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ABSTRACT

Mel-frequency cepstral coefficients are used as an abstract
representation of the spectral envelope of a given signal.
Although they have been shown to be a powerful descriptor
for speech and music signals, more accurate and easily
interpretable options can be devised. In this study, we
present and evaluate the shape-based spectral contrast
descriptor, which is build up from the previously proposed
octave-based spectral contrast descriptor. We compare
the three aforementioned descriptors with regard to their
discriminative power and MP3 compression robustness.
Discriminative power is evaluated within a prototypical
genre classification task. MP3 compression robustness
is measured by determining the descriptor values’ change
between different encodings. We show that the proposed
shape-based spectral contrast descriptor yields a significant
increase in accuracy, robustness, and applicability over
the octave-based spectral contrast descriptor. Our
results also corroborate initial findings regarding the
accuracy improvement of the octave-based spectral contrast
descriptor over Mel-frequency cepstral coefficients for the
genre classification task.

1 Introduction
Music information retrieval (MIR) studies processes,

systems and contexts for automatically acquiring
information about music from large collections [8]. It
plays an increasingly important role in a society that moves
towards a freely accessible abundance of recorded music.
The main audiences benefiting from MIR research are
end-users, industry bodies and academics. Users have
easier and personalized access to their collections, the
industry employs these methods in the production process
from creation to distribution, and researchers are able to
discover new patterns in large corpora of data [3].

Content-based MIR methods extract information from
the music itself rather than from any supplied meta-data.
One of the prototypical tasks in content-based MIR is
the automatic classification of a song, in the form of an
audio signal, into a music genre [1, 3, 11, 12]. The

octave-based spectral contrast (OBSC) is a descriptor
specifically designed for this task [6, 14]. The spectral
contrast of a sub-band in a signal can be seen as a measure of
the signal’s difference to white noise [10, 14]. In addition,
the concept of spectral contrast is also used to enhance
sound for hearing impaired people [16]. Because the
spectral contrast of an audio signal is based on its timbre it is
related to descriptors like spectral centroid, roll-off, flatness,
skewness, spread and Mel-frequency cepstral coefficients
(MFCCs) [10, 11, 12]. MFCCs were originally developed
for use in speech recognition applications and later on
proved to be useful for music information retrieval [10, 12].
They provide good discriminative power but can be hard to
interpret [9].

In this study the shape-based spectral contrast (SBSC)
descriptor is presented. SBSC yields a significant increase
in accuracy, robustness, and applicability over OBSC.
For evaluation, SBSC is compared to OBSC and MFCCs
in terms of discriminative power and MP3 compression
robustness. Discriminative power is evaluated by measuring
their accuracy on different combinations of data sets and
classifiers for the automatic genre classification task [1, 12].
We study the robustness of the descriptors at different MP3
encodings as it is not so common in the literature to test MP3
robustness [5, 13]. A descriptor is considered to be robust
when its values do not change significantly while the audio it
describes is encoded at different levels of MP3 compression.
Finally, information overlap between MFCC and spectral
contrast is briefly investigated.

The structure of this document is as follows. In section 2
we briefly summarize OBSC. Section 3 presents the SBSC
descriptor and section 4 the evaluation methodology. In
section 5 the results are presented and we conclude our study
in section 6.

2 Octave-based Spectral Contrast
The OBSC descriptor was introduced by Jiang et al. in

[6]. It describes the ratio between the magnitudes of
the peaks and valleys within sub-bands of the frequency
spectrum. This way, the relation of harmonic to
non-harmonic frequency components of each sub-band is
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Figure 1. Spectral contrast descriptor general block
diagram

reflected.
This feature has been proven useful for genre

classification [6, 14]. The two aforementioned studies
explain in detail how the descriptor is calculated. In
short, the audio signal is loaded and cut into frames with
an overlap of 50% (figure 1). Then, the spectral data
resulting from an FFT of every frame is divided into 6
octave-scaled sub-bands (with boundaries at 0, 200Hz,
400Hz, 800Hz, 1.6kHz, 3.2kHz, and 8kHz). For each
band k, the magnitudes of the FFT bins x are sorted into
descending order and the peak Pk and valley Vk values are
subsequently calculated by averaging a percentage of the
highest and lowest magnitudes. The ratio between Pk and
Vk, defined as contrast Ck, and Vk itself comprise the feature
vector OBSCk of a single frame, with a dimensionality of
twice the number of sub-bands:

OBSCk = [Ck, Vk] , (1)

where

Ck = log
Pk

Vk
, (2)

Pk =
1

αNk

αNk∑

i=1

xk,i, (3)

and

Vk =
1

αNk

αNk∑

i=1

xk,Nk−i+1. (4)

Here α corresponds to the part of all bins in the band to
average over (0 < α ≤ 1 ), Nk to the total number of bins
in the sub-band, and i denotes the sorted bin index. In [6],
α is set empirically to 0.02. Finally, the dimensions of the
feature vector of OBSC are decorrelated for each frame by a
Karhunen-Loève Transform (KLT) to increase the accuracy.
The orthogonal base vectors for the KLT are generated from
the averaged covariance matrices of all classes involved in
the problem [6].

3 Shape-based Spectral Contrast
The SBSC descriptor is a modification of the OBSC

descriptor intended to improve accuracy, robustness and
applicability. It does so by employing a diferent sub-band

division scheme, an improved notion of contrast, and a
different use of the KLT transform.

3.1 Accuracy
OBSC calculates a sub-band’s contrast by regarding

its valley and peak. However, by including information
about the shape of the band’s sorted spectrum, a better
estimation of spectral contrast can be made. Figure 2
shows two possible shapes of sorted sub-bands. Both
possibilities would yield the same Ck value, as Pk and
Vk would be the same. However, if we consider noise
to be the equal presence of all frequencies, figure 2A
intuitively corresponds to a more noisy sound than figure
2B. Accordingly, the shape in figure 2B should result in a
higher spectral contrast.
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Figure 2. Two possible shapes of sub-bands sorted by
magnitude. The horizontal red line indicates the average
magnitude of the sub-band.

When we look at the location of the average magnitude in
the sub-band relative to the peak and the valley we can better
distinguish between both shapes. Accordingly, the contrast
Ck (equation 2) could be calculated as:

C ′
k =

log(Pk/Vk)
logµk

, (5)

where

µk =
1

Nk

Nk∑

i=1

xk,i (6)

Equation 5 is equivalent to logµk(Pk/Vk) and expresses
the spectral contrast in base µk. Through trial and error,
the following equation was determined to have similar
characteristics but a slightly better accuracy:

C ′
k =

(
Pk

Vk

)1/logµk

(7)

3.2 Robustness
Because the spectral contrast is calculated from the peaks

and valleys, MP3 compression, which eliminates masked
frequencies, might have a large effect on the robustness of
OBSC [4]. When peaks and valleys are averaged over a
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larger number of bins, eliminated frequencies have a smaller
impact and the spectral contrast can be expected to be more
robust. The neighbourhood ratio α and the total number of
bins in a sub-band Nk are therefore looked at for increasing
robustness.

For flexible adjustment of Nk and the number of
sub-bands K, a different sub-band division scheme is used
in SBSC instead of the original octave-based scheme. A
portion of the bins of the FFT analysis is distributed equally
among sub-bands while the rest is distributed exponentially:

Bk =
(

(1 − s)U
L

)k/K

L +
(U − L)sk

K
, (8)

where Bk denotes the upper boundary of the k-th band, s the
portion of the spectrum to distribute equally (0 ≤ s ≤ 1),
and U and L the upper and lower bound (in Hz) of the
spectrum, respectively. This way, all sub-bands contain
enough bins to be stable and the distribution still mimics
the non-linear frequency response of the human ear [7]. In
all SBSC tests in this study, s = 0.15 and L = 20Hz (see
section 4.1). For U = 11kHz and K = 6, boundaries are
20 Hz, 330 Hz, 704 Hz, 1256 Hz, 2303 Hz, 4729 Hz, and
11 kHz. Parameters K, and U vary from test to test and are
set manually.

3.3 Applicability
Instead of applying a KLT based on the averaged

covariance matrices of all classes [6] (see section 2),
SBSC applies the KLT based on the covariance matrix of
each individual song. This does not perform significantly
different and has two additional advantages: (a) when either
the instances in the data set or the number of categories
changes, the average covariance matrix will not have to
be recalculated and (b) the descriptor can be used in other
applications where no training data set is required (e.g., song
similarity, audio fingerprinting, etc.).

4 Evaluation Methodology
We here detail the methods employed for determining

genre classification accuracy, evaluating MP3 compression
robustness, and studying MFCC and SBSC information
overlap.

4.1 Genre Classification Accuracy
The discriminative power of both OBSC and SBSC

is compared by measuring their accuracy in a genre
classification problem. In addition, we evaluate MFCC
(12 coefficients with the zeroth coefficient included) as a
baseline. The means and variances of the feature vectors of
all frames are used for classification.

Three distinct classifiers are trained and evaluated on two
data sets. The classifiers used are decision trees, support
vector machines (SVM), and linear logistic regression

models (LLR) as implemented by the WEKA software 1

[15]. All classification results are computed on a 10-fold
cross-validation scheme and averaged over 10 runs. The 2
data sets used are the following. Data set A is the same data
set that was used by Tzanetakis in [12]. It consists of 10
genres with 100 song-excerpts per genre and has a sample
rate of 22050 Hz. The genres include blues, classical,
country, disco, hip-hop, jazz, metal, pop, reggae, and rock.
Data set B was developed in-house, has a sample rate of
44100 Hz, and consists of 55 full songs for each of 8 genres,
which are classical, dance, hip-hop, jazz, pop, rhythm and
blues, rock, and speech.

The data set employed by Jiang et al. in [6] had a
frequency range of 8 kHz. To check the effect of a bigger
frequency range, OBSC is compared to MFCCs at two
different frequency ranges, 8 kHz and 11 kHz. Because
MFCCs are more accurate at a frequency range of 11 kHz,
SBSC is only tested at this frequency range. The SBSC
descriptor is also tested with the spectrum divided into both
6 and 9 bands. Finally, MFCCs, OBSC, and SBSC are
tested with the delta coefficients included. The descriptors
are evaluated at the settings summarized in table 1. For all
SBSC tests, α = 0.4 and for all OBSC tests α = 0.1 (the
α value in [6] is 0.02, and is said to perform the same as
α = 0.1).

Test Descriptor Freq. range Bands

MFCC-A MFCC 8 kHz 12
MFCC-B MFCC 11 kHz 12
MFCC-C MFCC + ∆MFCC 11 kHz 12
OBSC-A OBSC 8 kHz 6
OBSC-B OBSC 11 kHz 6
OBSC-C OBSC + ∆OBSC 11 kHz 6
SBSC-A SBSC 11 kHz 6
SBSC-B SBSC 11 kHz 9
SBSC-C SBSC + ∆SBSC 11 kHz 6

Table 1. Test settings for descriptors.

4.2 MP3 Compression Robustness
The two spectral contrast descriptors and MFCCs are

tested for MP3 robustness on a song by song basis.
OBSC+∆OBSC is not tested for robustness due to the
expectancy of it to be highly unstable and the considerable
time it takes to run the test. The wave files of data set A
are compressed at two different compression rates, 192 kb
and 64 kb by the Lame MP3 encoder 2 . The descriptors for
all three versions of all songs in the data set are extracted.
In order to make the descriptors from the compressed
and original data comparable in terms of distributions
and ranges, we adapted Box-Cox’s transformation [2]

1 http://www.cs.waikato.ac.nz/ml/weka/
2 http://lame.sourceforge.net/
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for obtaining uniform distributions for each descriptor
attribute between 0 and 1. The transformation is calculated
from the uncompressed descriptors and applied to both
the uncompressed and compressed descriptors. For each
dimension of each song, the absolute difference between the
values of the uncompressed and compressed descriptor sets
is calculated:

Dh,d,e = |Rh,d,e − Qh,d| , (9)

where Dh,d,e is the robustness value of the h-th song for
the d-th dimension of the e-th encoding, and R and Q
denote the descriptor values of the encoded version and
the uncompressed version, respectively. We say that the
descriptor fails for that particular song, dimension and
encoding when Dh,d,e > 0.1. The percentage of songs
that fail per dimension is calculated and the average and
maximum are kept as the final robustness error measures.

4.3 MFCC and SBSC Information Overlap
We follow different paths with the aim to obtain

converging evidence of the amount of overlap of
information between MFCC and SBSC. First, we use
several attribute selection techniques on the combined
feature vectors MFCC-B and SBSC-A of data set A in order
to check the ranking of features or the near-optimal subset
that is chosen. The selection methods used are correlation
based feature subset selection (CFS), SVM ranking, and
individual attribute rankers based on the most frequently
preferred indices (infogain, gain ratio, and chi-square test)
[15]. The percentage of SBSC attributes, as opposed to
MFCC attributes, present in the first and last quartile of
the combined ranked attribute list is used as a measure of
information overlap. If there is no clear majority of one
of the features in the quartiles, this can be interpreted as
evidence of overlap.

Secondly, we perform a one-way analysis of variance
(ANOVA) on the ranks obtained by the feature selection
indices mentioned above, in order to check if there is an
effect of the subset type (MFCC versus SBSC) on the index
value. If the subset proves not to be significant, then we can
consider it as evidence of overlap between them.

5 Results

5.1 Genre Classification Accuracy
Our results of analyzing and testing the OBSC descriptor

corroborate the findings of Jiang et al. [6] and West and
Cox [14]. In our tests (table 2), for both data sets and all
three classifiers, the OBSC descriptor performs better than
MFCCs, although the increase in accuracy is not as high
as previously reported in [6]. There, on a different data
set and using Gaussian mixture models, OBSC performs at
82.3% and MFCCs at 74.1%. The accuracy of our MFCC

implementation is tested with a naive Bayes single Gaussian
classifier (47.6% for 13 coefficients) and is similar to the
one achieved on the same data set in [12] (47% for 10
coefficients).

We can see in table 2 that SBSC’s accuracy is higher
than that of OBSC and MFCCs for SVM and LLR. For
these two classifiers the average relative increase for both
data sets is 6.5%. Only with trees OBSC performs better
than SBSC, but these accuracies are significantly lower than
those achieved with SVM or LLR.

We also see that an increased frequency range has a small
and slightly irregular effect on the accuracy (MFCC-A,B
and OBSC-A,B, table 2). It raises MFCCs’ accuracy for
almost every combination of classifier and data set, while
OBSC’s accuracy only increases for LLR on data set A and
trees on data set B.

Test Data set A Data set B
Trees SVM LLR Trees SVM LLR

MFCC-A 41.3 60.0 61.3 56.6 77.6 78.6
MFCC-B 41.9 60.6 63.6 59.7 76.8 78.6
MFCC-C 48.2 71.6 71.1 63.1 81.4 80.1

OBSC-A 47.4 61.6 62.4 58.7 82.8 83.8
OBSC-B 46.4 61.4 64.4 64.2 81.4 81.0
OBSC-C 49.0 67.3 69.0 61.4 82.2 80.7

SBSC-A 45.5 67.3 68.1 63.1 85.7 85.5
SBSC-B 48.5 67.0 68.9 62.3 86.8 85.5
SBSC-C 49.9 72.5 72.7 65.1 86.2 86.2

Table 2. Genre classification accuracy (%) for the
descriptors tested.

Looking at the SBSC-A and SBSC-B tests we can
see that using more than six sub-bands for SBSC does
on average only provide a slightly better performance.
Including the delta coefficients for SBSC increases accuracy
but does not provide the same improvement as the delta
coefficients do for MFCCs (an average of 9.8% for
MFCC+∆MFCC and 4.8% for SBSC+∆SBSC). Including
the delta coefficients for OBSC provides a modest average
accuracy increase of 3.1%.

In addition to the results presented in table 2, we also
studied the effect of different KLT application variants
(sections 2 and 3). Decorrelating the dimensions of the
feature vector using KLT for each song separately results
in a small decrease in accuracy of 0.3%. Not applying KLT
results in a significant performance drop (e.g. from 67.3%
to 59.7% for SBSC when using SVM).

5.2 MP3 Compression Robustness
In table 3 it can be seen how unstable OBSC is, and

how robust the MFCC implementation is in comparison.
MFCCs only fail for 0.7% of the songs, while OBSC fails
for 13.6% (MFCC-B and OBSC-B, 64 kb, table 3). A
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higher neighbourhood ratio α, together with the application
of equation 8 for sub-band division, results in an increased
robustness for the SBSC in respect to OBSC, as it only fails
for 1.6% of the songs. The robustness of the most unstable
dimensions of SBSC improves significantly from 61.4% to
12.4% of failed songs when compared to OBSC (SBSC-A,
64 kb, table 3).

When the frequency spectrum is divided into 9 bands,
SBSC is more unstable (SBSC-B, table 3). This can be
attributed to a smaller number of bins in each sub-band and
thus a smaller number of bins over which the peaks and
valleys are averaged. Apart from the results shown in table
3, it is worth to mention that the delta coefficients for both
SBSC and the MFCCs are very unstable with an average
failure rate of 75% for 192 kb. One might hypothesize that
this is due to the large effect that small changes in the audio
have on the delta coefficients. Also, we find that the valley
dimensions are more unstable than the contrast dimensions
as these are affected most by the MP3 compression.

Test Error rate at 192kb Error rate at 64kb
mean max mean max

MFCC-A 0.7 8.7 0.4 4.9
MFCC-B 0.4 3.0 0.7 6.7
MFCC-C 22.1 87.9 21.8 83.0

OBSC-A 6.5 45.3 9.9 58.6
OBSC-B 5.4 23.2 13.6 61.4

SBSC-A 1.4 4.9 1.6 12.4
SBSC-B 2.2 13.5 3.1 13.4
SBSC-C 19.7 83.7 19.7 79.9

Table 3. MP3 compression robustness error rates (%) for
the descriptors tested.

5.3 MFCC and SBSC Information Overlap
The highest scoring subset of SBSC and MFCC attributes

is achieved with CFS and has the same accuracy as a subset
of only SBSC attributes: 67.3% for SVM (both subsets
consist of 24 attributes). We also find that SBSC attributes
are predominant in the first quartile of all ranked attributes
and that this pattern is reversed in the last quartile, where the
predominant attributes are MFCCs (table 4). Table 5 shows
that for every ranking method the average SBSC rank is
higher than the average MFCC rank. According to ANOVA,
SBSC’s attributes also rank statistically significantly higher
than MFCCs’ attributes.

The possible synergistic effect of the combination of
both sets is addressed in figure 3, which shows the step
by step increase in accuracy when adding more attributes
to the selected subset for SVM classification (the order
of addition is provided by the chi-square test ranking).
MFCCs’ accuracy quickly climbs when adding more
attributes but increases only slightly after the 10th attribute.

SBSC’s accuracy increases at more regular intervals and is
higher than MFCCs’ when using 10 or more dimensions.
Combining both sets and using 10 or more coefficients
increases the performance above that of MFCCs, but never
reaches that of the SBSC attributes. This can be taken as
evidence that the description provided by SBSC subsumes
and improves classification over that of MFCCs.

With all this accumulated evidence, it seems safe
to conclude that the two subsets of attributes are
capturing similar aspects of the sound spectra and, as
their combination does not increase the classification
performance beyond the level attainable by SBSC attributes
alone, we should prefer them over MFCCs. However, we
cannot say there is a clear overlap of information as SBSC
is preferred by all attribute selection methods.

Rank method SBSC presence SBSC presence
in first quartile in last quartile

SVM 75% 25%
Chi-square 67% 17%
info gain 75% 17%
gain ratio 75% 17%

Table 4. Percentual presence of SBSC attributes in the
first and last quartile of a ranked list containing MFCC and
SBSC attributes.

Rank method F Probability Average Average
MFCC rank SBSC rank

SVM 5.8 0.0204 29.1 19.9
Chi-square 7.0 0.0110 29.5 19.5
info gain 8.8 0.0048 30.0 19.0
gain ratio 10.4 0.0023 30.5 18.5

Table 5. ANOVA results of attributes’ rank number and
origin, degrees of freedom is always 1.

6 Conclusion
In this paper, the shape-based spectral contrast descriptor

is presented and evaluated. It is based on the octave-based
spectral contrast, but takes the mean magnitude of a
band into account in order to calculate a more descriptive
measure of spectral contrast. Also, it divides the spectrum
and applies KLT differently for increased robustness and
applicability. SBSC is compared to both OBSC and
MFCCs in terms of genre classification accuracy, to test
discriminative power, and MP3 compression robustness.
OBSC is shown to achieve higher accuracies than MFCCs
in the genre classification task, corroborating initial findings
of Jiang et al. Moreover, SBSC’s outperforms OBSC and
MFCCs. When it comes to MP3 compression robustness,
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Figure 3. Increase in accuracy while considering an
increasing number of attributes.

MFCCs provide the most robust option. However, SBSC
represents a significant increase in robustness over OBSC.
Including the delta coefficients results in higher accuracies
for all descriptors but yields very unstable descriptors.
Results obtained from testing information overlap between
SBSC and MFCC indicate they capture similar aspects of
the sound spectra. However, we found no clear evidence of
overlapping information.
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