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ABSTRACT

The Voice Integration/Segregation Algorithm (VISA) 

proposed by Karydis et al. [7] splits musical scores

(symbolic musical data) into different voices, based on a 

perceptual view of musical voice that corresponds to the 

notion of auditory stream. A single ‘voice’ may consist of 

more than one synchronous notes that are perceived as 

belonging to the same auditory stream. The algorithm was

initially tested against a handful of musical works that were 

carefully selected so as to contain a steady number of 

streams (contrapuntal voices or melody with 

accompaniment). The initial algorithm was successful on 

this small dataset, but was proven to run into serious 

problems in cases were the number of streams/voices 

changed during the course of a musical work. A new 

version of the algorithm has been developed that attempts to 

solve this problem; the new version, additionally, includes 

an improved mechanism for context-dependent breaking of 

chords and for keeping streams homogeneous. The new 

algorithm performs equally well on the old dataset, but 

gives much better results on the new larger and more 

diverse dataset.

1. INTRODUCTION

It appears that the term ‘voice’ has different meanings for 

different research fields (traditional musicology, music 

cognition and computational musicology) - a detailed 

discussion is presented in [2]. A perceptual view of voice 

adopted in previous voice separation modelling attempts [7, 

13], allows for multi-tone simultaneities in a single ‘voice’ 

– this is the most significant difference of such model(s)

with other existing voice separation models [4, 9, 10, 11, 

12, 14]. 

Standard understanding of the term voice refers to a 

monophonic sequence of successive non-overlapping 

musical tones; a single voice is thought not to contain multi-

tone sonorities. However, if ‘voice’ is seen in the light of 

auditory streaming, then, it is clear that the standard

meaning is not sufficient. It is possible that a single 

monophonic sequence may be perceived as more than one 

voice/stream (e.g., pseudopolyphony or implied polyphony) 

or that a passage containing concurrent notes may be 

perceived as a single perceptual entity.

In Figure 1, all existing algorithms that are based on 

purely monophonic definitions of voice (except Kilian and 

Hoos’s [8] algorithm that allows fewer voices if forced by 

the user), would detect five voices that clearly are not 

independent voices. The VISA algorithm [7] and the new 

version presented in this paper detect two voices/streams 

that correspond to melody and accompaniment.

Figure 1 How many voices in this excerpt from Chopin’s 

Mazurka Op.6, No.2?

It is suggested that a general musical voice/stream 

segregation algorithm should be able to cope with any kind 

of music, not just musical textures that are constructed by 

the use of a steady number of monophonic voices (e.g. 

fugues, chorales, string quartets, etc.). Such an algorithm, 

among other things, is very useful for developing MIR 

systems that enable pattern recognition and extraction 

within musically pertinent ‘voices’ – for instance, there is 

no reason to ‘look’ for melodic patterns in homophonic 

accompanimental parts of songs.

In this paper, initially, a number of problems related to 

voice/stream separation not addressed by the model 

proposed in [7] are presented. A brief description of the 

first prototype version of the Voice Integration/ 

Segregation Algorithm (VISA) follows, and, then, a 

number of improvements to the algorithm are given. After 

an evaluation of the new prototype on a more extended 
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and diverse groundtruth dataset, the paper is concluded by 

some future suggestions for further improvements.

2. VOICE SEPARATION MODELS

Voice separation models based on a monophonic definition 

of voice (REFERENCES) attempt to determine a minimal 

number of lines/voices such that each line consists of 

successions of tones that are maximally proximal in the 

temporal and pitch dimensions. Such models perform well 

on music that is composed of a steady number of 

voices/lines, but fail to give musicologically or perceptually 

relevant results in most other cases. The horizontal 

integration of notes relies primarily on two fundamental 

auditory streaming principles: Temporal Continuity and 

Pitch Proximity [6]. 

Adopting a perceptual view of voice, which is very close 

to the notion of auditory stream, two recent studies [7, 12] 

allow multi-tone simultaneities in a single ‘voice’. In 

addition to the two previously mentioned perceptual 

principles these models enable vertical integration based on 

the Synchrony Note Principle [2], whereby ‘notes with 

synchronous onsets and same inter-onset intervals IOIs 

(durations) tend to be merged into a single sonority.’

VISA [7] starts by identifying synchronous notes that 

tend to be merged into single sonorities and, then, uses the 

horizontal streaming principles to break them down into 

separate streams (most algorithms ignore the vertical 

component). This is an optimisation process wherein 

various perceptual factors compete for the production of a 

‘simple’ interpretation of the music in terms of a minimal 

number of streams. If the reader is not acquainted with 

VISA, we suggest that section 3.1 be read before the next 

section (2.1). 

The algorithm presented herein has been developed as a 

means to explore more systematically the ideas and 

principles of musical auditory streaming in symbolic 

musical data; it is an exploratory prototype that requires 

further development. The proposed prototype is not directly 

comparable to other voice separation algorithms as its 

underlying definition of ‘voice’ is different and has a 

different aim. In this paper we will compare our new 

version of VISA with the earlier version [7].

2.1. Problems of VISA and improvements 

VISA was initially tested on ten musical examples [7] that 

were carefully selected so as to contain a steady number of 

streams (i.e. musical works comprising of contrapuntal 

melodic lines, or of melody and homorhythmic 

accompaniment). The algorithm performed well on this 

limited dataset. However, we discovered that the algorithm 

ran into serious problems when tested on music that 

contained non-homorhythmic homophonic 

accompanimental textures or diverse musical textures 

(homophonic and polyphonic together). 

The main problem of this early version of the algorithm 

is that, when a new voice/stream appears, it is available for 

continuation throughout the rest of the piece. This is no 

serious problem in contrapuntal polyphonic works where 

the number of voices remains steady throughout a musical 

work. However, in homophony we usually have a single 

stream, i.e. one harmonic homorhythmic stream, or two 

streams, i.e. one melodic voice plus rhythmically 

independent accompaniment. Occasionally, additional 

rhythmically independent lines may appear locally but these 

usually disappear after their emergence rather than remain 

active throughout the rest of the piece. 

When the early version of VISA breaks a homophonic 

piece into three (or more) streams locally, it tries to find the 

best continuation for these three streams throughout the rest 

of the piece; occasionally the third stream may erroneously 

be selected to continue stream 1 or 2, or all three streams 

may continue in parallel. For instance, in Figure 2 (measure 

11) we have three streams - the algorithm considers the 

upper voice as stream 3 since it has already allocated 

streams 1 and 2 to the first notes in the measure – the 

mistake is then propagated to the rest of the score as the 

next top notes are closer to stream 3 (actually, stream 2 is 

abandoned and stream 3 and 1 remain active in reverse 

order, i.e. stream 3 above stream 1). In Figure 3 the 

algorithm erroneously locates three streams in measure 29 

(as the bass note overlaps with the following notes of the 

chord they cannot all be placed in one stream – see 

discussion in Section 4), and from there on it continues 

‘giving’ notes to all three streams rather than returning to 

two streams (melody and accompaniment). Such a relatively 

simple mistake may decrease accuracy dramatically as a 

local increase in streams may be erroneously be propagated 

throughout the rest of the score.

Figure 2 Excerpt from Beethoven’s Sonata Op.2, No.1, 

Allegro Con Brio.

Figure 3 Excerpt from Chopin’s Waltz Op. 64, No.1 

A simple solution has been introduced to address this 

problem. The solution is based on the observation that in 

homophony, music is perceived as a single stream that may 

be ‘fattened’ or ‘thinned’ by adding or subtracting extra 

streams, whereas in polyphonic music, streams have an 
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independent life and are equally important. Following this, 

when the texture is locally homophonic (i.e. many notes 

start and end together), the algorithm is forced to switch 

back to streams 1 and 2 after having identified three (or 

more) streams. This simple modification increased accuracy 

significantly as seen in Table 1.

A second important improvement involves the breaking 

of chords consisting of equal duration notes. In the early 

version of VISA this was partially incorporated in the 

program in association to the Top Voice Rule, i.e., the top 

voice should be minimally fragmented. This is handled by 

adding a penalty to the cost of a voice continuation that 

does not fulfil this rule. To find the continuation with the

minimal cost, a chord may be split so that one note can be 

assigned to the top voice. In our new proposal, a chord 

consisting of equal duration notes is split into sub-chords 

based on the context of existing or forthcoming independent 

streams. That is, if in the vicinity of the current chord there 

are more voices, the chord may be split so as to match the 

adjacent voice structure. The Top Voice Rule, thus, 

becomes a special case of this general vertical cluster 

splitting process. For instance, in Figure 4 we perceive a 

melodic line that lies within a static harmonic stream; the 

chords marked by an asterisk consist of equal duration notes 

so initially they are merged into a single vertical cluster by 

VISA – the proposed function that breaks chords (vertical 

clusters) ‘pulls out’ the second note of these chords and 

assigns it to the independent melodic voice. 

Figure 4 Opening of Chopin’s Mazurka Op. 6, No.2.

Further smaller modifications that improve the 

algorithm’s performance include the following: Firstly, the 

pitch distance between notes/chords takes into account not 

only the pitch of the current notes and the last notes of 

preceding voices, but also the second-to-last notes of 

preceding voices. In case the last pitches of two voices 

coincide, the algorithm could not decide which current pitch 

should be assigned to which of the two unison pitches; 

taking into account the second-to last pitches resolves such 

ambiguous cases. Secondly, the distance metric takes into 

account not only pitch and temporal distance, but 

additionally a new parameter that favours homogeneity of 

streams in terms on number of co-sounding tones. In other 

words, linking a chord cluster with many tones to a single 

note is discouraged and contributes to a larger distance, 

whereas linking similar density clusters adds smaller cost. 

We discovered that this homogeneity factor solved 

problems in a number of cases; however, there are cases 

where this factor is counterproductive.

3. THE REVISED VISA ALGORITHM

The previous algorithm posed by Karydis et al. [7] and also 

our current revised implementation consist of two steps: 

fist, vertical integration which merges notes with same 

onsets and durations if the musical context is homophonic, 

and second, links notes/chords horizontally into 

voices/streams. 

3.1. Brief description of VISA

The original Voice Integration/Segregation Algorithm [7] 

accepts as input a musical piece in symbolic form and 

outputs the number of detected musical voices/streams. At 

present, the algorithm is applied to quantized musical data; 

expressively performed musical data require quantization 

before being fed into the algorithm. The appropriate number

of streams is determined automatically by the algorithm and 

can be lower than the maximum number of notes of the 

largest chord.

VISA moves in a step-wise fashion through the input 

sequence of musical events (individual notes or concurrent 

note sonorities). Let the entire musical piece be represented 

as a list L of notes that are sorted according to their onset 

times. A sweep line, starting from the beginning of L, 

proceeds through the onset times in L. The set of notes that 

have onsets equal to a position of the sweep line is denoted 

as sweep line set (SLS).

For a set of concurrent notes at a given point (SLS), we 

have to determine when to merge them according to the 

Synchronous Note Principle. Because it is possible that 

synchronous notes may belong to different voices, we need 

a way to decide if such merging should be applied. For each 

SLS, the algorithm examines a certain musical context 

(window) around them. If inside the window, most co-

sounding notes have different onsets or offsets, then it is 

most likely that we have polyphonic texture (independent 

monophonic voices), so occasional synchronous notes 

should not be merged - each note is considered to be a 

singleton cluster. If most notes are concurrent (same onsets 

and IOIs) implying a homophonic texture, then they should 

be merged - concurrent notes form a cluster. This way, each 

SLS is split into a number of note clusters. At the present 

stage, the window size w and homophony/polyphony 

threshold T have been determined manually (same for all 

the data) by finding values that give optimal results for the 

selected test data set.

For each SLS in the piece, we have a set of previously 

detected voices (V) and the current set of note clusters (C). 

Between every detected voice of V and each note cluster of 

C, we draw an edge to which we assign a cost. The cost 

function calculates the cost of assigning each cluster to each 

voice according to the Temporal Continuity Principle and 

the Pitch Proximity Principle. Notes that overlap receive a 

cost value equal to infinity. 
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A dynamic programming technique finds the best 

matching (lowest cost) in the bipartite graph between 

previous voices and current clusters. If voices are fewer 

than clusters, then one or more voices may be (temporarily) 

terminated. If clusters are fewer than voices, then new 

voices may appear. The matching process, additionally, 

takes into account two constraints. The first one is that 

voice crossing should be avoided. Therefore a sub-optimal 

solution in terms of cost may be required that avoids voice 

crossing. The second one is that the top voice should be 

minimally fragmented (Top Voice Rule by [11]). This is 

handled by adding a penalty to the cost of a matching that 

does not fulfill this rule - to find the matching with the 

minimal cost - a cluster may be split into sub-clusters, so 

that one can be assigned to the top voice.

3.2. Revised Version of VISA 

3.2.1. Numbering of Voices/Streams

In music that is primarily homophonic, the tendency is to 

have one or two stable streams (pure homorhythmic texture, 

or melody and harmonic accompaniment), whereas further 

independent voices/streams appear only locally (see 

discussion in Section 2.1). To avoid keeping ‘alive’ extra 

voices/streams (e.g. third or fourth stream), a simple 

solution has been introduced: when the texture is locally 

homophonic (i.e. many notes start and end together), the 

algorithm is forced to switch back to streams 1 and 2 after 

having identified three (or more) streams. That is, when in 

the MatchingVoicesToClusters procedure we have more 

voices than clusters and also the context is homophonic, the 

current clusters are assigned to the basic streams 1 and 2. 

In the middle of the excerpt in Figure 5 we have three 

Voices, V1: {N5, N10}, V3: {N6, N9, N11, N12} and V2: 

{N7, N8}. In the next SLS, note N13 is closer to V2 but is 

assigned to V1 because the algorithm prefers to abandon V3 

moving back to the main two voices.

Figure 5 The third voice {N6, N9, N11, N12} is abandoned

and, N13 continues the first voice – see text.

3.2.2. Vertical Integration and BreakCluster Method

If a number of notes are integrated vertically (they have 

same durations) and if the local context is homophonic, then 

the BreakCluster procedure is activated. This procedure 

looks ahead in the next three SLSs (more generally it can be 

designed to look in the local neighborhood before and/or 

after the current SLS); if it finds (using ClusterVertically) 

that there exist more clusters in one of the following SLSs 

than in the current SLS, it moves backwards from the SLS 

(with more clusters) breaking one by one its preceding 

clusters till it breaks the current SLS cluster. Preceding 

clusters are broken according to how close notes in the to-

be-broken clusters are to the notes of the SLS with more 

clusters.

In the example of Figure 6, notes in the current SLS1 

are clustered vertically into a single cluster as they have 

same onsets and durations, and also the context is 

homophonic. In this case, BreakCluster is activated and 

checks whether in any of the next three SLSs there are more 

clusters than in the current SLS. SLS2 and SLS3 contain a 

single cluster, but ClusterVertically splits SLS4 into 3 

clusters: {N13}, {N14}, and {N15, N16}. Now, moving 

backwards it breaks the cluster in SLS3 into three clusters 

based on pitch proximity: {N9}, {N10} and {N11, N12}, 

then breaks SLS2 into {N5}, {N6} and {N7, N8} and, 

finally, the current cluster SLS1 into {N1}, {N2} and {N3,

N4}. In a different scenario, if an SLS before the third SLS 

contained more than one clusters, then the BreakCluster 

procedure would have moved from that SLS backwards to 

the current SLS. 

Figure 6 Breaking vertical clusters based on context. 

3.2.3. Matching notes to voices and cost calculation 

As mentioned in Section 3.1, after determining the clusters 

for each SLS, a bipartite graph is created for matching notes 

to voices. Each cell (i,j) of the graph designates the cost 

(distance) between the last cluster assigned to voice i and 

the current cluster j. In the previous implementation only 

pitch and time difference is taken into account for the 

calculation of the cost. In the current implementation we 

add a factor that relates to the difference of the number of 

notes in the two clusters. This difference, that is a kind of 

homogeneity factor (see Section 2.1), is calculated as dh=|ni 

–nj|/ ni +nj (where ni is the number of notes in cluster i) and 

contributes by 25% to the total cost (along with 50% pitch 

difference contribution plus 25% inter-onset difference). In 

the example of Figure 7, note N6 is closer to cluster {N2, 
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N3, N4} than cluster {N7, N8, N9} is in terms of average 

pitch, but the {N7, N8, N9} is assigned to cluster {N2, N3, 

N4} because the total cost is lower when the homogeneity 

factor is taken into account. 

Figure 7 Homogeneity factor (lower chords are assigned to 

the same voice).

In the previous implementation for the cost calculation, 

only the last note/cluster in each voice was taken into 

account. There are cases, however, where more 

notes/clusters from the past are necessary to resolve 

ambiguity. In the current implementation, the pitch for each 

voice is calculated as the weighted average of the pitch of 

the last two notes/clusters of each voice (80% of the last 

cluster and 20% of the second-to-last cluster). In the 

example of figure 8, notes N1 and N3 have the same pitch, 

so there is ambiguity in assigning the next notes N4 and N5 

to the previous voices. If next-to-last notes are taken into 

account, then the second voice containing note N2 and N3 

will have a lower average pitch than the first voice 

(containing N1) and will be matched correctly to N5.

Figure 8  Resolving ambiguity in pitch distance. 

4. RESULTS AND FUTURE WORK

The proposed algorithm has been tested on a set of musical 

extracts for piano.
1

The dataset has been annotated by a 

music theory research student that was instructed to indicate 

voices/streams on the scores after listening to the excerpts –

a number of musical examples were discussed with him 

before doing this task – the student did not have knowledge 

of the computational implementation. The dataset that acted 

as groundtruth contains the ten pieces used in the initial 

testing of VISA [7] plus 22 excerpts primarily from piano 

sonatas by Beethoven (only the openings of the different 

sections have been annotated, as it is a very tedious task to 

                                                          
1

These pieces were downloaded in Melisma format from the 

Kern collection (http://kern.humdrum.org)

manual annotate the full scores). The sonatas have been 

selected as they comprise of diverse musical textures, i.e. 

homophonic and contrapuntal textures. In future, larger 

number of music experts may provide groundtruth and/or 

empirical studies may generate more reliable datasets 

against which to test algorithms.

The accuracy of the proposed algorithm is measured as 

the weighted sum for each voice of the proportion of notes 

correctly assigned to a voice i over the total number of 

notes of voice i – each such proportion is multiplied by Pi, 

where Pi is the percentage of notes belonging to voice i
against the overall number of notes. Assuming N is the 

number of voices, the accuracy is measured according to 

equation (1).

!"
"

N

1i

i
i voiceofnotes#

i voice toassignedcorrectly notes,#
PAccuracy (1)

In essence, accuracy counts the total number of notes that 

have been correctly assigned to the appropriate voice 

(according to the groundtruth), divided by the total number 

of notes. This accuracy measure is rather strict in the sense 

that notes that may have been placed together correctly in 

the same voice but may have been tagged incorrectly (e.g. 

placed together in voice x instead of voice y) are all counted 

as wrong. This is the main reason why in some cases 

accuracy is still low.

As can be seen in Table 1, the modifications 

incorporated in the current version of VISA improve 

significantly the performance of the algorithm. The average 

performance of the old version of VISA for the 22 new 

excerpts is 0.68 (first 22 excerpts in Table 1), whereas the 

average performance for the new version of VISA is 0.84, 

which means a 23% increase (16 percent units). The new 

algorithm does not improve performance on the limited old 

dataset (last 10 excerpts in Table 1) that was carefully 

selected to contain excerpts with steady number of ‘clean’ 

voices/streams. However, these tests show that overall we 

have a more flexible algorithm that performs well on 

diverse musical textures.

Voice/stream segregation is a difficult problem 

influenced by many different competing factors. The 

development of computational models such as the VISA 

algorithm is seen as a means to explore the mechanisms of 

voice separation to gain a better understanding of the 

problem with a view to developing more reliable computer 

models.

The current model can be improved in two ways: firstly, 

by redesigning the whole algorithm so as to take into 

account local context in a more integrated manner. Rather 

than matching clusters of one SLS to the last notes/clusters 

of previous voices (adding ad hoc cases in which the 

context is taken into account), it may be more powerful to 

look continuously for optimal solutions within a larger 

context. 
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Secondly, further segregation factors must be taken into 

account such as tonal fusion, parallelism, pattern similarity, 

and, even, new overall integration/segregation strategies. 

For instance, the current method does not allow merging 

non-isochronous overlapping notes – it is clear, however, 

that there are cases where this should be allowed (e.g. the 

notes in the accompaniment of mm. 29-31 in Figure 3 

clearly belong to the same voice/stream due to harmonic 

reasons).

Old

VISA

New

VISA

Beethoven, Sonata 2-1 Allegro 0,66 0,86

Beethoven, Sonata 2-1 Adagio 0,82 0,86

Beethoven, Sonata 2-1 Minuet 0,61 0,73

Beethoven, Sonata 2-1 Prestissimo 0,93 0,93

Beethoven, Sonata 2-2 AllegroVivace 0,62 0,80

Beethoven, Sonata 2-2 LargoApp 0,69 0,91

Beethoven, Sonata 2-2 Scherzo 0,49 0,75

Beethoven, Sonata 2-2 Rondo 0,60 0,82

Beethoven, Sonata 2-3 AllegroConBrio 0,40 0,87

Beethoven, Sonata 2-3 Adagio 0,62 0,77

Beethoven, Sonata 2-3 Scherzo 0,74 0,73

Beethoven, Sonata 2-3 AllegroAssai 0,96 0,94

Beethoven, Sonata 10-2 Allegro 0,87 0,89

Beethoven, Sonata 10-2 Allegretto 0,43 0,73

Beethoven, Sonata 10-2 Presto 0,90 0,92

Beethoven, Sonata 13 Grave 0,72 0,98

Beethoven, Sonata 13 AdagioCantabile 0,23 0,56

Beethoven, Sonata 13 Rondo 0,94 0,85

Brahms, Waltz Op39 No8 0,80 0,89

Chopin, Mazurka Op6 No2 0,84 0,93

Chopin, Mazurka Op7 No1 0,70 0,92

Chopin, Waltz Op64 No1 0,43 0,91

Bach, Fugue BWV846 0,92 0,92

Bach, Fugue BWV859 0,96 0,93

Bach, Fugue BWV856 0,87 0,94

Bach, Fugue BWV852 0,97 0,91

Bach, Fugue BWV772 0,99 0,99

Bach, Fugue BWV784 0,96 0,96

Chopin, Mazurka Op7 No5 1,00 0,97

Chopin, Mazurka Op67 No4 0,88 0,88

Chopin, Waltz Op69 No2 0,90 0,96

Joplin, Harmony Club Waltz 0,98 0,92

Table 1 Accuracy for voice separation by the previous and 

the current implementation of VISA (the last ten pieces 

were used in the evaluation of the old VISA [7]).

5. CONCLUSIONS

The proposed voice separation algorithm incorporates the 

two principles of temporal and pitch proximity, and 

additionally, the Synchronous Note Principle. Allowing 

both horizontal and vertical integration enables the 

algorithm to perform well not only in polyphonic music that 

has a fixed number of ‘monophonic’ lines, but in the 

general case where both polyphonic and homophonic 

elements are mixed together. We have shown in the above 

preliminary experiment that the proposed algorithm can 

achieve good performance in diverse musical textures in 

terms of identifying perceptually relevant voices/streams. 
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