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ABSTRACT 

The paper presents a method for automatic transcription of 

recordings of bell chiming performances. Bell chiming is 

a Slovenian folk music tradition involving performers 

playing tunes on church bells by holding the clapper and 

striking the rim of a stationary bell. The tunes played 

consist of repeated rhythmic patterns into which various 

changes are included. Because the sounds of bells are 

inharmonic and their tuning not known in advance, we 

propose a two step approach to transcription. First, by 

analyzing the covariance matrix of the time-frequency 

representation of a recording, we estimate the number of 

bells and their approximate spectra using prior knowledge 

of church bell acoustics and bell chiming performance 

rules. We then propose a non-negative matrix 

factorization algorithm with selective sparsity constraints 

that learns the basis vectors that approximate the 

previously estimated bell spectra. The algorithm also 

adapts the number of basis vectors during learning. We 

show how to apply the proposed method to bell chiming 

transcription and present results on a set of field 

recordings. 

1. INTRODUCTION 

Bell chiming is a Slovenian folk music tradition that still 

exists in its original context today. It takes place in the 

church tower and its original role is strongly connected to 

Christian religious contexts. Bell chiming combines the 

signaling, ritual, and musical functions, because it is most 

often used to call the faithful to mass in a musical way, 

and at the same time to mark important church holidays. 

This is how the difference between conventional bell 

ringing and bell chiming as a more solemn form of 

playing the bells is established [1]. 

Slovenian-style bell chiming is performed by the 

musicians holding the clapper and striking the rim of the 

stationary bell at regular intervals. The sound is thus not 

produced by a swinging bell hitting the clapper, but by the 

clapper, typically held close to the rim, hitting the bell’s 

rim. This gives musicians more control in altering the 

rhythm, speed, dynamics and accents of individual strikes, 

as well as leaving out strikes if desired. In the so called 

“Flying” tunes, one of the bells (usually the largest) is 

swung with a rope or electronically, and all the other bells, 

which are stationary, are played by striking the clapper. 

As a rule, each musician is responsible for playing one 

bell, and should strike the bell only with its clapper 

(touching the bell’s rim with hands or other tools is not 

allowed). Another important rule in bell chiming is that 

two tones can never be played at the same time, but 

exceptions do occur.  

Bell-chiming tunes contrast one another in the method 

of playing, the number of bells used, and their rhythmic 

and metric structure. Tunes themselves consist of repeated 

rhythmic patterns into which various changes, typically 

dynamic and agogic are included to enliven the 

performance. Since musicians perform in groups, without 

the group’s consent, only small changes are possible 

within the time limits allocated to the bell chimer for 

performing his role.  These changes are usually expressed 

as double strikes, triplets, or pauses [1].  

Pioneering work in analysis of bell chiming practices 

was made by Ivan Mercina in the late 19
th

 and early 20
th

 

century, who introduced a numerical notation system and 

published a repertoire of 243 bell chiming tunes. His work 

is carried on by researchers of the Institute of 

Ethnomusicology of the Scientific Research Centre of the 

Slovenian Academy of Sciences and Arts, who are still 

actively researching bell chiming practices. Their digital 

archive of Slovenian folk music and dances Ethnomuse 

[2] holds a large collection of bell chiming recordings, 

collected from the 1950s onwards. Only parts of the 

archive have been manually transcribed and annotated. 

In this paper, we present a method for automatic 

transcription of bell chiming recordings. Automatic music 

transcription is a difficult problem to solve, although 

methods are improving constantly; Klapuri and Davy 

provide an extensive overview of the current state of the 

art [3]. Unsupervised learning techniques have been used 

by several authors to perform transcription. Abdallah and 

Plumbley [4] used sparse coding for transcription of 

synthesized harpsichord music, while Virtanen used it to 

transcribe drums [5]. A number of authors use variants of 
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non-negative matrix factorization to transcribe polyphonic 

music [6-9]. Their methods, however, were devised for 

music composed of harmonic sounds and are thus difficult 

to apply to our domain, because the sounds of bells are 

inharmonic and their tuning not known in advance.  

To solve this problem, we propose a two step approach 

to bell chiming transcription. We first present an 

algorithm that analyzes a bell chiming recording and 

estimates the number of church bells and their 

approximate spectra by using prior knowledge of church 

bell acoustics and bell chiming performance rules. We 

then show how non-negative matrix factorization (NMF) 

can be used for transcription by introducing two 

extensions to the standard NMF learning algorithm: 

selective sparsity constraints that take prior knowledge of 

approximate bell spectra into account, and adaptation of 

the number of basis vectors during NMF learning. 

2. ESTIMATING THE NUMBER OF BELLS  

AND THEIR SPECTRA  

The shape or profile of a bell determines the relative 

frequencies of its vibrations. The conventional western 

shape of bells, which stems from the middle ages, tends to 

give the bell a single dominant pitch. Figure 1 shows the 

magnitude spectrum of a bell, whose dominant pitch lies 

at 412 Hz. The names of significant partials of the bell are 

also shown. These partials are usually the strongest, 

although (as can be seen) many others exist. The dominant 

pitch of the bell is defined by relations of three of its 

significant partials: nominal, superquint and octave 

nominal [10]. These form a near harmonic series with 

ratios 2/2, 3/2 and 4/2 resulting in a perceived virtual pitch 

at approximately half the nominal frequency. Most of the 

other partials, including the strongest for this bell (tierce), 

do not belong to this harmonic series.  

 

 

Figure 1. Magnitude spectrum of a bell  

An extensive analysis of acoustics of church bells of 

western shape was made by Hibbert [10]. He showed that 

a relationship exists between the position of significant 

partials above the nominal and the ratio of octave nominal 

to nominal frequency. Hence, we can quite accurately 

infer the frequencies of these partials if we know the 

frequencies of the nominal and octave nominal. 

Frequencies of partials below the nominal do not exhibit 

strong relationships with the nominal. To assess their 

positions relative to the nominal, we analyzed a set of 318 

church bells and used the means and standard deviations 

of partial frequencies in this collection. 

We estimate the number of bells in a given recording 

and their spectra by analyzing the covariance matrix C of 

frequency bins of the time-frequency magnitude 

spectrogram. The elements of the matrix are calculated as: 
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where n is the length (number of frames) of the 

spectrogram, fij its elements and #i the average magnitude 

of the i-th frequency bin. We exploit the fact that in a bell 

chiming performance, bells are usually struck many times, 

but typically not at the same time. Therefore, the 

amplitude envelope of a bell’s partial will be correlated to 

amplitude envelopes of other partials of the bell, but not to 

amplitude envelopes of partials of other bells. Groups of 

bells are usually tuned so that some of their strong partials 

overlap, but then these will also be at least partially 

correlated with non-overlapping partials. Figure 2 shows 

two rows of the covariance matrix of a bell chiming 

performance including three bells. The top row is placed 

at the tierce frequency (488 Hz) of the bell from Figure 1 

(B1). The bottom row is placed at the nominal frequency 

of B1 (824 Hz), which coincides with the superquint of 

another bell with nominal frequency 548 Hz (B2). 

 

 

Figure 2. Two rows of the covariance matrix.  

The top row clearly shows that the amplitude envelope 

of the tierce partial of B1 correlates well with amplitude 

envelopes of other partials of B1. Even though two more 

bells are present in the recording, amplitude envelopes of 

their partials are quite different and therefore not 

correlated with B1’s tierce. The bottom row shows that 

even though partials belonging to two bells share the 
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frequency of 814Hz, partial series of both bells can be 

discerned from this row of the covariance matrix. 

These findings led us to the following algorithm for 

estimation of the number of bells and their approximate 

spectra from the covariance matrix: 

1. given a time-frequency representation F of an audio 

signal, we calculate its covariance matrix C, which 

contains covariances of amplitude envelopes of all 

frequency bins; 

2. for each row ci of the covariance matrix, we find all 

pairs of peaks (cij , cik) that may form a nominal - 

octave nominal pair of partials. Our analysis of bells 

showed that the octave nominal typically lies in the 

range of 1050 to 1350 cents above the nominal, so all 

pairs within this range are taken into consideration; 

3. for each pair of peaks (cij , cik), we construct a spectral 

template Bijk={ (#p, 'p), p=1,...,l } of a bell using the 

Hibbert’s model [10] for calculating the frequencies of 

partials above the nominal  and our own analysis of 

bells for partials below the nominal. The template 

contains estimates of frequencies of significant bell 

partials and their standard deviations; 

4. for each template Bijk we calculate its correlation to the 

row ci of the covariance matrix. If it exceeds a 

threshold T1, we include the template in the set of all 

bell templates B.   

To test the bell finding algorithm, we collected a set of 

22 bell chiming recordings performed on three to five 

church bells and manually labeled the nominal frequencies 

of bells used in performances. We calculated the 

Constant-Q magnitude spectrogram of each recording by 

using a maximum window size of 125ms, a step size of 

31.25 ms and 20 cent spacing between adjacent frequency 

bins. To flatten the spectral energy distribution, we scaled 

the bark scale sub-bands inversely proportional to their 

variance, as suggested by Klapuri [11]. This especially 

enhances the amplitudes of higher frequency partials, 

which is helpful for finding the correct number and 

spectra of bells with the algorithm described previously, 

as well as for subsequent NMF learning, which tends to be 

more sensitive to high-energy observations. Comparable 

methods for weighting the spectrum were also used by 

other authors. Virtanen [12] used a weighted cost function 

in which the observations were weighted so that the 

quantitative significance of the signal within each critical 

band was equal to its contribution to the total loudness. 

Similarly, Vincent [7] used perceptual weights to improve 

the transcription of low energy notes.  

The whitened power spectrum was used as input to the 

previously described algorithm. We evaluated the 

algorithm by calculating the precision and recall scores 

describing how the nominal frequencies of the found bell 

templates match the manually annotated nominal 

frequencies of bells. The mean precision-recall curve for 

all 22 recordings, calculated by varying the threshold T1, 

is shown in Figure 3. For our further experiments, we 

chose to set the threshold T1 at 0.35. In this way, a high 

recall value of 0.97 was obtained, meaning that virtually 

all bells in all recordings were correctly identified, while 

precision of 0.68 yielded an average of two false positives 

(superfluous bell templates) per recording. 

 

 

Figure 3. Precision-recall curve of the bell finding 

algorithm 

3. TRANSCRIBING BELL-CHIMING 

RECORDINGS  

When non-negative matrix factorization (NMF) is applied 

to transcription of polyphonic music, a time-frequency 

transform is first used to transform the time-domain audio 

signal into time-frequency space, thus obtaining a time-

frequency representation A. NMF approximates A by two 

non-negative matrices W and H, so that: 

 A !"WH ,  (2) 

where W is a matrix of basis vectors and H a matrix of 

coefficients. For music applications, the columns of W 
corresponds most naturally to individual music events 

(spectra of bells in our case), while the rows of H explain 

how amplitudes of these events change over time. Several 

efficient implementations of NMF exist in the literature. 

Our experiments are based on a recent algorithm 

introduced by Kim and Park [13] that allows sparsity 

constraints on matrices W or H.  

The naive approach to applying non-negative matrix 

factorization to transcription of music signals simply by 

factorizing the magnitude or power spectrum has several 

shortcomings. As music events overlap in time, there is no 

guarantee that NMF will separate individual music events 

into separate basis vectors. A single vector may end up 

containing partials of several events or only a subset of 

partials of an individual event. We also have to estimate 

the number of basis vectors in advance; using too few 

basis vectors will result in vectors containing several 

events, on the other hand, too many vectors may result in 

fragmentation of events over several vectors. Authors 

have addressed these issues in the past by constraining 

basis vectors to predefined harmonic templates. 

Niedermayer [9] used a preset number of fixed basis 

vectors learned from recordings of individual piano notes 

and only adapted the matrix of coefficients H during 
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learning. Raczynski et al. [8] used a preset number of 

basis vectors corresponding to individual piano notes, 

initialized and constrained the vectors to non-zero values 

only for frequency bins corresponding to perfectly 

harmonic partial series and learned the weights of these 

harmonics, as well as the matrix of coefficients. The idea 

was extended by Vincent [7], who learned the weights of 

predefined hamonic narrowband partial series belonging 

to different notes. Vincent also allowed for inharmonicity 

of the partial series.  

The described approaches all assume that the 

transcribed music signal is composed of a number of 

individual events (notes) that are composed of (almost) 

harmonic partials series and thus spectral templates of 

these events can be constructed in advance.  While this 

works well for piano music, on which all of the mentioned 

approaches were tested, it cannot be directly applied to 

our domain. The sound of church bells is inharmonic. We 

do not know what frequencies the bells are tuned to and 

even when we do, frequencies of significant bell partials 

can only be coarsely approximated. Our analysis of bell 

partials below the nominal showed that their frequencies 

can vary by as much as 150 cents from an estimated 

average. In addition, we simply have no data to model all 

of the bell partials (see unlabelled partials in Figure 1).  

We therefore devised an NMF learning algorithm with 

selective sparsity constraints that uses the spectral 

templates found by the bell finding algorithm presented in 

section 2 to initialize and guide the learning process, so 

that the learned basis vectors approximate the actual bell 

spectra and as a result, the matrix of coefficients describes 

the amplitude envelopes of individual bells.  

3.1. NMF Learning with Selective Sparsity Constraints 

As described previously, non-negative matrix 

factorization can be used to factor the spectrum into two 

non-negative matrices W and H, so that columns W 

corresponds to individual music events, while rows of H 

explain how the amplitudes of these events change over 

time. We wish to use the set of bell templates B obtained 

by the algorithm described in the section 2 to guide NMF 

learning, so that the basis vectors of W will approximate 

the found bell templates, while at the same time allowing 

the algorithm to find the best fit to the actual bell spectra.  

To this end, we introduce selective sparsity constraints 

into NMF learning. Our algorithm is derived from Kim 

and Park’s SNMF/L learning algorithm, which is based on 

alternating non-negativity constrained least squares and 

active set method [13]. The algorithm already supports 

sparsity constraints by imposing L1-norm based 

constraints on H or W. Factorization is calculated by 

solving:  

22 2
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1
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where 
T

iw is the i-th row vector of W, m the number of 

rows of W, (2! 0 a parameter that suppresses the growth 

of H, while )2! 0 balances the trade-off between accuracy 

of approximation and sparsity of W. Eq. (3) is minimized 

by iteratively solving two sub-problems using an active 

set based fast algorithm for non-negativity constrained 

least squares with multiple right hand side vectors: 
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where k is the number of basis vectors, m the number of 

rows of W, n the number of columns of H, e13k:!13k
 a 

vector of ones, 0k3n:!k3n
 a matrix of zeros and Ik a k3k 

identity matrix. Minimization of equation (4) involves L1-

norm minimization of each row of W, thus imposing 

sparsity on W. The strength of this constraint is controlled 

by the parameter ). 

To introduce prior knowledge into NMF learning, we 

propose a modification of the above approach that 

selectively enables sparsity constraints only for parts of W 
where no partials are expected. The goal is to constrain W 

to approximate the spectral templates derived from the 

covariance matrix, while still allowing NMF to learn the 

best match to the actual bell spectra. Learning improves 

the estimated partial frequencies, adds partials not 

included in spectral templates and estimates partial 

amplitudes. 

The bell finding algorithm described in section 2 can 

estimate the number of church bells in a given recording, 

as well as their approximate spectral templates (Bi:B, 

i=1,...,k) by analyzing the covariance matrix of the time-

frequency representation. The templates are represented as 

a set of partial frequencies and their standard deviations: 

Bi={ (#ip, 'ip), p=1,...,l }. We can thus construct a 

selectivity matrix V as: 

 
2
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where fi is the center frequency of i-th row of the time-

frequency representation A and T2 a threshold determining 

the amount of allowed deviation of a partial from its 

estimate in B. The number of columns in the selectivity 

matrix is equal to the number of bell templates found. 

Each column of the matrix corresponds to one template 

and contains ones in places where we expect partials to 

occur in the time-frequency representation (according to 

the corresponding template), and zeros elsewhere. The 
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matrix can be used to selectively apply sparsity constraints 

only for components of W where no partials are expected 

(V contains zeros), and leave components where partials 

should occur unconstrained. To incorporate selective 

sparsity constraints, we modify the first part of the 

SNMF/L learning iteration (Equation (4)) to obtain the 

SSNMF/L algorithm: 

! "

2

min , 0, 1,...,
1 ( ) 0

T
i

T T
T Ti
i iT T

i
F

i m
)

4 5 4 5
% - $6 7 6 7%6 7 8 98 9w

H a
w w

v
, (7) 

where , and
T T T

i i iw v a are i-th rows of matrices W, V and A 

respectively. The matrix V acts as a selector that enables 

or disables sparsity constraints with regard to 

corresponding bell templates. Equation (7) should be 

minimized for each row of W; for efficiency, we can 

group together all rows with the same values of 
T

iv  and 

perform non-negativity constrained least squares 

calculation once for each group.  

3.2. Adapting the number of basis vectors during 

learning  

To initialize NMF learning, we must decide on the 

number of basis vectors to use. We set this number to the 

number of bells found by the algorithm presented in 

section 2. The algorithm is tuned to correctly find most of 

the bells in a recording, with an average of two additional 

false positives (bells not present in the recording). These 

false positives are problematic, as partials may be 

incorrectly attributed to the false-positive vectors during 

learning. We observed that this usually happens with only 

a small number of partials, so that the false-positive 

vectors are a poor match to their corresponding spectral 

templates. We therefore introduce an additional step to the 

SSNMF/L learning algorithm, which removes the basis 

vectors that do not match the templates. The entire 

learning algorithm is as follows: 

1. calculate a set of bell templates B using the algorithm 

described in section 2; 

2.  set the number of NMF basis vectors k to the number 

of bell templates found and initialize SSNMF/L 

learning; 

3. repeat minimization of equations (7) and (5) until the 

change in the normalized Karush-Kuhn-Tucker 

residual A, as defined in [13], falls below a set 

threshold B1; 

4.  remove all basis vectors that do not match any of the 

bell templates in B; 
5.  repeat points 3. and 4. until the change in A2falls below 

a threshold2B22C 

We tested the algorithm on the same set of manually 

annotated bell chiming recordings used for evaluation of 

the bell finding algorithm. We also used the same time-

frequency representation as previously described. The 

values of other parameters were set to: 

)2$2DCDDDEnF2GH2$2HF2B1=0.01, B2=10
-9

, (2$2DCDIC For com-

parison, Table 1 displays results achieved with the 

standard NMF algorithm without constraints, Kim and 

Park’s SNMF/L with sparsity constraints on W, the 

proposed SSNMF/L with selective sparsity constraints on 

W and finally SSNMF/L with adaptation of the number of 

basis vectors. The listed precision and recall scores show 

how well the found basis vectors correspond to the actual 

bells. Gradual improvement is attained when sparsity and 

selective sparsity constraints are introduced, while a major 

boost is achieved by adapting the number of basis vectors 

during learning. Adaptation is especially helpful in 

boosting precision, because it removes irrelevant basis 

vectors, which in turn also boosts recall by correctly 

distributing the partials amongst the remaining basis 

vectors. 

 

 precision recall 

standard NMF 0.61 0.83 

SNMF/L 0.65 0.82 

SSNMF/L without adaptation 0.66 0.86 

SSNMF/L with adaptation of 

the number of basis vectors 

0.89 0.89 

Table 1. Evaluation of basis vectors learned by 

different NMF methods  

3.3. Transcribing bell chiming recordings 

The presented SSNMF/L algorithm factors the time-

frequency representation of a bell chiming recording into 

two non-negative matrices W and H, so that W 

corresponds to the spectra of bells, while H explains how 

the amplitudes of bells change over time. The 

transcription algorithm we propose is straightforward. 

Onsets are first detected with the complex domain 

algorithm devised by Bello et al. [14]. The matrix H is 

filtered with a fourth order low-pass Butterworth filter 

with cutoff frequency at 0.25J to smooth the amplitude 

changes and remove small irregularities. Then, for each 

onset found, we analyze the 150 ms section of the filtered 

matrix H around the onset and assign the bell with the 

strongest increase in H to the onset.  

 

 num

bells

bells found 

prec. / rec. 

onset 

precision/recall 

transcription 

precision/recall 

r1 3 0.75 / 1 0.94 / 0.96 0.93 / 0.95 

r2 3 1 / 1 0.91 / 0.96 0.78 / 0.83 

r3 4 1 / 1 0.88 / 1 0.79 / 0.90 

r4 4 0.75 / 0.75 0.99 / 1 0.71 / 0.72 

r5 5 1 / 1 0.87 / 0.92 0.66 / 0.69 

r6 5 0.8 / 0.8 0.75 / 0.98 0.45 / 0.59 

Table 2. Evaluation of transcriptions of six bell 

chiming recordings 
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To test the algorithm, we manually transcribed 20 

second excerpts of 6 bell chiming recordings containing 

three to five bells and evaluated the number of correctly 

transcribed bells. Table 2 lists results for the 6 recordings. 

Its columns contain: the number of bells in each recording 

(2), precision and recall of the match between the basis 

vectors and the actual bells (3), precision and recall of 

onset detection (4) and precision and recall of 

transcription (5). 

When all bells are correctly represented by the basis 

vectors, the average recall is around 0.84. We are satisfied 

with this result, because we are transcribing real field 

recordings, which are affected by factors such as poor 

microphone placement, weather conditions, bell tower 

acoustics etc. Even though onset detection itself works 

very well, most of the errors are still made due to 

indistinctive bell onsets, which may occur because of the 

aforementioned factors, long bell decay times or change of 

dynamics by performers. Weak onsets make it hard to 

determine which bell actually sounded at a given onset, 

resulting in ignored onsets or incorrectly labeled bells. 

Because of long bell decay times, which cause most bells 

to sound throughout a performance, as well as bell tower 

acoustics, partials may be attenuated or amplified during a 

performance, which may also lead to false positives or 

incorrect bell labeling. Accuracy drops sharply when bells 

are not accurately identified, as wrong bells are assigned 

to the found onsets. 

4. CONCLUSION 

The proposed approach to transcription of bell chiming 

recordings is a good first step into making this part of 

Slovenian cultural heritage more accessible to interested 

researchers. There is plenty of room for improvement, 

especially with the transcription algorithm, but we also 

plan to extend our researches into automatic extraction of 

bell chiming patterns, as well as the development of a 

retrieval system for queries based on bell chiming patterns 

and recording excerpts.  
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