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ABSTRACT

We present an application of content-based music recom-
mendation techniques within an online community platform
targeted at an audience interested mainly in independent and
alternative music. The web platform’s goals will be de-
scribed, the problems of content management approaches
based on daily publishing of new music tracks will be dis-
cussed, and we will give an overview of the user interfaces
that have been developed to simplify access to the music
collection. Finally, the adoption of content-based music rec-
ommendation tools and new user interfaces to improve user
acceptance and recommendation quality will be justified by
detailed user access analyses.

1 INTRODUCTION

The FM4 Soundpark is a web platform run by the Aus-
trian public radio station FM4, a subsidiary of the Austrian
Broadcasting Corperation (ORF). The FM4 Soundpark was
launched in 2001 and gained significant public perception
since then.

Registered artists can upload and present their music free
of any charge. After a short editorial review period, new
tracks are published on the frontpage of the website. Older
tracks remain accessible in the order of their publication
date. Visitors of the website can listen to and download
all the music at no cost. Nowadays, the FM4 Soundpark
attracts a large and lively community interested in up and
coming music, and the radio station FM4 also picks out se-
lected artists and plays them on terrestrial radio. At the time
of writing this paper, there are 9577 tracks by 4689 artists
enlisted in the online catalogue.

Whereas chronological publishing is suitable to promote
new releases, older releases tend to disappear from the users’
attention. In the case of the FM4 Soundpark, this has the ef-
fect of users mostly listening to music that is advertised on
the frontpage, and therefore missing the full musical band-
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with. To improve the accessibility of music in the FM4
Soundpark database, we proposed (1) a music recommen-
dation system and (2) new user interfaces/visualizations that
simplify accessing unknown music. Because the music avail-
able in the FM4 Soundpark was only very sparsely equipped
with structured metadata (artist records can – but are not re-
quired to – be tagged with two genre labels out of a set of
six), and because the active FM4 Soundpark community was
considered of being yet too small for an approach based on
collaborative filtering [4], we decided to implement a rec-
ommendation system utilizing a content-based music simi-
larity measure.

2 RELATED WORK

While many research prototypes of recommendation sys-
tems/visualizations of music collections that use content-
based audio similarity have been described in the literature
(e.g., [5, 11, 7, 10, 6], to name just a few), very little has
been reported about successful adoption of such approaches
to real-life scenarios. Mufin 1 is advertised as a music dis-
covery engine that uses purely content-based methods. Mu-
sicIP 2 offers the Mixer application that uses a combination
of content-based methods and metadata to generate playlists.
Bang&Olufsen recently released the Beosound 5 3 home
entertainment center, which integrates content-based audio
similarity with a simple “More Of The Same Music”-user
interface, that allows users to create playlists by choosing
an arbitrary seed song.

3 SYSTEM OVERVIEW

As we had to integrate our system with an existing infra-
structure, we placed emphasis on a decoupled design and
gradual integrability of our software into the system of our
industrial partner. The FM4 Soundpark recommender was
implemented as a web service that offers the following func-
tionalities: (1) synchronize the recommender with the main

1 http://www.mufin.com/
2 http://www.musicip.com/
3 http://www.beosound5.com/
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database (import/delete tracks), (2) return similar songs to a
given seed song, (3) return metadata (artist/track name, artist
description if available), (4) return specialized data struc-
tures for the visualizations. Most client-server communica-
tion was done with proprietary XML- or text-based proto-
cols. The high-level web service interface was implemented
in Python (using the CherryPy 4 framework), while the low-
level functionality (feature extraction, database management,
similarity calculation) was implemented natively in C++.

The system frontend consists of two main user interfaces:
(1) an Adobe Flash MP3 player with integrated recommen-
dation of similar songs based on pure acoustic similarity,
and (2) a downloadable 3D visualization application that
uses a combined similarity measure (acoustic similarity +
user-defined genre labels).

3.1 Main components

As already mentioned, our software is only loosely coupled
with our partner’s infrastructure. Therefore, we had to de-
fine a communication protocol that can be used to trigger the
necessary synchronization operations, and we had to design
algorithms that are able to work on a large and constantly
changing database. More precisely, the following require-
ments had to be met: (1) the calculation of acoustic sim-
ilarities between songs must be fast and memory efficient
(see 3.3) and (2) for the map generation procedure (see 3.4)
a tradeoff had to be found between quality and performance.

3.2 Feature extraction

From the 22050Hz mono audio signals two minutes from
the center of each song are used for further analysis. We
divide the raw audio data into overlapping frames of short
duration and transform them to Mel Frequency Cepstrum
Coefficients (MFCC), resulting in a spectrally smoothed and
perceptually meaningful representation of the audio signal.
MFCCs are now a standard technique for computation of
spectral similarity in music analysis (see e.g. [8]). The frame
size for computation of MFCCs for our experiments was
46.4ms (1024 samples). We used the first 20 MFCCs for
all our experiments.

3.3 Computing spectral similarity of songs

We use the following approach to music similarity based on
spectral similarity. For a given music collection of songs, it
consists of the following steps:

1. for each song, compute MFCCs for short overlapping
frames

2. train a single Gaussian (SG) to model each of the
songs

4 http://www.cherrypy.org

3. compute distances between pairs of songs using the
Kullback-Leibler divergence between respective SG
models

We use a single Gaussian with full covariance per song
[9] and calculate the acoustic similarity between two song
models p and q as the symmetric KL divergence DKL(p, q)

DKL(p, q) =
KLN (p‖q) + KLN (q‖p)

2
(1)

where

KLN (p‖q) = 0.5 log
(

det (Σp)
det (Σq)

)
+ 0.5Tr

(
Σ−1

p Σq

)

+ 0.5 (µp − µq)
′ Σ−1

p (µq − µp) −
d

2
(2)

Tr(M) denotes the trace of the matrix M , Tr(M) =
Σi=1..nmi,i.

Because we tried to keep memory requirements low, we
decided not to store the full distance matrix, but compute
song-to-song similarities online. In the current implementa-
tion, the calculation of a full distance matrix row for 9500
songs takes around 50ms on a standard PC-based system.

3.4 Map generation

For the 3D visualization, we refined the main ideas from Is-
lands of Music [11] and Neptune [5], implemented as an in-
teractive 3D virtual landscape walkthrough. Central to this
type of visualization is a terrain heightmap, which is gen-
erated automatically from the database of available tracks.
The visualization uses an islands metaphor, where islands
represent regions of similar-sounding music.

The heightmap profile was derived from a 2D MDS [2]
solution that approximates distances derived from a combi-
nation of acoustic and metadata similarity between tracks
as closely as possible. We chose not to use Self Organiz-
ing Maps because they inherently rely on an embedding
of data points in a high dimensional vector space, which
clearly is not the case when dealing with pure proximity
data. One common way to construct vector spaces from
proximity data – interpreting the distances of all data points
to a data (sub)set – did not seem feasible because the database
changes continuously (per day, on average 15 tracks are
added, while others are deleted), and we needed a way to
integrate new data without a complete recalculation of the
map.

Although calculating an MDS solution from pure audio
similarity tends to preserve distances as well as the local
neighborhood of songs, it did not not produce visually dis-
criminable clusters in 2D space. Each artist in the Sound-
park carries two genre labels, which he or she can select
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Figure 1. Map generation&visualization

freely from a set of 6 (Electronica, Funk/Soul, HipHop, Pop,
Rock, Reggae). The desirable result from the map gener-
ation procedure was a layout where (1) tracks with equal
genre labels are placed close to each other (2) the distances
between tracks with equal genre labels still reflect mutual
audio distances. Therefore, we decided to modify the audio
similarity space by constructing a combined distance mea-
sure from the audio distance Da and the genre distance Dg:

Da(t1, t2) = DKL + wa · (DKL(t1, t2) −DKL)

Dscaled(t1, t2) = 1 − exp(−Da(t1, t2)/100))

Gk(ti) = 1 iff ti has genre k, 0 otherwise
G(ti) = (G0(ti)...G5(ti))

Dg(t1, t2) = 1 − G(t1) · G(t2)
min(Σk(Gk(t1)), Σk(Gk(t2)))

Dc(t1, t2) = Dscaled(t1, t2) · ((1 − wg) + wg · Dg(t1, t2))

0 ≤ w < 1

DKL denotes the average audio distance in the data set.
The weight factors wa and wg determine the influence of
the tracks’ audio distance and artists genre distance, respec-
tively, on the overall distance measure. We chose values
wa = 0.6, wg = 0.9 in order to enforce strong discrimina-
tion between tracks with no genre overlap. The rescaling
step to calculate Dscaled(t1, t2) was inspired by [12].

Combined track-to-track distances are fed into the MDS
module, which iteratively calculates a 2D layout, where-
upon 2D positions are determined such that their respective
distances approximate the original distances as closely as
possible. We used Chalmers’ [1] optimized spring model-
based implementation. The complexity of the force calcula-
tion in this algorithm are reduced to O(1) (by stochastically
sampling the dataset and incrementally building a nearest-
neighbor set for each point in the MDS problem by keep-
ing the V nearest neighbors to each point over iterations),

therefore its overall complexity is in O(N2), which is a cru-
cial factor when dealing with data sets in the order of 10000
items and more (it should be noted that we found it neces-
sary to increase the size of the sampling set to 20 in order
to avoid falling into local minima during the solution of the
MDS task, see [1] for a detailed discussion of the peculiar-
ities of the algorithm). After 2N iterations (where N is the
number of music tracks) the layout was assumed to be stable
and the calculation was aborted.

From the low-dimensional track positions, we calculated
a heightmap profile by applying a kernel density estima-
tion [3] algorithm to the 2D point cloud, interpreting the
estimated densities at points (xi, yi) as height values. The
heightmap profiles are written to a binary file, which is then
made available to the visualization client via a web server.

Because it is not feasible to execute the MDS procedure
on each track import (which happens several times per day
and requires the extraction of a full distance matrix), we
place a newly imported track by calculating a weighted av-
erage position from its 5 nearest neighbors and do the MDS
recalculation only during low-traffic times.

4 USER INTERFACE

Currently, two user interfaces to the recommendation sys-
tem have been implemented: (1) A more traditional, Adobe
Flash-based MP3 player interface with a small integrated
visualization of similar tracks to the currently played one
(see 4.1) and a downloadable, fully interactive, 3D visual-
ization client (see 4.2).

4.1 Web player

The web player can be launched from within an artist’s web
page on the Soundpark website by clicking on one of the
artist’s tracks. Additionally to offering the usual player in-
terface (start, stop, skipping forward/backward) it shows sim-
ilar songs to the currently playing one in a text list and in a
graph-based visualization (see figure 2).

The graph visualization displays an incrementally con-
structed nearest neighbor graph (number of nearest neigh-
bors = 5), whereas nodes having an edge distance greater
than two from the central node are blinded out. Figure 3
demonstrates the dynamic behavior of visualization (to sim-
plify things, we have chosen a nearest neighbor number of
3 for this sketch): (1) User clicks on a track, visualizaton
displays track (red) and the 3 nearest neighbors (green), (2)
user selects track 4 by clicking on it, the visualization shows
the track and its 3 nearest neighbors; note that track 2 – who
is amongst the nearest neighbors to track 1 – is also in the
NN set of track 4. (3) user selects track 5 as the new cen-
ter, track 1 – which was nearest neighbor to track 4 in the
preceding step – is also nearest neighbor to track 5. In the
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Figure 2. Player and SoundGraph visualization
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Figure 3. Interaction sequence in SoundGraph

long run, the re-occurrence of tracks in the NN sets indi-
cates the existence of several connected components in the
nearest neighbor graph.

4.2 3D visualization

The 3D visualization was implemented as a cross platform
Java WebStart 5 application. The decision against a direct
integration with the webpage had several reasons: (1) Flash
cannot take full advantage of accelerated graphics hardware,
which is ubiquitous nowadays, (2) Flash and Java applets
both cannot access the local harddrive without quirks, which
was necessary for local data caching.

The application was implemented using the JMonkey En-
gine 6 3D framework. It implements an animated walk-
through of the island landscape; the user is put in a first-
person perspective, and she can control the application by
the well-known WASD+mouse method (W/A/S/D keys for
movements, mouse for controlling the viewing/walking di-
rection). Tracks are represented as images that are posi-
tioned at their appropriate positions and heights. By fo-
cussing a track image and clicking on it with the mouse,

5 http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp
6 http://www.jmonkeyengine.com/

Figure 4. The 3D application

the user can start playback of a track. Figure 4 shows a
screenshot of the running application.

By using optimized rendering algorithms (space subdivi-
sion with quadtrees), we were able to maintain interactive
framerates (∼35 frames per second), even for large scenes
consisting of ∼9500 tracks.

5 EVALUATION

5.1 Graph theoretical considerations

Our analysis of the incrementally constructed nearest neigh-
bor graphs concentrates on how likely it is that individual
songs are reached when users browse through the graph.
The analysis is done on an evaluation data base of 7665
songs. With the number of nearest neighbours nn equal 3
(5), 56.79% (65.28%) of the songs can be reached in prin-
ciple. The other songs are never part of any of the nearest
neighbour lists. Next we constructed the full nearest neigh-
bour graphs emanating from all of the songs by incremen-
tally expanding all subgraphs. As soon as an already vis-
ited song is reached again, the corresponding subgraph is
fully constructed. The size of the full nearest neighbour sub-
graphs (nn = 3) for 96.20% of the songs is between 597 and
957, for the remaining 3.8% it is only between 4 and 46. For
nn = 5 there is a similar behavior with more songs being
reached: the size of the full nearest neighbour subgraphs for
97.91% of the songs is between 2306 and 2669, for the re-
maining 2.09% it is only between 6 and 50. Looking at the
strongly connected graphs that exists in our data set helps
to explain this surprising behavior. For our incrementally
constructed nearest neighbor graph, a strongly connected
component (SCC) is a subgraph where every song is con-
nected to all other songs traveling along the nearest neigh-
bour connections. Using Tarjan’s algorithm [13] to find all
SCC-graphs in our nearest neighbour graph with nn = 3
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(nn = 5), we find that there is one single large SCC with
the size of 543 (2231) songs. The remaining 5913 (4674)
SCC have a size of only 1.2 (1.16) on average. All our re-
sults seem to indicate, that there exists one large tightly con-
nected subgraph that all other songs lead to when travelling
along the nearest neighbour connections.

5.2 Quality of map visualization

To quantify the success of mapping the high dimensional
distance space to the low dimensional map visualization, we
computed the following measures of neighborhood preser-
vation. We obtained an MDS solution DMDS

a using only the
audio distances Da as input. We obtained another MDS so-
lution DMDS

c using the combined distances Dc as input. For
every song, we compute sets of n nearest neighbours Na,
NMDS

a and NMDS
c using Da, DMDS

a and DMDS
c as dis-

tance measure. We also compute the set of n nearest neigh-
bours Nga within genres using Da as distance measure, i.e.
only songs with identical genres are allowed to be part of the
nearest neighbour set. We next compute the percentage of
common (overlapping) nearest neighbours O(Na, NMDS

a )
between neighbour sets Na and NMDS

a , as well as
O(Nga, NMDS

c ) between Nga and NMDS
c . Whereas

O(Na, NMDS
a ) measures the neighbourhood preservation

for a mapping based on audio alone, O(Nga, NMDS
c ) mea-

sures how well local audio similarities within genres are pre-
served in mappings based on the combined distances. This
is done for a random subset of 1000 songs with varying size
of n and the average overlaps are depicted in Fig. 5. As
can be seen, the preservation of local neighbourhoods within
genres in the combined map visualization is even better than
the preservation of neighbourhoods based on audio informa-
tion only. Combining audio and genre information not only
allows for more interesting map designs, but also respects
audio similarity at a local level.

5.3 Usage statistics

In this section, we will present analyses that prove the ac-
ceptance of music recommendation technology in everyday
use. Note that we did not evaluate usage behavior of the 3D
visualization yet, as this part of the system was very recently
finished.

By analyzing webserver log files, we were able to ver-
ify the following hypotheses about how it will be possible
to change the music consumption behaviour of FM4 Sound-
park users by utilizing music recommendation technology:
(1) The new technology is used by a significant number of
users
(2) while the absolute number of track accesses might stay
constant, the number of distinct track accesses increases,
(3) track accesses are more evenly distributed across the en-
tire track catalogue, that is, the age distribution of down-

Figure 5. Percentage of overlap (y-axis) of neighbourhood sets
O(Na, NMDS

a ) (solid) and O(Nga, NMDS
c ) (dashed) for varying

size of neighbourhood (x-axis).

loaded tracks is becoming flatter.
Figure 6(a) plots the number of distinct tracks that have

been downloaded per day between 2008-03-23 and 2009-
03-29. Our recommendation service was launched on 2008-
05-06. The peak at this date is clearly visible, and although
the numbers turn down again during the following days,
they clearly remain at a higher average level than they were
before. The distinct track access numbers before/after the
launch were distributed according to

min median mean max stddev
before 17 338 359 781 137
after 41 593 672 4355 394

The ages of accessed tracks in days were distributed accord-
ing to

min median mean max stddev
before 0 200 483 2383 613
after 0 476 766 2714 795

The boxplots in fig. 6(b) and fig. 6(c) give a better visual
impression of the effect of the recommendation service.

6 CONCLUSIONS

We have presented a real-life implementation of a music rec-
ommendation system that incorporates (1) purely content-
based recommendations based on a seed track, (2) a 2D vi-
sualization based on pure audio similarity, and (3) an in-
teractive 3D visualization based on a combined (audio and
metadata-based) distance measure. We showed that rec-
ommendations based on a k nearest neighbor approach are
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Figure 6. Usage statistics

likely to run into cycles if k is too small. We have presented
a combined audio-and-metadata distance measure, whereas
audio- and metadata-contributions can be weighted as re-
quired, and we have shown that a 2D MDS projection of
a data set based on this measure respects audio similarity
on a local level, while the coarse structure reflects distances
calculated from the metadata. To check the usefulness of
our system, we analyzed nearest-neighbor graphs calculated
from pure audio similarity with graph theoretical methods,
we analyzed MDS solutions with respect to neighborhood-
and distance-preserving properties, and we performed statis-
tical analysis of web server logfiles to analyze usage behav-
ior. The results indicate that the approach we chose works
reasonably well for our specific problem area.
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