Then, the selected
sound objects are used in a performance environment based
on a loop-sequencer paradigm.

1 INTRODUCTION

Corpus based sound synthesis encompasses a wide range
of approaches that leverage the developments of audio de-
scription technologies for speech and music synthesis ap-
plications. Initially developed for text to speech applica-
tions, Concatenative Sound Synthesis [1] has been adapted
to the musical domain, notably to singing voice and musi-
cal instrument synthesis. Musical mosaicing [2] introduced
a more general approach from the point of view of unit
selection by mapping the search of suitable sounds from
the database to a constraint satisfaction problem. However,
while traditionally closer to popular practices in the reuse of
musical materials, applications of musical mosaicing have
been limited by the dependence on an acoustic target that is
analyzed to define the constraints. In this paper we present
an initial step towards symbolic audio mosaicing based on
machine learning of abstract sound categories. The system
describes acoustic events in polyphonic music using human-
understandable concepts (e.g. percussive, having promi-

nence of singing voice, harmonic sound with constant pitch,
etc.). Then it provides the user with a symbolic audio mo-
saicing interface to compose music by concatenating these
“concepts”. Sound descriptors from the symbolic sequence
are used as target in an audio mosaicing system. One of
the main bottlenecks we face when trying to develop such
system is the need to automatically characterize music seg-
ments using perceptually meaningful sound object cate-
gories. Nowadays we have a lot of signal-level descrip-
tors, but these descriptors are rarely linked with perceptu-
ally meaningful sound events in polyphonic music (with few
exceptions like chroma features or some rhythmic descrip-
tors). We make use of Music Information Retrieval (MIR)
techniques like sound segmentation [3], instrument classifi-
cation [4], and audio feature extraction [5] to classify poly-
phonic sound segments into pre-defined sound object cate-
gories.

Depending on the area of research we look from, there
are several interpretations of the concept of sound object. If
we look from a perceptually-oriented point of view we find
concepts related to auditory streams and perceptual group-
ing of sound events [6]. Looking from a signal process-
ing point of view we can rely on concepts like onsets or
ADSR envelope. Traditional music theory deals the con-
cepts of notes and chords. In Musique Concrète, Schaeffer
proposed the idea of musical objects [7]. One simple work-
ing definition can be found in [8]: “Sound Object: a basic
unit of musical structure, generalizing the traditional con-
cept of note to include complex and mutating sound events
on a time scale ranging from a fraction of a second to sev-
eral seconds”. Within this proof-of-concept paper we start
by considering only two easily identifiable types of sound
objects found in polyphonic music: percussive and noisy
sounds. The former category includes sounds objects with
a sharp attack followed by a decay (e.g. drums, pizzicato),
while the latter includes unpitched sound objects with flat
amplitude and spectral envelopes (e.g. stable white noise,
highly distorted sounds).

The main characteristic of this project is the concept of
semi-automatic sound object retrieval. The research tasks
focus on detecting segments of a song with high probabil-
ity of being member of a pre-defined sound category. At
the same time, with the analyzed sounds, the user should be

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 297



Sound 
Examples

DB

Training Category
models

Song
collection

Instance
detection

Instance
selection

sound 
objects

set
useruseruser

Performance
environment

Mosaicing
engine

candidates

descriptors

out

audio

Figure 1. General overview of the implemented system.
Note the user intervention in both exploration and composi-
tion processes.

able to create new audio material in the context of electronic
music performances.

An overview of the process is depicted in figure 1. The
steps involved are: Instance Detection, Instance Selection
and Performance Environment. The first consists of two
sub-processes: the model training, given a manual annotated
ground-truth database; and the extraction of new sound ob-
ject candidates from a song collection. In the instance selec-
tion process, the user selects among the extracted candidates
in a GUI. Finally, the performance interface allows the user
to specify different steps in a sequencer using sound cate-
gories. In the next sections we describe each step in detail.

2 AUTOMATIC INSTANCE DETECTION

In the proposed analysis framework, the user selects from
a list of automatically detected sound objects. In order to
detect these objects the system extracts acoustic descriptors
from all songs in the collection, and creates a list of candi-
dates. The instance detection process applies machine learn-
ing techniques to classify the list of sound candidates into
pre-defined categories, outputting a class-label and a likeli-
hood value for every proposed segment. Additional features,
such as amplitude envelope and spectral content, are com-
puted to further describe the sound objects. These features
are used in the following stage, the sound object selection
(see section 3).

2.1 Segment-based Sound Object Detection

Initially, one can foresee two different approaches to detect
sound objects: frame-based and segment-based. In a frame-
based approach sound objects can be identified by using a
continuous descriptor computed out of frames of short du-
ration. In a segment-based approach segments of longer du-
ration are described and evaluated by an automatic classifier.

The problem of using a frame-based approach is that it
ignores time-evolving aspects of the sound, such as the en-
ergy envelope. Therefore, our approach is segment-based,
relying on supervised machine learning techniques. A man-
ually annotated ground truth database is used to train models
of sound object categories. From the audio file, we use an
in-house sound analysis library to extract low-level acous-
tic features. In the next step we generate a list of segment
candidates, which can overlap. For each candidate, a con-
fidence measure is computed using automatic classification
algorithms. We keep the non-overlapping segments with a
confidence measure of more than 50%.

2.1.1 Training Database

In order to build a model for each sound category we need
a ground truth database with labeled examples. We decide
to construct two labeled databases (one per sound category)
namely PercussionDB and NoiseDB.

PercussionDB: Concerning the percussive category, in
order to obtain a more generalized model, we use a ground
truth database built by processing the ENST drums database
[9]. This is the largest publicly available drum database.
It contains recordings from three different drummers and
drum sets playing single hits, drum phrases and complete
songs covering various styles. The authors provide two type
of drum recording tracks namely dry (without sound effects)
and wet tracks, along with the corresponding music accom-
paniments. In our case, since we want to detect percussive
events in real world music, we use the wet tracks. In or-
der to obtain “realistic” songs we mix the drums and their
accompaniments tracks directly (without further changes of
sound levels). Afterwards we segment 30 seconds of each
song (and their labels) for a total of 64 songs. Since we
want to detect all percussive sounds as belonging to one
class we merge all the provided labels into one “parent” cat-
egory named as “percussive”. Finally we keep the sound
events that are found by an onset detector [3], labelling intra-
onset segments with a maximum length of 150ms. If the on-
set has at least one percussive label in its vicinity (±40ms)
it is labeled as “percussive” otherwise is labeled as “non-
percussive”. At the end of this process we obtain 3.690 ex-
amples of percussive events (and 3.690 of non-percussive
ones).

NoiseDB: Concerning the noisy category, we collected
several songs containing potential “noisy” sounds, as well as
isolated noise sound from sample collections. We manually

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 298



Amplitude-related object descriptors
Mean
Variance
Minimum
Maximum
Skewness
Kurtosis
Time-related object descriptors
Temporal Skewness
Temporal Kurtosis
Temporal Centroid
Maximum Normalized Position (MxNP)
Minimum Normalized Position
Slope: arc tangent of the slope of the linear
regression of the data.
Normalized Attack (Decay): Slope form
beginning (end) to the MxNP.
Attack (Decay): Slope from beginning (end)
to Max position (in frames).

Table 1. Object-level descriptors

annotate the noisy objects obtaining a total of 208 “noisy”
sound objects.

2.1.2 Audio Descriptors

To characterize each sound object we first compute more
than 90 frame-level audio descriptors. Then we compute
several object-level descriptors to extract amplitude-related
and time-related features from the time series of audio
frames. For each frame-level descriptor, we compute the
whole set of object-level features depicted in table 1. Thus,
we obtain more than 1.400 descriptors for each sound ob-
ject. A more detailed explanation of this process can be
found in [10].

2.1.3 Classification Experiments

Once we have properly labeled databases (i.e. PercussionDB
and NoiseDB) we use them to train several supervised clas-
sification algorithms.

For classification experiments we first perform a
Correlation-based Feature Selection [11] (CFS) on each
database to retain the most informative features (those with
low intracorrelation and, at the same time, high class- corre-
lation). Then we train both Support Vector Machines (SVM)
and Logistic Regression [12] (LR) algorithms on each bi-
nary class problem (i.e percussive vs. non-percussive and
noisy vs. non-noisy) using 10-fold cross validation in
WEKA 1 .

Since we obtain quite similar results from SVM and LR,
we adopted the later for simplicity. See table 2 for an over-

1 http://www.cs.waikato.ac.nz/ml/weka/

Class # instances # descriptors F-measure
P vs. N-P 7.380 74 0.71
N vs. N-N 416 38 0.88

Table 2. Classification results for percussive vs. non-
percussive (P vs. N-P) and noisy vs. non-noisy (N vs. N-N)
classes

Figure 2. Audio onset segmentation (dashed lines), variable
window length segmentation (empty squares), and sound
object candidates (solid squares).

view on classification results. From the evaluation of the
classification experiments, we can conclude that the model
for the percussive category achieves good results (F-measure
of 0.71) using a data set of more than 7.300 instances. We
consider that this model is sufficiently general for classi-
fying new percussive sound objects. Regarding the noisy
model we also obtain good classification results (F-measure
of 0.88). Although it would be interesting to have more
examples to train the model we consider that this model is
quite representative for noisy sound objects.

At the end of this process we have two LR models, one
in charge of detecting percussive sound events and the other
in charge of detecting noisy events. Since the LR algorithm
outputs a class label and its corresponding probability mea-
sure, we store this probability to be used as a measure of
confidence in the prediction.

2.1.4 Candidate Detection

In order to detect the percussive or noisy sound objects (and
their confidence values) we need to evaluate all possible
sound segments against our classification models. For every
new song we compute its onsets and define sound segment
boundaries as inter-onset intervals (see figure 2).

After the segmentation step we compute all possible can-
didate segments between two onsets, using a frame resolu-
tion of 512 samples. Additionally, we use category-specific
rules in order to reduce the number of candidates and im-
prove the performance of the classification. For the percus-
sive sound category, the possible candidate segments must
start at the onset position. Conversely, for the noisy cate-
gory, candidates are not allowed to start at onset position in

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 299



order to avoid impulsive segments, and a minimum length is
required so that they can be perceived as stable sounds.

At the end of the process, we obtain a list of sound ob-
ject instance candidates and their confidence value. We also
compute some additional object-level descriptors to be used
in the assisted instance selection process described next. For
percussive objects we compute their attack, decay and mag-
nitude values and for the noisy category we compute spectral
energy values for high, mid and low frequency bands.

3 ASSISTED INSTANCE SELECTION

3.1 Overview

The main feature of the selection prototype is to discover
sound objects in a song collection. Given a song collec-
tion, we compute a list of candidate objects for each song.
When a song is loaded in the main panel, the user can play
the candidates, which are highlighted in different colors for
percussive and noisy categories. Also, the user may restrict
the found sound objects by setting a threshold, so that only
those sounds with a confidence value above that threshold
will be highlighted. Additional filtering can be done ac-
cording to specific characteristics of each sound category.
For example, for percussive sound objects the user might
set values for attack, decay and magnitude and, according
to the selected parameters, a triangular shape is drawn (see
figure 3). When applying this filter, only those candidates
whose attack, decay and magnitude values are within the
ranges defined by the corresponding parameters and the tol-
erance slider are highlighted. Noisy sound objects may be
filtered according to the distribution of energy in the spec-
trum. A dual slider allows specifying the relative propor-
tion of high, mid and low frequency energy. A second slider
specifying the desired total absolute level of energy. A rough
representation of the target spectrum shape defined by these
parameters is also displayed.

Sound object candidates may be added to a list using a
context menu. The list represents the selection of sound ob-
jects that the user can export to the performance environ-
ment (section 4).

Additionally, a list of similar objects in the whole song
collection is computed in advance for each candidate, using
Euclidean distance. A second list shows the most similar
objects for the currently selected candidate.

4 PERFORMANCE ENVIRONMENT

The performance tool consists in a mosaicing system that
concatenates sound objects previously selected using the ex-
ploration prototype. It is composed of two separate mod-
ules: the graphical user interface and the audio engine. The
interface displays information about the current status of the
synthesis process, and sends sound object descriptors to the

Figure 3. Interface of the exploration prototype. Three
sound objects are identified. Amplitude envelope for the
percussive objects(red) are represented with triangles.

audio engine through Open Sound Control [13]. The audio
engine receives the list of descriptors for each step of the se-
quence and uses them to select the appropriate sound object
for that step.

4.1 Interface

The interface consists of three hierarchical levels: Com-
poser, Sequencer and Browser. Each level can be also re-
lated to a different temporal scale: song / performance (Com-
poser), loop (Sequencer) and sound object (Browser). Each
sequencer has a variable number steps (e.g. sixteen steps in
figure 4), and for each step the user can browse and select
sound objects of a given category to compose a loop.

In the Browser, the user can listen to the sound objects of
a given category in a specific sound objects set (previously
stored with the selection tool). Typically, the number of ob-
jects for one category will be under 100 instances. Sound
objects can be scattered according to some signal descriptor
(e.g. mapping energy to distance to the center). The user can
pre-listen to one sound object at any time before selecting it.

The Sequencer is a classical step sequencer. It has a cir-
cular shape, showing in real-time the current playing posi-
tion. The number of steps is specific to a given loop and can
be set by the user. Each Sequencer can also be rotated in or-
der to modify its relative phase. Each step of the Sequencer
can be filled with a sound object of one of the defined cat-
egories or left empty. The desired target object is selected
through the Browser. A preset management system allows
the user to store, load and unload sequences.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 300



Figure 4. Synthesis interface, showing a Sequencer exam-
ple, and a detailed view of the sound objects Browser. The
Composer level (not shown in the figure) is the top level and
can contain multiple Sequencers.

The top level is the Composer, which might contain one
or several Sequencers synchronized to a global user-defined
tempo. The user can create a composition by manipulat-
ing the Sequencers (changing location, muting, soloing) on
the fly. When having several Sequencers in one Composer
panel, the descriptors sent to the audio engine will depend
on the position of the Sequencers. For each step, the sent
descriptors will be a linear combination of the descriptors
of the individual sound objects.

4.2 Audio mosacing engine

The audio mosaicing engine is responsible for the actual
sound generation. It selects and concatenates samples from
the internal sound bank obtained in the selection process.
Each step in a loop is described by the vector of audio de-
scriptors sent by the the interface module. The audio engine
seeks the sound objects that best match the incoming de-
scriptors.

One of the main motivations of using audio mosaicing
is the flexibility in modifying the synthesized sounds by
changing the content of the audio engine’s internal sound
bank. In this case, the synthesized output will mimic the
structure and timbre characteristics of the sound objects used
in the Composer, but using different sounds. Also, more
complex interactions based on the mosaicing paradigm are
possible using multiple Sequencers as described.

5 CONCLUSIONS AND FUTURE WORK

We have presented and implemented a proof-of-concept pro-
totype for symbolic audio mosaicing. The main idea be-
hind this system is to combine MIR and corpus-based syn-
thesis techniques to obtain a new analysis/synthesis frame-
work for music creation. The proposed application replaces,
within the mosaicing paradigm, the target audio sequence
by a symbolic sequence constructed with pre-defined sound
categories.

We have implemented a fully working prototype con-
sidering two sound categories (i.e. percussive and noisy
sounds) automatically detected by machine learning tech-
niques. We believe that this user-assisted application is an
engaging interface for audio mosaicing. This application
gives the users an alternative to pre-defined sample banks
by exploring their own music collections using high level
categories.

The next logical step is to add some more categories and
perform a user study in order to evaluate the concept. Ulti-
mately, it should be possible for users to define their own
sound categories. Concerning the segmentation step, we
plan to extend the research by using other descriptors than
onset detection. This approach might improve the genera-
tion of candidates for some categories.

6 ACKNOWLEDGMENTS

This work is partially funded by Yamaha Corp., Japan and
the EU IST project Salero FP6-027122. The authors would
like to thank Lucas Kuzma, Perfecto Herrera, Bee Suan Ong
and Sebastian Streich.

7 REFERENCES

[1] Schwarz, D. (2004). ’Data-Driven Concatenative Sound
Synthesis’. PhD Thesis. Université Paris 6 - Pierre et
Marie Curie.

[2] Zils, A. and Pachet, F. (2001). ’Musical Mosaicing’. In
Proc. Of the COST-G6 Workshop on Digital Audio Ef-
fects (DAFx-01), Limerick.

[3] Brossier, P. (2007) ’Automatic Annotation of Musical
Audio for Interactive Applications,’Centre for Digital
Music, Queen Mary University of London 2007

[4] Herrera, P. Klapuri, A. Davy, M. (2006) ’Automatic
classification of pitched musical instrument sounds’
in Signal processing methods for music transcription,
Springer, 2006

[5] Peeters, G. (2003). ’A large set of audio features for
sound description (similarity and classification) in the
Cuidado project’. IRCAM.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 301



[6] Bregman, A. S. (1990) ’Auditory scene analysis: the
perceptual organization of sound’, Cambridge, Mass. :
MIT Press, 773.

[7] Schaeffer, P. (1966), ’Traité des objets Musicaux’. Paris.
: Seuil.

[8] Roads, C. (2001), ’Microsound’. Cambridge, Mass. :
MIT Press, 409.

[9] Gillet, O. and Richard, G. (2006) ’ENST-Drums: an
extensive audio-visual database for drum’ ISMIR, 156-
159.

[10] Haro, M. (2008) ’Detecting and Describing Percus-
sive Events in Polyphonic Music’, Master Thesis, UPF,
Barcelona.

[11] Hall, M. (2000) ’Correlation-based Feature Selection
for Discrete and Numeric Class Machine Learning’,
Proc. 17th International Conf. on Machine Learning,
359–366.

[12] le Cessie, S. and van Houwelingen, J (1992) ’Ridge
Estimators in Logistic Regression’, Applied Statistics,
41(1):191-201.

[13] Kuzma, L. (2008) ’An Interface for Sequencing with
Concatenative Sound Synthesis’, Master Thesis, UPF,
Barcelona.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 302


