
MUSICAL VOICE INTEGRATION/SEGREGATION:

VISA REVISITED

Dimitris Rafailidis Emilios Cambouropoulos Yannis Manolopoulos

Department of Informatics

Aristotle Univ. of Thessaloniki

draf@csd.auth.gr

Department of Music Studies

Aristotle Univ. of Thessaloniki

emilios@mus.auth.gr

Department of Informatics

Aristotle Univ. of Thessaloniki

manolopo@csd.auth.gr

ABSTRACT

The Voice Integration/Segregation Algorithm (VISA)

proposed by Karydis et al. [7] splits musical scores

(symbolic musical data) into different voices, based on a

perceptual view of musical voice that corresponds to the

notion of auditory stream. A single ‘voice’ may consist of

more than one synchronous notes that are perceived as

belonging to the same auditory stream. The algorithm was

initially tested against a handful of musical works that were

carefully selected so as to contain a steady number of

streams (contrapuntal voices or melody with

accompaniment). The initial algorithm was successful on

this small dataset, but was proven to run into serious

problems in cases were the number of streams/voices

changed during the course of a musical work. A new

version of the algorithm has been developed that attempts to

solve this problem; the new version, additionally, includes

an improved mechanism for context-dependent breaking of

chords and for keeping streams homogeneous. The new

algorithm performs equally well on the old dataset, but

gives much better results on the new larger and more

diverse dataset.

1. INTRODUCTION

It appears that the term ‘voice’ has different meanings for

different research fields (traditional musicology, music

cognition and computational musicology) - a detailed

discussion is presented in [2]. A perceptual view of voice

adopted in previous voice separation modelling attempts [7,

13], allows for multi-tone simultaneities in a single ‘voice’

– this is the most significant difference of such model(s)

with other existing voice separation models [4, 9, 10, 11,

12, 14].

Standard understanding of the term voice refers to a

monophonic sequence of successive non-overlapping

musical tones; a single voice is thought not to contain multi-

tone sonorities. However, if ‘voice’ is seen in the light of

auditory streaming, then, it is clear that the standard

meaning is not sufficient. It is possible that a single

monophonic sequence may be perceived as more than one

voice/stream (e.g., pseudopolyphony or implied polyphony)

or that a passage containing concurrent notes may be

perceived as a single perceptual entity.

In Figure 1, all existing algorithms that are based on

purely monophonic definitions of voice (except Kilian and

Hoos’s [8] algorithm that allows fewer voices if forced by

the user), would detect five voices that clearly are not

independent voices. The VISA algorithm [7] and the new

version presented in this paper detect two voices/streams

that correspond to melody and accompaniment.

Figure 1 How many voices in this excerpt from Chopin’s

Mazurka Op.6, No.2?

It is suggested that a general musical voice/stream

segregation algorithm should be able to cope with any kind

of music, not just musical textures that are constructed by

the use of a steady number of monophonic voices (e.g.

fugues, chorales, string quartets, etc.). Such an algorithm,

among other things, is very useful for developing MIR

systems that enable pattern recognition and extraction

within musically pertinent ‘voices’ – for instance, there is

no reason to ‘look’ for melodic patterns in homophonic

accompanimental parts of songs.

In this paper, initially, a number of problems related to

voice/stream separation not addressed by the model

proposed in [7] are presented. A brief description of the

first prototype version of the Voice Integration/

Segregation Algorithm (VISA) follows, and, then, a

number of improvements to the algorithm are given. After

an evaluation of the new prototype on a more extended

SMC 2009, July 23-25, Porto, Portugal
Copyrights remain with the authors

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 42

and diverse groundtruth dataset, the paper is concluded by

some future suggestions for further improvements.

2. VOICE SEPARATION MODELS

Voice separation models based on a monophonic definition

of voice (REFERENCES) attempt to determine a minimal

number of lines/voices such that each line consists of

successions of tones that are maximally proximal in the

temporal and pitch dimensions. Such models perform well

on music that is composed of a steady number of

voices/lines, but fail to give musicologically or perceptually

relevant results in most other cases. The horizontal

integration of notes relies primarily on two fundamental

auditory streaming principles: Temporal Continuity and

Pitch Proximity [6].

Adopting a perceptual view of voice, which is very close

to the notion of auditory stream, two recent studies [7, 12]

allow multi-tone simultaneities in a single ‘voice’. In

addition to the two previously mentioned perceptual

principles these models enable vertical integration based on

the Synchrony Note Principle [2], whereby ‘notes with

synchronous onsets and same inter-onset intervals IOIs

(durations) tend to be merged into a single sonority.’

VISA [7] starts by identifying synchronous notes that

tend to be merged into single sonorities and, then, uses the

horizontal streaming principles to break them down into

separate streams (most algorithms ignore the vertical

component). This is an optimisation process wherein

various perceptual factors compete for the production of a

‘simple’ interpretation of the music in terms of a minimal

number of streams. If the reader is not acquainted with

VISA, we suggest that section 3.1 be read before the next

section (2.1).

The algorithm presented herein has been developed as a

means to explore more systematically the ideas and

principles of musical auditory streaming in symbolic

musical data; it is an exploratory prototype that requires

further development. The proposed prototype is not directly

comparable to other voice separation algorithms as its

underlying definition of ‘voice’ is different and has a

different aim. In this paper we will compare our new

version of VISA with the earlier version [7].

2.1. Problems of VISA and improvements

VISA was initially tested on ten musical examples [7] that

were carefully selected so as to contain a steady number of

streams (i.e. musical works comprising of contrapuntal

melodic lines, or of melody and homorhythmic

accompaniment). The algorithm performed well on this

limited dataset. However, we discovered that the algorithm

ran into serious problems when tested on music that

contained non-homorhythmic homophonic

accompanimental textures or diverse musical textures

(homophonic and polyphonic together).

The main problem of this early version of the algorithm

is that, when a new voice/stream appears, it is available for

continuation throughout the rest of the piece. This is no

serious problem in contrapuntal polyphonic works where

the number of voices remains steady throughout a musical

work. However, in homophony we usually have a single

stream, i.e. one harmonic homorhythmic stream, or two

streams, i.e. one melodic voice plus rhythmically

independent accompaniment. Occasionally, additional

rhythmically independent lines may appear locally but these

usually disappear after their emergence rather than remain

active throughout the rest of the piece.

When the early version of VISA breaks a homophonic

piece into three (or more) streams locally, it tries to find the

best continuation for these three streams throughout the rest

of the piece; occasionally the third stream may erroneously

be selected to continue stream 1 or 2, or all three streams

may continue in parallel. For instance, in Figure 2 (measure

11) we have three streams - the algorithm considers the

upper voice as stream 3 since it has already allocated

streams 1 and 2 to the first notes in the measure – the

mistake is then propagated to the rest of the score as the

next top notes are closer to stream 3 (actually, stream 2 is

abandoned and stream 3 and 1 remain active in reverse

order, i.e. stream 3 above stream 1). In Figure 3 the

algorithm erroneously locates three streams in measure 29

(as the bass note overlaps with the following notes of the

chord they cannot all be placed in one stream – see

discussion in Section 4), and from there on it continues

‘giving’ notes to all three streams rather than returning to

two streams (melody and accompaniment). Such a relatively

simple mistake may decrease accuracy dramatically as a

local increase in streams may be erroneously be propagated

throughout the rest of the score.

Figure 2 Excerpt from Beethoven’s Sonata Op.2, No.1,

Allegro Con Brio.

Figure 3 Excerpt from Chopin’s Waltz Op. 64, No.1

A simple solution has been introduced to address this

problem. The solution is based on the observation that in

homophony, music is perceived as a single stream that may

be ‘fattened’ or ‘thinned’ by adding or subtracting extra

streams, whereas in polyphonic music, streams have an

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 43

independent life and are equally important. Following this,

when the texture is locally homophonic (i.e. many notes

start and end together), the algorithm is forced to switch

back to streams 1 and 2 after having identified three (or

more) streams. This simple modification increased accuracy

significantly as seen in Table 1.

A second important improvement involves the breaking

of chords consisting of equal duration notes. In the early

version of VISA this was partially incorporated in the

program in association to the Top Voice Rule, i.e., the top

voice should be minimally fragmented. This is handled by

adding a penalty to the cost of a voice continuation that

does not fulfil this rule. To find the continuation with the

minimal cost, a chord may be split so that one note can be

assigned to the top voice. In our new proposal, a chord

consisting of equal duration notes is split into sub-chords

based on the context of existing or forthcoming independent

streams. That is, if in the vicinity of the current chord there

are more voices, the chord may be split so as to match the

adjacent voice structure. The Top Voice Rule, thus,

becomes a special case of this general vertical cluster

splitting process. For instance, in Figure 4 we perceive a

melodic line that lies within a static harmonic stream; the

chords marked by an asterisk consist of equal duration notes

so initially they are merged into a single vertical cluster by

VISA – the proposed function that breaks chords (vertical

clusters) ‘pulls out’ the second note of these chords and

assigns it to the independent melodic voice.

Figure 4 Opening of Chopin’s Mazurka Op. 6, No.2.

Further smaller modifications that improve the

algorithm’s performance include the following: Firstly, the

pitch distance between notes/chords takes into account not

only the pitch of the current notes and the last notes of

preceding voices, but also the second-to-last notes of

preceding voices. In case the last pitches of two voices

coincide, the algorithm could not decide which current pitch

should be assigned to which of the two unison pitches;

taking into account the second-to last pitches resolves such

ambiguous cases. Secondly, the distance metric takes into

account not only pitch and temporal distance, but

additionally a new parameter that favours homogeneity of

streams in terms on number of co-sounding tones. In other

words, linking a chord cluster with many tones to a single

note is discouraged and contributes to a larger distance,

whereas linking similar density clusters adds smaller cost.

We discovered that this homogeneity factor solved

problems in a number of cases; however, there are cases

where this factor is counterproductive.

3. THE REVISED VISA ALGORITHM

The previous algorithm posed by Karydis et al. [7] and also

our current revised implementation consist of two steps:

fist, vertical integration which merges notes with same

onsets and durations if the musical context is homophonic,

and second, links notes/chords horizontally into

voices/streams.

3.1. Brief description of VISA

The original Voice Integration/Segregation Algorithm [7]

accepts as input a musical piece in symbolic form and

outputs the number of detected musical voices/streams. At

present, the algorithm is applied to quantized musical data;

expressively performed musical data require quantization

before being fed into the algorithm. The appropriate number

of streams is determined automatically by the algorithm and

can be lower than the maximum number of notes of the

largest chord.

VISA moves in a step-wise fashion through the input

sequence of musical events (individual notes or concurrent

note sonorities). Let the entire musical piece be represented

as a list L of notes that are sorted according to their onset

times. A sweep line, starting from the beginning of L,

proceeds through the onset times in L. The set of notes that

have onsets equal to a position of the sweep line is denoted

as sweep line set (SLS).

For a set of concurrent notes at a given point (SLS), we

have to determine when to merge them according to the

Synchronous Note Principle. Because it is possible that

synchronous notes may belong to different voices, we need

a way to decide if such merging should be applied. For each

SLS, the algorithm examines a certain musical context

(window) around them. If inside the window, most co-

sounding notes have different onsets or offsets, then it is

most likely that we have polyphonic texture (independent

monophonic voices), so occasional synchronous notes

should not be merged - each note is considered to be a

singleton cluster. If most notes are concurrent (same onsets

and IOIs) implying a homophonic texture, then they should

be merged - concurrent notes form a cluster. This way, each

SLS is split into a number of note clusters. At the present

stage, the window size w and homophony/polyphony

threshold T have been determined manually (same for all

the data) by finding values that give optimal results for the

selected test data set.

For each SLS in the piece, we have a set of previously

detected voices (V) and the current set of note clusters (C).

Between every detected voice of V and each note cluster of

C, we draw an edge to which we assign a cost. The cost

function calculates the cost of assigning each cluster to each

voice according to the Temporal Continuity Principle and

the Pitch Proximity Principle. Notes that overlap receive a

cost value equal to infinity.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 44

A dynamic programming technique finds the best

matching (lowest cost) in the bipartite graph between

previous voices and current clusters. If voices are fewer

than clusters, then one or more voices may be (temporarily)

terminated. If clusters are fewer than voices, then new

voices may appear. The matching process, additionally,

takes into account two constraints. The first one is that

voice crossing should be avoided. Therefore a sub-optimal

solution in terms of cost may be required that avoids voice

crossing. The second one is that the top voice should be

minimally fragmented (Top Voice Rule by [11]). This is

handled by adding a penalty to the cost of a matching that

does not fulfill this rule - to find the matching with the

minimal cost - a cluster may be split into sub-clusters, so

that one can be assigned to the top voice.

3.2. Revised Version of VISA

3.2.1. Numbering of Voices/Streams

In music that is primarily homophonic, the tendency is to

have one or two stable streams (pure homorhythmic texture,

or melody and harmonic accompaniment), whereas further

independent voices/streams appear only locally (see

discussion in Section 2.1). To avoid keeping ‘alive’ extra

voices/streams (e.g. third or fourth stream), a simple

solution has been introduced: when the texture is locally

homophonic (i.e. many notes start and end together), the

algorithm is forced to switch back to streams 1 and 2 after

having identified three (or more) streams. That is, when in

the MatchingVoicesToClusters procedure we have more

voices than clusters and also the context is homophonic, the

current clusters are assigned to the basic streams 1 and 2.

In the middle of the excerpt in Figure 5 we have three

Voices, V1: {N5, N10}, V3: {N6, N9, N11, N12} and V2:

{N7, N8}. In the next SLS, note N13 is closer to V2 but is

assigned to V1 because the algorithm prefers to abandon V3

moving back to the main two voices.

Figure 5 The third voice {N6, N9, N11, N12} is abandoned

and, N13 continues the first voice – see text.

3.2.2. Vertical Integration and BreakCluster Method

If a number of notes are integrated vertically (they have

same durations) and if the local context is homophonic, then

the BreakCluster procedure is activated. This procedure

looks ahead in the next three SLSs (more generally it can be

designed to look in the local neighborhood before and/or

after the current SLS); if it finds (using ClusterVertically)

that there exist more clusters in one of the following SLSs

than in the current SLS, it moves backwards from the SLS

(with more clusters) breaking one by one its preceding

clusters till it breaks the current SLS cluster. Preceding

clusters are broken according to how close notes in the to-

be-broken clusters are to the notes of the SLS with more

clusters.

In the example of Figure 6, notes in the current SLS1

are clustered vertically into a single cluster as they have

same onsets and durations, and also the context is

homophonic. In this case, BreakCluster is activated and

checks whether in any of the next three SLSs there are more

clusters than in the current SLS. SLS2 and SLS3 contain a

single cluster, but ClusterVertically splits SLS4 into 3

clusters: {N13}, {N14}, and {N15, N16}. Now, moving

backwards it breaks the cluster in SLS3 into three clusters

based on pitch proximity: {N9}, {N10} and {N11, N12},

then breaks SLS2 into {N5}, {N6} and {N7, N8} and,

finally, the current cluster SLS1 into {N1}, {N2} and {N3,

N4}. In a different scenario, if an SLS before the third SLS

contained more than one clusters, then the BreakCluster

procedure would have moved from that SLS backwards to

the current SLS.

Figure 6 Breaking vertical clusters based on context.

3.2.3. Matching notes to voices and cost calculation

As mentioned in Section 3.1, after determining the clusters

for each SLS, a bipartite graph is created for matching notes

to voices. Each cell (i,j) of the graph designates the cost

(distance) between the last cluster assigned to voice i and

the current cluster j. In the previous implementation only

pitch and time difference is taken into account for the

calculation of the cost. In the current implementation we

add a factor that relates to the difference of the number of

notes in the two clusters. This difference, that is a kind of

homogeneity factor (see Section 2.1), is calculated as dh=|ni

–nj|/ ni +nj (where ni is the number of notes in cluster i) and

contributes by 25% to the total cost (along with 50% pitch

difference contribution plus 25% inter-onset difference). In

the example of Figure 7, note N6 is closer to cluster {N2,

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 45

N3, N4} than cluster {N7, N8, N9} is in terms of average

pitch, but the {N7, N8, N9} is assigned to cluster {N2, N3,

N4} because the total cost is lower when the homogeneity

factor is taken into account.

Figure 7 Homogeneity factor (lower chords are assigned to

the same voice).

In the previous implementation for the cost calculation,

only the last note/cluster in each voice was taken into

account. There are cases, however, where more

notes/clusters from the past are necessary to resolve

ambiguity. In the current implementation, the pitch for each

voice is calculated as the weighted average of the pitch of

the last two notes/clusters of each voice (80% of the last

cluster and 20% of the second-to-last cluster). In the

example of figure 8, notes N1 and N3 have the same pitch,

so there is ambiguity in assigning the next notes N4 and N5

to the previous voices. If next-to-last notes are taken into

account, then the second voice containing note N2 and N3

will have a lower average pitch than the first voice

(containing N1) and will be matched correctly to N5.

Figure 8 Resolving ambiguity in pitch distance.

4. RESULTS AND FUTURE WORK

The proposed algorithm has been tested on a set of musical

extracts for piano.
1

The dataset has been annotated by a

music theory research student that was instructed to indicate

voices/streams on the scores after listening to the excerpts –

a number of musical examples were discussed with him

before doing this task – the student did not have knowledge

of the computational implementation. The dataset that acted

as groundtruth contains the ten pieces used in the initial

testing of VISA [7] plus 22 excerpts primarily from piano

sonatas by Beethoven (only the openings of the different

sections have been annotated, as it is a very tedious task to

1

These pieces were downloaded in Melisma format from the

Kern collection (http://kern.humdrum.org)

manual annotate the full scores). The sonatas have been

selected as they comprise of diverse musical textures, i.e.

homophonic and contrapuntal textures. In future, larger

number of music experts may provide groundtruth and/or

empirical studies may generate more reliable datasets

against which to test algorithms.

The accuracy of the proposed algorithm is measured as

the weighted sum for each voice of the proportion of notes

correctly assigned to a voice i over the total number of

notes of voice i – each such proportion is multiplied by Pi,

where Pi is the percentage of notes belonging to voice i
against the overall number of notes. Assuming N is the

number of voices, the accuracy is measured according to

equation (1).

!"
"

N

1i

i
i voiceofnotes#

i voice toassignedcorrectly notes,#
PAccuracy (1)

In essence, accuracy counts the total number of notes that

have been correctly assigned to the appropriate voice

(according to the groundtruth), divided by the total number

of notes. This accuracy measure is rather strict in the sense

that notes that may have been placed together correctly in

the same voice but may have been tagged incorrectly (e.g.

placed together in voice x instead of voice y) are all counted

as wrong. This is the main reason why in some cases

accuracy is still low.

As can be seen in Table 1, the modifications

incorporated in the current version of VISA improve

significantly the performance of the algorithm. The average

performance of the old version of VISA for the 22 new

excerpts is 0.68 (first 22 excerpts in Table 1), whereas the

average performance for the new version of VISA is 0.84,

which means a 23% increase (16 percent units). The new

algorithm does not improve performance on the limited old

dataset (last 10 excerpts in Table 1) that was carefully

selected to contain excerpts with steady number of ‘clean’

voices/streams. However, these tests show that overall we

have a more flexible algorithm that performs well on

diverse musical textures.

Voice/stream segregation is a difficult problem

influenced by many different competing factors. The

development of computational models such as the VISA

algorithm is seen as a means to explore the mechanisms of

voice separation to gain a better understanding of the

problem with a view to developing more reliable computer

models.

The current model can be improved in two ways: firstly,

by redesigning the whole algorithm so as to take into

account local context in a more integrated manner. Rather

than matching clusters of one SLS to the last notes/clusters

of previous voices (adding ad hoc cases in which the

context is taken into account), it may be more powerful to

look continuously for optimal solutions within a larger

context.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 46

Secondly, further segregation factors must be taken into

account such as tonal fusion, parallelism, pattern similarity,

and, even, new overall integration/segregation strategies.

For instance, the current method does not allow merging

non-isochronous overlapping notes – it is clear, however,

that there are cases where this should be allowed (e.g. the

notes in the accompaniment of mm. 29-31 in Figure 3

clearly belong to the same voice/stream due to harmonic

reasons).

Old

VISA

New

VISA

Beethoven, Sonata 2-1 Allegro 0,66 0,86

Beethoven, Sonata 2-1 Adagio 0,82 0,86

Beethoven, Sonata 2-1 Minuet 0,61 0,73

Beethoven, Sonata 2-1 Prestissimo 0,93 0,93

Beethoven, Sonata 2-2 AllegroVivace 0,62 0,80

Beethoven, Sonata 2-2 LargoApp 0,69 0,91

Beethoven, Sonata 2-2 Scherzo 0,49 0,75

Beethoven, Sonata 2-2 Rondo 0,60 0,82

Beethoven, Sonata 2-3 AllegroConBrio 0,40 0,87

Beethoven, Sonata 2-3 Adagio 0,62 0,77

Beethoven, Sonata 2-3 Scherzo 0,74 0,73

Beethoven, Sonata 2-3 AllegroAssai 0,96 0,94

Beethoven, Sonata 10-2 Allegro 0,87 0,89

Beethoven, Sonata 10-2 Allegretto 0,43 0,73

Beethoven, Sonata 10-2 Presto 0,90 0,92

Beethoven, Sonata 13 Grave 0,72 0,98

Beethoven, Sonata 13 AdagioCantabile 0,23 0,56

Beethoven, Sonata 13 Rondo 0,94 0,85

Brahms, Waltz Op39 No8 0,80 0,89

Chopin, Mazurka Op6 No2 0,84 0,93

Chopin, Mazurka Op7 No1 0,70 0,92

Chopin, Waltz Op64 No1 0,43 0,91

Bach, Fugue BWV846 0,92 0,92

Bach, Fugue BWV859 0,96 0,93

Bach, Fugue BWV856 0,87 0,94

Bach, Fugue BWV852 0,97 0,91

Bach, Fugue BWV772 0,99 0,99

Bach, Fugue BWV784 0,96 0,96

Chopin, Mazurka Op7 No5 1,00 0,97

Chopin, Mazurka Op67 No4 0,88 0,88

Chopin, Waltz Op69 No2 0,90 0,96

Joplin, Harmony Club Waltz 0,98 0,92

Table 1 Accuracy for voice separation by the previous and

the current implementation of VISA (the last ten pieces

were used in the evaluation of the old VISA [7]).

5. CONCLUSIONS

The proposed voice separation algorithm incorporates the

two principles of temporal and pitch proximity, and

additionally, the Synchronous Note Principle. Allowing

both horizontal and vertical integration enables the

algorithm to perform well not only in polyphonic music that

has a fixed number of ‘monophonic’ lines, but in the

general case where both polyphonic and homophonic

elements are mixed together. We have shown in the above

preliminary experiment that the proposed algorithm can

achieve good performance in diverse musical textures in

terms of identifying perceptually relevant voices/streams.

6. REFERENCES

[1] Bregman, A (1990) Auditory Scene Analysis: The
Perceptual Organisation of Sound. The MIT Press,

Cambridge, MA.

[2] Cambouropoulos, E. (2008) Voice and Stream: Perceptual

and Computational Modeling of Voice Separation. Music
Perception 26(1):75-94.

[3] Cambouropoulos, E. (2000) From MIDI to Traditional

Musical Notation. In Proceedings AAAI Workshop on
Artificial Intelligence and Music, Austin, TX.

[4] Chew, E. and Wu, X. (2004) Separating Voices in

Polyphonic Music: A Contig Mapping Approach. In

Proceedings 2nd International Symposium on Computer
Music Modeling and Retrieval: (CMMR’2004), pp. 1-20.

[5] Deutsch, D. (1999) Grouping Mechanisms in Music. In D.

Deutsch (ed.), The Psychology of Music (revised version).

Academic Press, San Diego, CA.

[6] Huron, D. (2001) Tone and Voice: A Derivation of the

Rules of Voice-Leading from Perceptual Principles. Music
Perception, 19(1):1-64.

[7] Karydis, I., Nanopoulos, A., Papadopoulos, A.N. &

Cambouropoulos, E., (2007) VISA: the Voice Integration/

Segregation Algorithm. In Proceedings 8th International
Conference on Music Information Retrieval (ISMIR’07),
Vienna, Austria, pp. 445-448.

[8] Kilian j. and Hoos H. (2002) Voice Separation: A Local

Optimisation Approach. In Proceedings 3rd International
Conference on Music Information Retrieval (ISMIR’ 2002),

Paris, France, pp.39-46.

[9] Kirlin, P.B. and Utgoff, P.E. (2005) VoiSe: Learning to

Segregate Voices in Explicit and Implicit Polyphony. In

Proceedings 6th International Conference on Music
Information Retrieval (ISMIR’2005), London, UK, pp. 552-

557.

[10] Madsen, S.T. and Widmer, G. (2006) Separating Voices in

MIDI. In Proceedings 9th International Conference in Music
Perception and Cognition (ICMPC’2006), Bologna, Italy.

[11] Temperley, D. (2001) The Cognition of Basic Musical
Structures. The MIT Press, Cambridge, MA.

[12] Rafailidis, D., Nanopoulos, A., Cambouropoulos, E. &

Manolopoulos, Y. (2008), Detection of Stream Segments in

Symbolic Musical Data. In Proceedings 9th International
Conference on Music Information Retrieval (ISMIR’08),
Philadelphia, PA, pp.83-88.

[13] Szeto, W.M. and Wong, M.H. (2003) A Stream Segregation

Algorithm for Polyphonic Music Databases. In Proceedings
7th International Database Engineering and Applications
Symposium (IDEAS’03), Hong Kong, pp.130-138.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 47

