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ABSTRACT

Although musical interpretation of L-Systems has not been
explored as extensively as the graphical interpretation, there
are many ways of creating interesting musical scores from
strings generated by L-Systems. In this article we present
some thoughts on this subject and propose the use of genetic
operators with L-System to increase variability.

1 INTRODUCTION

L-systems are powerful tools for creating models of plants
and other structures that have some degree of self-similarity.
Typically, an L-system consists of a set of symbols and a set
of rewritting rules which can be applied in a parallel basis.
Figure 1 shows an L-system for the famous dragon curve
using the syntax adopted by [1].

#level 11
#delta 90
#axiom FX

X -> X+YF+;
Y -> -FX-Y;
-----------------------------------

Resulting string
0 FX
1 FX+YF+
2 FX+YF++-FX-YF+
3 FX+YF++-FX-YF++-FX+YF+--FX-YF+

Figure 1: L-system grammar for the dragon curve.

The usual way of extracting something interesting from
strings generated by L-Systems, is to interpret each symbol
as a command to a imaginary turtle, in a LOGO-like manner.
For such approaches, “F” means draw a segment with length
d, “+” means turn the turtle +δ degrees, “-” means turn the
turtle -δ degrees. “X” and “Y” are just auxiliary symbols
and do not have a graphical interpretation. After a few ite-
rations, 11 to be precise, we derive from the L-System in
Figure 1 the picture shown in Figure 2. Description of more
complex graphical structures and a complete overview of
different types of L-Systems can be found in [1].

Figure 2: The dragon curve after 11 iterations on the
L-system shown in Figure 1.

Of course, the graphical interpretation is not the only
way to interpret the strings. Although most extensions to
L-Systems focus only on the graphical interpretation, seve-
ral authors described techniques to extract musical scores
from strings produced by L-Systems [2], [3], [4], [5], [6].
Music has a certain fractal property [7], so it fits nicely in
the context of parallel rewriting that the L-Systems provide.
However, it’s not a perfect fit. If the L-Systems or the ren-
dering techniques are too simplistic, the resulting score will
probably be equally simplistic, with the same theme or mo-
tif going over and over again, but starting at different points
of the chosen musical scale.

In our research, we observed that the authors usually try
to cope with this problem in two different ways: using more
sophisticated L-Systems (stochastic or context-sensitive, for
example) or using a more refined method for score gene-
ration in order to introduce variability. Keeping this idea
in mind and borrowing a few operators from genetic algo-
rithms, we have developed a method to increase variability
by changing the set of rules after each iteration.

Each method of score generation has properties that make
it more suitable to a certain type of L-System, but it’s inte-
resting to observe how the same L-System “behaves” under
different renderings, so we have developed a program that
implements three types of rendering: spatial [2], sequential
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Figure 3: Score generated by projecting the graphical inter-
pretation on a pentatonic scale

[3] and schenkerian [3].
Section 2 presents an overview of existing musical rende-

ring. Section 3 introduces the notion of Genetic L-Systems.
Section 4 describes a program written in the Python pro-
gramming language that implements some musical rende-
rings and our approach for Genetic L-Systems. Section 5
summarizes this work and suggests future directions.

2 MUSIC FROM L-SYSTEMS?

Arguably, one of the firsts articles on the subject of score
generation and L-Systems was Prusinkiewicz’s Score gene-
ration with L-systems [2], where he described a technique
to extract music from the graphical interpretation of a string
produced by an L-System. Each horizontal segment of the
picture is interpreted as a note with a length proportional to
the length of the segment. The pitch of a note is the y-th note
of the chosen musical scale, where y is y-coordinate of the
the segment. Figure 2 shows the first four bars of the score
associated with the 9th iteration of the L-System in Figure
1.

Altough it is possible to generate interesting melodies
with this spatial rendering, the musical rendering is still tied
to the graphical rendering. So it’s natural that other authors
have sought to separate them. The sequential and schen-
kerian rendering described in [3] are examples of musical
renderings that are completely independent of the graphi-
cal rendering. Both are well-suited to L-Systems that re-
present trees and other branched structures. The author also
remarked that “there seems to be enough information in a
typical L-System to create only a short melody and still be
interesting”. To cope with this problem, Worth and Step-
ney suggested the use of context-sensitive and stochastic L-
Systems, but some of the L-Systems built specially for the
musical rendering did not have an interesting graphical in-
terpretation, thus suggesting that it’s very hard to conciliate,
with aesthetic results, both the musical and the graphical in-
terpretation.

Also worth mentioning is the LMUSe [8] program that
uses map files to describe how to derive pitch, timbre and
velocity from the turtle state. It has an interesting feature: a
“mutate” button that randomly modifies the production rules
before the first derivation step.

All the four musical renderings discussed so far are ty-

pically used with L-Systems that have sets of symbols that
were originally designed for the graphical interpretation. A
departure from this is the work of Jon Mccormack [4] [9],
where he describes L-Systems that use notes (A,B,C..,G)
instead of LOGO style commands (F,+,-).

As we have stated earlier, there is a problem with repe-
tition and this article we try to address this issue. Even if
we use stochastic rules, the set of rules is fixed, so we are
still prone to hear the same fragments over and over again.
The use of context-sensitive rules is a potential solution but
it adds complexity to the process of building an L-System
that makes sense melodically. So we want a mechanism that
is simple while adding variability.

3 GENETIC L-SYSTEMS

Many authors have described techniques to “breed” L-Sys-
tems with genetic algorithms as a way of partially solving
the so called inference problem 1 and, as a consequence,
finding an L-System that produces a certain graphical struc-
ture. These approaches typically use genetic operators such
as mutation and crossover to create new individuals (sets of
production rules) and fitness functions to check if the popu-
lation has a particular feature and to select the fittest indivi-
duals.

Jacob [10] described a technique to select L-Systems that
produce plants with a certain branching pattern. Ashlock
[11] bred populations of L-Systems to generate graphical
renderings of landscapes. Mccormack [12] described an
aesthetical evolution, where the user is asked interatively
to inform the fitness of a graphical interpretation associated
with a certain L-System at each step of the algorithm.

Most applications of L-Systems and evolutionary techni-
ques are targeted to the graphical rendering. This is a sur-
prising fact, since evolutionary techniques have been largely
applied to computer music with interesting results. In [13]
there is an overview of modern techniques for applying evo-
lutionary concepts to sound synthesis and algorithmic com-
position. While we do not claim that we are filling the gap
between the use of L-Systems and evolutionary techniques
to create music, we believe that, at least, we are providing
some inital steps.

There are many different techniques to mutate and to do
the crossover of productions rules, which are not the hardest
parts of combining genetic algorithms with L-Systems. Ar-
guably, it’s how to define the fitness function that causes the
difficulties. We have taken a different aproach and decided
not to use a fitness function at all. Instead, we designed an
extension that allow mutations and crossover between su-
cessive iterations of an L-System. Consider the L-System
shown on Figure 4.

1 The inference problem asks for an axiom and set of production rules
that capture a certain growth process.
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#axiom FX

X -> X+YF+
Y -> -FX-Y,crossover(0,1)
--------------------------------------

Resulting string
0 FX
1 FX+YF+
2 FX+YF++-FX-YF+
3 FXF++-+YFX-YF++-FX+--F+YFX-YF+

Figure 4: Genetic dragon curve

Figure 5: Spatial Rendering and a “genetic” dragon curve.

It is an extreme example, where crossover between the
rules 0 and 1 is done each time the symbol Y is rewritten.
But as odd as it may seem, comparing the score generated
by spatial rendering with the original dragon curve shows a
vast improvement, see Figures 3 and 5.

With parametric rules it’s possible to mutate or crossover
an L-System when certain conditions are met, thus allowing
greater control, as shown in Figure 6.

After a rule is matched, we substitute the sucessor and
then we proceed to evaluate the operators, if any. We take
a simplistic view on the genetic operators as we are consi-
dering that they can only change the sucessor of the rules.
More sophisticated descriptions of mutation and crossover
between L-System rules can be found on [9], [10], [14],
[15]. Our focus here is on the genetic operators, which are
now intrinsic to the L-Systems, and that they can be para-
meters of the model and not just external agents. Now that’s
clear how we intend to use the genetic operators, we can dis-
cuss exactly how to mutate and/or do the crossover between
rules.

3.1 Mutation of rules

The mutation can be thought as a function or a procedure
that has two parameters: the number of the rule that will
be mutated and the probability of mutation. The mutation
operator scans each symbol of the sucessor of the chosen
rule and then generates a random number between 0 and
1. If the generated number is less than the probability of
mutation, it chooses randomly between the symbols in the

#axiom -XA(0)B(0)
#mutation_pool F + -
#mutation_ignore ( ) [ ]

X -> -YF+XFX+FY-
Y -> +XF-YFY-FX+
A(t) -> A(t+1),(t%2)==0:crossover(0,1)
A(t) -> A(t+1),(t%2)!=0:
B(t) -> B(t+1),t==3:mutation(0,0.5)
B(t) -> B(t+1),t!=3:
--------------------------------------

Resulting string
0 -XA(0)B(0)
1 --YF+XFX+FY-A(1)B(1)
2 --+XF-YFY-F+XFX+F+-YFX+FY-F-YFX+FY-+F+

XF-YFY-F+XFX+-A(2)B(2)

Figure 6: Genetic Hilbert Curve

#axiom -X

X -> -YF+XFX+FY-:
Y -> +XF-YFY-FX+:
-------------------------------------

Resulting string
0 -X
1 --YF+XFX+FY-
2 --+XF-YFY-FX+F+-YF+XFX+FY-F-YF+XFX+FY-
+F+XF-YFY-FX+-

Figure 7: Canonical Hilbert Curve

mutation pool and mutate the symbol in the sucessor. For
example, mutation(0,0.5) in Figure 6 refers to a mutation in
rule 0 with probability of 0.5 for each symbol.

There are certain symbols that should not be mutated be-
cause they would affect the consistency of the rules. The-
refore we have to keep a list of ignored symbols, that must
be skipped when we are scanning through the successor of
a certain rule. In bracketed L-Systems, for example, the ’[’
pushes the turtle state on a stack and ’]’ pops the turtle state.
As we usually have the same number of ’[’ and ’]’, we can
not allow disruptions in this balance.

3.2 Crossover between rules

The crossover operator introduces variability by recombi-
ning two rules. Usually, we generate a random integer and
then we split and combine both rules at that point. But since
the sucessor of the rules can have different sizes, we have
adopted the two-point-crossover. We generate two pseudo-
random numbers for each rule, and then we swap the cha-
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racters whose indexes are between these two numbers. Sup-
pose we have generated the numbers 2,3 and 0,2 and that we
have the following two rules:

X -> X+YF+
Y -> -FX-Y

The substring, in rule 0, delimited by the indexes 2 and 3 is
YF, and the substring, in rule 1, delimited by the indexes 0
and 2 is -FX, so we swap them to get new rules:

X -> X+-FX+
Y -> YF-Y

If we allow bracketed or parametric rules, extra care must
be taken to avoid creating unbalanced or syntatic incorrect
rules. So before doing the crossover, we break the rule in
tokens. Consider these two rules:

X -> F-[[X]+X]+F[+FX]-X
F -> FF+FF

We break the the first rule in F, -, [[X]+X], +, F, [+FX],
- and X. The second rules gives us F,F,+,F,F. Suppose we
have generated the numbers 1, 5, and 1,3. This would give
us the following rules:

X -> FF+F-X
F -> F-[[X]+X]+F[+FX]F

3.3 Further Remarks

We do not describe our technique as an application of gene-
tic algorithms because we do not have a fitness function nor
a population. We pick up instead a single L-System, and
we introduce the hability of mutating and to do crossover
between successive iterations. Since we do not use a fitness
function, the only way of evaluating the “fitness” of the mu-
sical interpretation of a certain L-System is by listening to
the resulting score. In chapter 2 of Evolutionary Computer
Music [13], John Biles argues that the most difficult part of
composing music with genetic algorithms is how to specify
the fitness functions, since the notion of what is right and
wrong is highly subjective when we are dealing with music.
Without fitness functions we open the possibility of gene-
rating scores with non-conventional musical structures, but
we do not have an objective way of evaluating if the chan-
ges made by the genetic operators were positive or negative.
Since our main purpose is to introduce variability, we do not
impose any constraints on the operators and let the user de-
cide himself whether a certain music piece is fit or not for
his purposes.

We propose two ways of modifying an existing L-System:

• Adding a mutation or crossover operator at the end of
an existing rule. The dragon curve that was discussed
previously is an example of this technique.

(a) Canonical

(b) Genetic

Figure 8: Spatial rendering of the Hilbert curve

• Adding symbols to control the genetic operators. Fi-
gure 6 shows an example of this technique and Figure
7 shows the canonical Hilbert curve. Also, compare
the scores produced by both L-Systems on Figure 8.

In our experiments we found out that the first techni-
que gave the most dramatic results, since the same operator
could be applied many times at each iteration thus drasti-
cally changing the set of productions rules. The second te-
chnique could be used to introduce slight deviations in the
set of production rules, thus generating a score that has some
traces of the original L-System.

An interesting possibility is the use of L-Systems in a
similar fashion to what Mason and Saffle described on [7].
They used the spatial rendering described by Prusinkiewicz
and different graphical rotations of the same L-System to
build a longer musical piece while creating the feeling of
counterpoint. Instead of using different rotations, we could
use several realizations of the same L-System, since each
realization produces a different score due to the probabilities
associated with the genetic operators.

4 LSCORE

We wrote a program in Python that implements our ideas of
genetic L-Systems. It is an ongoing research where we are
able to generate MIDI files using different musical rende-
rings. It’s also a parser for DOL, 2L, stochastic, bracketed
and parametric L-Systems. The data flow is described on
Figure 9 . It uses Python’s reflection mechanism to parse
and execute the rules as Python code, allowing the user to
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Figure 9: Data Flow in LScore

call his own routines from the production rules. The format
of the rules file is shown below:

<Python Code>
axiom = "xy..z"
rules:
rule 1
rule 2
...
rule n

Each rule must use the following syntax:
predecessor:cond:prob:sucessor:code
As an example, consider the rule: B(t):t==3:

1:B(t+1):mutation(0) The predecessor is B(t),
which is the symbol that will be replaced. The condition
is t==3, the symbol will be replaced only if the condition
is true. The probability is 1, and therefore this is a determi-
nistic rule. The sucessor is B(t+1) and this the string that
will replace the symbol B(t). The code is mutation(0)
and it is the procedure that will be executed after the symbol
is replaced.

Figures 10 and 11, shows respectively the Genetic Hil-
bert and the Dragon curve written using LScore’s syntax.

4.1 L-System evaluation and score generation

It is actually pretty simple to implement and evaluate L-
Systems if we are dealing with non-parametric rules, since
we only need to concatenate strings, check for context and
generate pseudo-random numbers. But when we have para-
metric rules, an L-System becomes almost like a computer
program of its own. Consider the following L-System:

axiom = "A(1)"
rules:
A(t):t==1:1:A(t*2):

The parametric rule A(t):1:1:A(t*2) matches the
module A(1) because the letter in the production rule and
in the module are the same, the number of formal parame-
ters are also the same, and the condition (t==1) evaluates
to true. After the rule is matched, the parameters are evalua-
ted, the module is substituted, and we find the string A(2).
While it is not hard to write a parser to evaluate the arithme-
tic expressions that appear on parametric rules and to check
if the conditions are true, a much simpler implementation is
possible if we can execute statements and evaluate expressi-
ons at runtime, thus delegating the issue of expression par-
sing and execution to the underlying language interpreter.
For that specific example, we would have two statements:
exec("t=1") and eval("t==1") Since after the first
statament, t is indeed equal to 1, the last statement returns
True and then we can evaluate the sucessor of the rule:
eval("t*2"), which returns 2. Both exec and eval are
built-in statements in Python.

The genetic operators are coded in a similar way. As we
stated earlier, each rule has a code part, which can be empty.
We coded the genetic operators crossover and mutation as
Python functions that change the production rules. After a
symbol is replaced, we do exec(code) and the Python
interpreter executes the code part of the rule.

After sucessive iterations, we can interpret the resulting
string as a score. In our implementation, we generate a
standard MIDI file with the score. The user has the option
of choosing the instrument, the key, the musical scale, the
method of rendering (sequential, schenkerian or spatial), the
initial octave and a few other small tweaks.

The implementation of the rendering methods is straight-
forward, since we just have to scan the resulting string and
interpret each symbol correctly according to the chosen
method. At this moment, the MIDI capabilities of LScore
are at best rudimentary, since we record the score in a sin-
gle track and do not allow instrument changes during the
rendering process. Nevertheless, it is possible to render in-
teresting melodies and scores.

axiom = "-XA(0)B(0)"
rules:
X:1:1:-YF+XFX+FY-:
Y:1:1:+XF-YFY-FX+:
A(t): (t%2)==0:1:A(t+1):crossover(0,1)
A(t): (t%2)!=0:1:A(t+1):
B(t): t==3 :1:B(t+1):mutation(0)
B(t): t!=3:1:B(t+1):

Figure 10: Genetic Hilbert Curve with LScore’s syntax.
The mutation pool and mutation ignore are implicitely de-
fined.
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axiom = "FX"
rules:
X:1:1:X+YF+:
Y:1:1:-FX-Y:crossover(0,1)

Figure 11: Genetic Dragon Curve with LScore’s syntax

5 CONCLUSION

In this article we presented a brief overview of existing
methods for extracting musical scores from L-Systems and
introduced a few ideas of our own. More specifically, we
also presented the concept of Genetic L-Systems, where the
set of productions rules can be changed between sucessive
iterations. These changes are made by two genetic opera-
tors: crossover and mutation. We have also briefly described
a program written in Python that implements our approach
for Genetic L-Systems and generates MIDI files.

We believe we have succeeded in introducing variabi-
lity in the musical interpretation of L-Systems, but certainly
there is room for more experimentation. As we stated ear-
lier, the genetic operators we are using are very simple in the
sense that they only modify the sucessor of the production
rules. A more sophisticated mutation process, for example,
could further enhance the resulting musical score.

Also, the LScore program lacks some features, such as
better MIDI support. So we have the intention of addressing
these issues in the future.
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