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ABSTRACT

This paper presents a formal model of Schoenberg’s
guidelines for convincing chord root progressions. This
model has been implemented as part of a system that
models a considerable part of Schoenberg’s Theory of
Harmony. This system implements Schoenberg’s the-
ory in a modular way: besides generating four-voice
homophonic chord progressions, it can also be used for
creating other textures that depend on harmony (e.g.,
polyphony).

The proposed model generalises Schoenberg’s guide-
lines in order to make them applicable for more use
cases. Instead of modelling his rules directly (as con-
straints on scale degree intervals between chord roots),
we actually model his explanation of these rules (as
constraints between chord pitch class sets and roots,
e.g., whether the root pitch class of some chord is an
element in the pitch class set of another chord). As a
result, this model can not only be used for progressions
of diatonic triads, but in addition also for chords with
a large number of tones, and in particular also for mi-
crotonal music beyond 12-tone equal temperament and
beyond 5-limit harmony.

1 INTRODUCTION

Computational models of music theory are interesting
for at least two reasons. Firstly, declarative models
improve our understanding of the theory. Secondly,
computational models can also be used as tools in the
composition process.

Tonal harmony has often been modelled declaratively.
Surveys on this subject are provided in [7] and [2]. Par-
ticular important is the system CHORAL [3, 4], which
creates four-part harmonisations in the style of Johann
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Sebastian Bach for given choral melodies. It imple-
ments about 350 rules, and received much attention for
the musical quality of its output. The music represen-
tation MusES [6] has been used for harmonic analysis,
melody harmonisation, and modelling jazz improvisa-
tion. A number of other systems also do automatic
melody harmonisation. For example, [13] proposes a
lucid system with a small set of 20 rules, which creates
four-part harmonisations of a choral melody. [10] de-
scribes another system that automatically harmonises a
given melody. Coppelia [14] creates homophonic chord
progressions, which additionally feature a rhythmical
structure. [9] presents a further system that generates
choral harmonisations in the style of Johann Sebastian
Bach.

The authors of [7] claim that the “technical problem
of four-voice harmonization may now be considered as
solved”. However, existing systems only solve a special
subtask of harmony: instead of creating a harmonic
progression from scratch, these systems harmonise a
given melody, most often creating a new chord for each
melody note (choral harmonisation). Also, most ex-
isting systems create solutions that are very modest
musically. For example, only the systems of Ebcioglu
and Phon-Amnuaisuk address modulation at all. Even
Ebcioglu’s highly complex system CHORAL formalises
possible chord progressions simply by quasi a transition
table that only allows for common progressions. For ex-
ample, in major the degree II is mostly followed by V ,
and by I or VI only under specific conditions, 1 while
the diminished triad viio is always followed by the tonic
I [3, p. 240 f]. Yet, these chords can progress to any
degree in principle.

We argue that modelling harmony is not a solved
problem yet. Harmony is a highly complex phenome-
non as demonstrated by the library of harmony text-
books available. Still missing is a system that models

1 Ebcioglu’s rule set states that II can only be followed by I
or VI if some non-bass voice moves by a third skip from the VI
(the fifths of the II chord) to the I.
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harmony on the level of abstraction presented by ac-
claimed theory texts like [11]. For example, using a
transition table for chord progressions is a useful short-
cut, but theorists like Schoenberg teach us better alter-
natives.

This paper describes a system that models a con-
siderable part of Schoenberg’s Theory of Harmony [11].
This system generates self-contained harmonic progres-
sions – instead of harmonising existing melodies – and
can so create the harmonic backbone of new compo-
sitions. The harmonic model is modular for applica-
tions beyond four-part harmonisations. It can serve as a
foundation for modelling musical styles that depend on
harmony (e.g., Baroque counterpoint), and can also be
an interesting composition tool. Schoenberg has been
selected as theoretical foundation, because this text-
book is unique in its focus on writing convincing chord
progressions, instead of focusing on analysis, melody ac-
companiment or figured bass (as many other harmony
textbooks do).

For space limitation, this paper details only one as-
pect of Schoenberg’s theory, but this aspect is of partic-
ular importance. In the chapter “Some Directions on
Writing Favourable Progressions” (“Einige Anweisun-
gen zur Erzielung günstiger Folgen” [11, p. 134 ff]),
Schoenberg presents guidelines on root progressions that
result in particularly convincing chord sequences. 2 This
paper formalises these guidelines. To our knowledge,
these guidelines have never been modelled before. The
model has been implemented in Strasheela [1].

In addition, this model generalises these guidelines
for chords with a large number of notes (as long as we
know their root), and in particular also for microtonal
music beyond 12-tone equal temperament and beyond
5-limit harmony [8]. Schoenberg discusses his guide-
lines only in the context of triads in a diatonic scale as
he formulates his rules on the scale degree of chords.
Nevertheless, his detailed explanation of these rules are
more general. Instead of formalising Schoenberg’s rules
directly, this paper actually models his explanation of
these rules. Doing so makes his concepts applicable for
more music, but also puts some corner cases of classical
harmony in a new light.

Plan of Paper

The rest of this paper is organised as follows. Schoen-
berg’s guidelines on root progressions are recapitulated
in Section 2. Section 3 presents a model that formalises
and generalises these guidelines. Musical results are
presented in Section 4. The paper ends in a summary
(Section 5).

2 A summary of these guidelines can also be found at the be-
ginning of his book “Structural Functions of Harmony” [12].

2 THE MUSIC THEORY

Schoenberg distinguishes three root progression cases:
ascending, descending and super-strong progressions.
In an ascending progression, the chord root progresses
a fourth up / a fifths down (e.g., V −I) or a third down
(e.g., I − VI ). Schoenberg calls such progressions also
strong and advocates their unreserved use.

A descending progression – quasi a reversed ascend-
ing progression – proceeds a fifths up (I−V ), or a third
up (e.g., I − III ). Schoenberg avoids the term weak,
but nevertheless discourages their unconfined use. In-
stead, Schoenberg recommends that in a sequence of
three chords C1, C2, C3 the sequence C1, C2 can only
be descending if C1, C3 is ascending (e.g., III −V − I).
In that case, the purpose of the middle chord C2 is
similar to the purpose of a passing note in a melody.

Finally, a super-strong progression connects two chords
whose root are a second apart (e.g., V,VI or V, IV ).
Such progressions are typically used in a deceptive ca-
dence. Because their quality can be considered too
strong, Schoenberg advises to use them sparely.

Schoenberg argues at length possible reasons for the
different qualities of these progressions. These will be
briefly reported below when they are formalised.

3 THE FORMAL MODEL

This section presents the formal model of Schoenberg’s
guidelines for favourable chord progressions. The model
implements Schoenberg’s explanation instead of his ac-
tual rules.

Our full system defines a rich and highly extend-
able music representation designed for modelling a wide
range of music theories. This representation provides a
rich collection of score objects including elements such
as notes, or rests, analytical concepts such as inter-
vals, scales, chords, or meter, grouping concepts such
as containers that arrange their content sequentially or
parallel in time, as well as concepts for organising musi-
cal form such as motifs. For brevity, this section intro-
duces only a small fraction of this representation that is
sufficient for modelling Schoenberg’s guidelines on root
progressions.

A chord C is a score object that represents the an-
alytical notion of a chord or harmony. This analytical
object is silent when the score is played, but influences
the pitches of note objects. For the present model, a
chord object encapsulates only two attributes: the pitch
classes of the chord pcs and its root root . Both these
attributes are variables in the logic or constraint pro-
gramming sense. root is a finite domain integer, and
pcs is a finite set of integers. In Schoenberg’s theory,
the root of a chord is always a member of its pitch class
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set: root(C) ∈ pcs(C). For example, the root of the
diminished triad {B, D,F} is B.

We will now model Schoenberg’s notion of ascending,
descending and super-strong progressions as Boolean
functions on pairs of consecutive chord objects C1 and
C2. Schoenberg explains that in an ascending progres-
sion the root of a former chord is “over-ruled” by a new
root in the following chord. Formally, the root of C1 is
also a member of the pitch class set of C2, but the root
of C2 was not contained in C1 (Figure 1).

isAscending1(C1, C2) := root(C2) /∈ pcs(C1)
∧ root(C1) ∈ pcs(C2)

Figure 1. Ascending progression: the root of the first
chord is also contained in the second chord, but the
root of the second chord is new

In a descending progression, the root of the second
chord is a “parvenu” according to Schoenberg, the ruler
(root) of the first chord quasi backs down to one of his
former “subjects”. Formally, a non-root pitch class of
the first root becomes root in the second chord (Figure
2).

isDescending(C1, C2) := root(C2) ∈ pcs(C1)
∧ root(C1) $= root(C2)

Figure 2. Descending progression: a non-root pitch
class of the first root becomes root in the second chord

In ascending and descending progressions, chords share
common pitch classes (what Schoenberg calls a “har-
monic band”). In a super-strong progression, all pitch
classes of the second chord are new and there are no
common pitch classes (Figure 3).

isSuperstrong(C1, C2) := pcs(C1) ∩ pcs(C2) = ∅

Figure 3. Super-strong progression: two consecutive
chords do not share any pitch classes

Schoenberg only discusses these three cases, because
he discusses only diatonic triads. However, there exist
two further cases in principle. Firstly, two different
chords can share the same root as in C −Cmin (Figure
4).

Secondly, outside the set of diatonic triads there ex-
ist progressions that are connected by a harmonic band,

isConstant(C1, C2) := root(C1) = root(C2)

Figure 4. Constant progression: two (possibly differ-
ent) chords share the same root

but that are neither ascending nor descending progres-
sions according to the definitions above. For example,
the triadic progression C − E! shares common pitch
classes (the tone G), but it belongs to none of the
categories above. In our subjective assessment these
progressions also feel strong, like the ascending pro-
gressions. Instead of introducing a fifths category, we
therefore propose a generalised version of isAscending
as an alternative that includes also those progressions
where the second chord has a new root, but the root of
the first chord is not contained in the second (Figure
5).

isAscending2(C1, C2) := root(C2) /∈ pcs(C1)
∧ pcs(C1) ∩ pcs(C2) $= ∅

Figure 5. Ascending progression (generalised version):
the root of the second chord is new, but both chords
share common pitch classes

Following some speculation in Schoenberg’s treatise,
we also implemented a progression strength measure-
ment that combines all the cases above in a single nu-
meric measurement, and that for a more fine-grained
discrimination additionally takes the cardinality of the
harmonic band into account, weighted against the total
number of chord pitch classes.

Finally, Figure 6 implements Schoenberg’s recom-
mendation that a descending progression is resolved as
quasi a “passing chord”. 3

resolveDescending(C1, C2, C3) :=
isDescending(C1, C2) ⇒ isAscending(C1, C3)

Figure 6. Resolve descending progressions quasi as
“passing chords”

These functions have been implemented as constraints
in our system: they can be combined with other con-
straints and a solver can find one or more solutions.
For efficiency, our constraint programming system uses

3 Schoenberg recommends this strict version of the rule, a re-
laxed version also permits interchange progressions (e.g., I −V −
I)
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constraint propagation and dynamic variable orderings
customised for this problem [1] (e.g., the solver pro-
gresses from “left to right” in score time but for simul-
taneous score objects always first determines rhythmic
parameters, then scale or chord parameters and finally
the actual note pitch classes and octaves).

4 RESULTS

This section provides musical results that have been
generated by a system that implements the presented
model. Figure 7 shows a chord progression that was
generated with the proposed model. Whereas we only
formalised Schoenberg’s root progression guidelines in
this paper, generating this example obviously required
modelling further aspects of Schoenberg’s theory such
as part leading rules (e.g., avoid parallels, and keep the
harmonic band in the same voice and octave), or the
treatment of chord inversions.
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Figure 7. Chord progression generated by the pre-
sented model

Nevertheless, the sequence of the analytical chord
objects is primarily controlled by the constraints pre-
sented above. Only few further constraints are applied
on the analytical chord objects: all chords are diatonic
chords in C major, the progression starts with the tonic
I, and it ends in a cadence. Note that in this particu-
lar case it so happened that no descending progressions
occurred at all. The number of superstrong progres-
sions was explicitly restricted to 20 percent at max-
imum. The examples section of the Strasheela web-
site (http://strasheela.sourceforge.net) contains
a page with further results generated by the presented
model, which also demonstrate other aspects of Schoen-
berg’s theory. These examples are provided with full
source code.

The presented model is highly flexible. It is appli-
cable beyond the common four-voice setting, beyond
the conventional triads, and is even suitable for micro-
tonal music. The first author used this model for com-
posing in 31-tone equal temperament, a temperament
very close to quarter-comma meantone [5]. Figure 8
shows the beginning of a movement of “Harmony Stud-
ies”, a 7-limit harmony cadence, which consists solely

of ascending chord progressions. Remember that en-
harmonic spelling indicate different pitches in 31-tone
equal temperament. While the interval C − E! is the
minor third (6/5), the interval C −D" is the subminor
third (6/7). In order to assist deciphering the notation,
also a harmonic analysis is provided: C harm 7 indi-
cates the harmonic seventh chord over C (4 : 5 : 6 : 7,
notated in meantone as C, E, G,A"), while subharm 6
is a subharmonic sixth chord (1

4 : 1
5 : 1

6 : 1
7 ).
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Figure 8. Beginning of a movement of“Harmony Stud-
ies”, notated in 31-tone equal temperament (meantone)

5 SUMMARY

This paper detailed a formal model of Schoenberg’s root
progression guidelines, an important aspect of his The-
ory of Harmony. Instead of modelling his rules directly
(as constraints on scale degree intervals between chord
roots), we modelled his explanation of these rules (as
constraints between chord pitch class sets and roots).

For chord progressions of diatonic triads in major –
the context in which Schoenberg discusses his guide-
lines – Schoenberg’s rules and the proposed model are
equivalent. Our constraints can thus be used for im-
plementing exercises proposed by Schoenberg’s book as
shown above.

However, the behaviour of our model and Schoen-
berg’s rules differ for more complex cases. According
to Schoenberg, a progression is superstrong if the root
interval proceeds a step up or down. For example, the
progression V 7−IV is superstrong according to Schoen-
berg. In the presented model, however, this progression
is descending! The root of IV is contained in V 7 (e.g.
in G7 − F , the root pitch class F is already the sev-
enths of the preceding chord). Indeed, this progression
is rare in music. By contrast, the progression I − III !
(e.g., C −E!) is a descending progression according to
Schoenberg’s rules. In our proposed model (the vari-
ant isAscending2), this is an ascending progression (the
root of E! is not contained in C), and in our intuitive
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rating this progression does indeed feel strong.
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