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Dear fellow researchers, 
 
We are very proud to present you the book of proceedings of the SMC 2009 scientific program. 
We were able to put together this program thanks to the numerous contributions of the 
scientific community in response to our call for participation. The biggest thanks therefore goes 
to you, reading this book of proceedings. 
 
When we started to organise this year's conference we were not sure of the appeal that this 
conference would have for the research community. The Sound and Music Computing 
conference is a very young event that was born with a somewhat local perspective and that 
competes with a number of consolidated conferences. But the large number of submissions in all 
the different categories and the involvement of the research community in the peer review 
process of the submissions allowed us to organise a conference that we are proud of. We 
sincerely hope that these proceedings will be of interest for all of you. 
 
In organising the scientific program we had two objectives in mind: To push for a high quality 
technical program and promote the involvement of young researchers; The best recipe for 
quality requires first to get many submissions and then to organise a good peer review process of 
the submissions. 
 
This year we received 160 paper and poster submissions, the largest number to date. The reviews 
have been coordinated by the Scientific program Chairs and the General Chair, and performed 
by a Scientific Committee of 70+ key SMC researchers, specialists in all the topics of the 
conference, from most of the main research centers in the field. 
 
From the very outset, we decided not to have parallel sessions, at the risk of having to accept 
fewer contributions. After the review process we accepted 26 papers and 37 posters, which 
represents a 39% acceptance rate. We asked reviewers to provide as much feedback as possible 
to the authors. We acknowledge that this is traditionally quite hard in our community and that 
there is certainly room for improvement in the review process. In our particular case we are 
aware that not all the authors received all the feedback that we had wished for. They should 
however rest assured that the utmost care has been given to all submissions and that decisions 
of rejection were based on a number of different factors, including time restrictions and program 
coherence. 
 
Another aspiration was to promote the involvement of young researchers. In order to do that 
we have joined forces with the SMC Summer School which, in the past, has been organised 
independently of the conference. The School takes place just before the conference and from the 
54 applications 21 students were selected. During the Summer School, these young researchers 
will get training in a specific area of the Sound and Music Computing field and also feedback on 
their particular research projects. Students will attend lectures by three recognised researchers 
from our field and 7 tutors will work closely with the students on several practical projects. 
 
An additional track of events aiming at the practical involvement of researchers, especially the 
young ones, lies in the three tutorials held on the day prior to the beginning of the conference. 
We received 7 proposals for tutorials, of which 3 have been selected, offering a varied spectrum 
of topics to the audience. 
 
Apart from paper and poster presentations that focus on specific research topics, we wanted to 
have presentations that would give the participants a broader view on our field and that would 
inspire new research directions. This was our main aim in selecting the three keynote addressed 
by the following highly-respected personalities: José Carlos Principe, Atau Tanaka and Bruce 
Pennycook Broad coverage and insightfulness were also what drove us to organise the four 
"inspirational sessions". In these sessions, a special focus will be put on interaction between 
participants. They have been designed as a venue for preliminary, frontier-research ideas (musical, 
technical, scientific, theoretical, practical, etc.), where no implementation, proofs, results nor 
evaluations will be required. Just great, inspirational ideas. We very much hope they will give the 
opportunity to present and discuss relevant topics of our field in a different context and in a very 
different way. 
 
It has been a hard work to put together the scientific program of SMC 2009. But we had fun 
doing it, we learned a lot from it and we wish, and are very much confident, that conference 
attendants will come out from the conference having learned something new and with new ideas 
for their research activities. 
 

Fabien Gouyon 
Álvaro Barbosa 

Xavier Serra 
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THE FLOPS GLASS: A DEVICE TO STUDY EMOTIONAL REACTIONS
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ABSTRACT

This article reports on an experimental study of emotional
reactions felt by users manipulating an interactive object
augmented with sounds: the Flops glass. The Flops in-
terface consists of a glass embedded with sensors, which
produces impact sounds after it is tilted, implementing the
metaphor of the falling of objects out of the glass. The sonic
and behavioural design of the glass was conceived specif-
ically for the purpose of studying emotional reactions in
sonic interactions. This study is the first of a series. It aims
at testing the assumption that emotional reactions are influ-
enced by three parameters of the sounds: spectral centroid,
tonality and naturalness. The experimental results reported
here confirm the significant influence of perceptual centroid
and naturalness, but fail to show an effect of the tonality.

1 INTRODUCTION

New technologies make it possible for designers to consider
sonic augmentations of a wide array of everyday objects that
incorporate electronic sensing and computational capabili-
ties. Sound-mediated interactions raise several interesting
issues related to the functionality and the aesthetic of a de-
sign [8]. Another interesting question is that of the emo-
tional reactions induced by such sonically augmented inter-
actions. This question is of further importance when con-
sidering that a user’s preferences and other evaluations of
a product are influenced by her emotional reactions when
using this product [9].

To adress this issue, an interactive object was designed,
called the Flops. It is a glass embedded with a tilt sensor
allowing it to control the generation of impact sounds when
tilted. It implements the metaphor of a glass full of virtual
items that may be poured out of it. The sounds can be eas-
ily modified, in order to assess the influence of the sound
parameters on the emotional reactions of the users.

In the experiment reported upon here, 25 participants were
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required to watch a set of videos displaying a user pour-
ing virtual items out of the Flops glass. They had to report
their emotional reactions by providing judgements on three
scales: valence, arousal and dominance. The images in the
videos were all the same, and only the sounds changed. The
sounds were created on the basis of conclusions of other ex-
perimental studies that have suggested that the affective re-
actions to aircraft noises were influenced by several aspects
of the sounds: sharpness, tonality and naturalness [20]. The
goal of our study is to explore whether these conclusions are
valid for the sounds used in the Flops glass, which consisted
of very short impact sounds sequenced in various temporal
patterns. This study is intended to be the first of a series. It
investigates how the sounds only might influence the emo-
tional reactions of the users.

2 EMOTIONAL REACTIONS TO SOUNDS

Emotions Emotions have been studied by philosophers and
scientists for centuries. Yet the question of what are emo-
tions is still a matter of debate. Most modern emotion the-
orists have adopted a componential approach to emotions,
suggesting that an emotion episode consists of coordinated
changes in several components: physiological arousal, mo-
tor expression, subjective feelings, behavior preparation, cog-
nitive processes [13, 14, 15, 5]. Feelings (or core affects

[13]) are considered as the conscious reflection of changes
occurring in these components. There exists several ap-
proaches for the assessment of emotions, the most widespread
being the physiological measures (heart rate, skin conduc-
tance, facial EMG, startle reflex, etc.) [2], the basic emo-

tions approach [4] and the dimensional approach, on which
we choose to focus in this study. From more than 50 years
indeed, studies have suggested that the emotional reactions
observed in, or reported by subjects can be accounted by
a two- or three-dimensional framework [16]. For instance,
Osgood suggested the following dimensions as primary ref-
erents of facial expressions of emotions: pleasantness, con-
trol, and activation [10]. This approach has been formal-
ized in the circumplex model of affects proposed by Russell
[12]. Three dimensions are generally considered: the va-
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lence dimension, describing unpleasant to pleasant feelings,
the arousal dimension, describing the degree of arousal (from
calm to excited) felt by the subject, and the dominance di-
mension, describing how dominated or dominant feel the
subjects.

Emotional reactions in sound design Assessing emotional
reactions of a user using a product is of major importance for
designers [18]. It has particularly been reported that attrac-
tive products are perceived easier to use [9]. Emotional reac-
tions to the sounds of everyday products have been primary
studied in terms of unpleasantness or annoyance (see for in-
stance [6]), or preference (see for instance [19]). Specifi-
cally, Västfjäll et al. [20] have found significant correlations
between valence and arousal ratings and several psychoa-
coustical descriptors of aircraft sounds: they found valence
to be correlated with loudness and naturalness (naturalness
was rated by listeners), and activation with sharpness and
tonal content.

3 INTERACTION AND SOUND DESIGNS OF THE
FLOPS GLASS

The Flops glass is an interface similar to a glass contain-
ing virtual objects. When tilted, virtual objects drop out of
the Flops glass, producing impact sounds when hitting the
surface above the glass. The sounds were created in order
to test the results reported above: they were made so as to
vary along their spectral centroids (similar to the sharpness
descriptor used in [20]), and tonality indexes. Natural and
synthetic sounds were used.

3.1 Physical design

The physical interface of the Flops glass is shown in Fig-
ure 1. Its shell is modeled in 3D software and is extruded
in ABS plastic. The interface contains an accelerometer
(Analog Devices ADXL 320 3-axis MEMS accelerometer),
sensing the gesture performed with the glass. The sensor
is wired to an Arduino BT board, sending the tilting data
through Bluetooth connection to a remote computer. The
sensor data processing and the playback of the sounds are
real time processed in Cycling’74 Max/MSP 5.0.6.

3.2 Interaction design

The interaction model, transforming tilt angle to a flow of
objects falling, is based on the model of items sliding with-
out friction on a tilted rod, and falling when reaching the
extremity of the rod (see Figure 2). A reservoir of virtual
items is situated aft inside the Flops glass (at a distant d of
the mouth of the Flops glass), where virtual items are stored
(regularly separated by a distance d0). Assuming no fric-
tion, when the Flops glass is tilted with a constant angle α,

Figure 1. A video showing a user using the Flops glass.

the position of each item is:

xn(t) = −nd0 + k sin(α)t2 (1)

where k is a constant. Assuming that d � d0, the time be-
tween two successive dropped items is Δt = K/

√
sin α,

where K is a constant. The rate of impacts is therefore con-
stant for α constant.

x

x=0

x=-nd0

d0
d

Figure 2. Model used for the interaction.

3.3 Sound design

The model described above is used to drive the generation
of impact sounds: when the Flops glass is tilted, a series of
impact cues is generated, with a rate computed as described
above. Each cue triggers the playback of a sample of an
impact sounds.

Thirty-two samples were created. Sixteen sounds (“nat-
ural sounds”) were created by recording different impact
sounds, from collision of everyday objects to musical per-
cussions. Sixteen (“synthetic sounds”) were samples of sounds
synthesized by various kinds of algorithms (mostly additive
and subtractive synthesis). The creation and the selection of
these sounds were made such as homogeneously sampling
across two psychoacoustical descriptors: spectral centroid
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and tonality index (computed according the IrcamDescrip-
tor toolbox [11]). The spectral centroid of the sounds vary
from 410 Hz to 1890 Hz, and the tonality of the sounds vary
from 0.07 to 0.96 (the index of tonality can theoretically
vary from 0 to 1, with 0 corresponding to a white noise, and
1 to a pure tone). All the sounds were created to have a
rather short attack time (from 44 ms to 90 ms). All samples
have the same duration and last approximatively 350 ms.

4 EXPERIMENTAL STUDY

The experimental study reported here aims at testing the as-
sumption that the parameters used to create the Flops glass
sounds (spectral centroid, tonality, naturalness) influence the
emotional reactions of participants watching a set of videos
displaying a user manipulating the Flops.

4.1 Method

Participants Twenty-five participants (14 women and 11
men) volunteered as listeners and were paid for their partic-
ipation. They were aged from 19 to 45 years old (median:
28 years old). They were selected on the basis of the Spiel-
berger trait anxiety inventory [3]. They had to have a score
lower than 39 (indicated low trait anxiety).

Stimuli Thirty-two videos were generated, correspond-
ing to the 32 sounds described above. They showed a user
manipulating the Flops glass (see Figure 1). All the videos
were the same, except for the sounds. Each video was 8 s
long. All the soundtracks had been equalized for loudness in
a preliminary study (for we are not interested in this param-
eter). The levels of the sounds varied from 52 dB(A) to 79.9
dB(A) (median 71.5 dB(A)). The video showed a user tilt-
ing three times the Flops glass: first, he drops slowly three
items out of the glass, then tilts the Flops glass more quickly
to increase the rate of times dropping out of the Flops glass.
A total of 28 items are dropped.

Apparatus The stimuli were amplified over a pair Yamaha
MSP5 loudspeakers. Participants were seated in a double-
walled IAC sound-isolation booth. The experiment was run
using the PsiExp v3.4 experimentation environment includ-
ing stimulus control, data recording, and graphical user in-
terface [17]. The sounds were played with Cycling’74 Max/
MSP version 5.0.6, with Jitter displaying the videos. The
scales were presented on an Elo Touch Screen. This allowed
the participants to interact with the interface by only touch-
ing the screen.

Procedure The participants were first presented with a text
explaining the procedure, and explaining the meaning of the
3 scales of valence, arousal and dominance. Then they were
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Figure 3. Example of the soundtrack of one of the videos
used in the experiment, together with the tilt angle of the
Flops glass.

presented with a selection of pictures from the IAPS set of
images [7], and required to report their emotional reactions.
Then, they were presented with all the videos played one
after the other. Finally, they watched again each video, and
had to report for each video how their emotional reactions.

The participants had to indicate their emotional reactions
by selecting an item on each of the three 9-point scales, us-
ing the Self-Assessment Manikins (SAM) [1]. The SAM is
non-verbal pictorial assessment technique that directly mea-
sures the pleasure, arousal, and dominance associated with
a person’s affective reaction. The SAM scales used in this
study are reported on Figure 4.

4.2 Analysis

For the 32 sounds, the standard deviation of the judgements
made by the participants varies from 1.27 to 2.2 for the va-
lence scale, from 1.38 to 2.13 for the arousal scale, and from
1.36 to 1.91 for the dominance scale, which is consistant
with the data gathered for the IAPS image sets [7]. This
indicates that the emotional reactions caused by the videos
tend to be rather consistent across the participants. It also
indicates that the videos have elicited emotional reactions in
the subjects. In the following, the judgements will therefore
be averaged across participants.

The distributions of the judgements averaged over the
25 participants are represented on Figure 5 for the three
scales, and for the 2 groups of sounds. The judgements on
the valence scale vary from 2.08 to 5.8 (the range of the
judgements is therefore 3.1 on a scale of 9) with an average
of 4.39, indicating that the participants have mainly used
the center of the scale for all the videos. The judgements
are rather concentrated, and skipped toward the “unpleasant
part” of the scale. When considering separately the natu-
ral and synthetic sounds, it appears that the natural sounds
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Figure 4. Interface used to report the emotional reactions. The SAM is non-verbal pictorial assessment technique that directly
measures the pleasure, arousal, and dominance associated with a person’s affective reaction.

have caused a rather neutral judgement on the valence scale
among the participants (average = 4.9), whereas the syn-
thetic sounds have caused a slightly more unpleasant feeling
in the participants (average = 3.9). A Student t-test indeed
reveals that the averages of these two distributions of judge-
ments are significantly different (t(30)=3.81, p < 0.01).

The judgements of arousal are also concentrated on the
middle of the scale. Across all the 32 videos, the judgements
of arousal vary from 4 to 7.04 (the range of the judgements
is therefore 3.0 on a scale of 9), with an average of 5.06: the
participants have not used the whole range of the scale. The
averages of the distributions of judgements for the two sets
of 16 sounds are not statistically significant: t(30)=-0.93,
p=0.82. Overall, the sounds have caused a rather medium
arousal in the participants.

The judgements of dominance vary from 3.96 to 6.6 (the
range of the judgements is therefore 2.2 on a scale of 9) for
all the 32 sounds, with an average value of 5.60. For this
scale also, the participants have used a narrow range of the
scale, slightly skipped toward the “in control” part of the
scale. The averages of the distributions of judgements for
the two sets of 16 sounds (natural vs. synthetic) are signif-
icantly different (t(30)=3.80, p <0.01). The average domi-
nance judgement is 5.91 for the natural sounds, and 5.23 for
the synthetic sounds. The participants have therefore felt
slightly more in control when watching the videos with the
natural sounds than the videos with the synthetic sounds, yet
this difference is small.

The judgements on three scales are significantly corre-
lated: Valence vs. Arousal, r(30)=-0.78, p <0.01 Valence
vs. Dominance r(30)=0.92, , p <0.01, Arousal vs. Domi-
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Figure 5. Bar plots of the distributions of the judgements
on the three scales (valence, arousal, dominance), averaged
across the participants, for the two groups of 16 sounds (nat-
ural vs. synthetic). A Gaussian curve with the same average
and standard deviation as the distributions of judgements is
also represented on top of each bar plot.

nance, r(30)=-0.76, p <0.01. This indicates that the partic-
ipants have not used the three scales independently. There
are systematic patterns in the judgements: the videos caus-
ing emotional reactions judged as pleasant tended to cause
at the same time calm and dominant feelings, whereas the
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videos causing emotional reactions judged as unpleasant tended
to cause systematically feelings judged as excited and dom-
inated. This was confirmed by the informal post experimen-
tal interviews with the participants: many participants had
indeed spontaneously indicated that “shrill” sounds tended
to irritate them (i.e. unpleasant, excited and dominated judge-
ments), whereas “soft and low” sounds tended to be felt as
more relaxing (pleasant, calm, and in-control).

These observations are further confirmed when studying
the correlations between the judgements on the scales and
several acoustic descriptors. We tested not only the spec-
tral centroid measure and tonality index (which were used
to create and select the sounds), but also all the descriptors
contained in the IrcamDescriptor toolbox [11]. Overall, the
judgements on the three scales are correlated with the many
variants of the spectral centroid, the best correlations be-
ing obtained by the “perceptual” spectral centroid. This de-
scriptor is computed as the centroid computed using the spe-
cific loudness of the Bark scale [11]. The correlations with
the three scales is statistically significant: Valence, r(30)=-
0.63, p <0.01, Arousal, r(30)=0.64, p <0.01, Dominance,
r(30)=-0.48, p <0.01. Interestingly, these correlations are
different for the two groups of sounds: whereas the correla-
tions are very good for the natural sounds (Valence: r(30)=-
0.83; Arousal: r(30)=0.81; Dominance: r(30)=-0.72; each:
p <0.01), the judgements are much more spread for the syn-
thetic sounds (Valence: r(30)=-0.64; Arousal: r(30)=0.57;
p <0.01; Dominance: r(30)=-0.43; p <0.05).

4.3 Discussion

The emotional reactions to the 32 videos extend over a rather
small portion of the valence-arousal-dominance space, and
are centered around the neutral positions of each scale. This
is not really surprising, because these sounds only vary along
basic acoustical properties. It could therefore not be ex-
pected that a set of videos displaying a user dropping virtual
items out of a glass would cause emotional reactions com-
parable with those caused by sounds or images with a strong
semantic content (e.g. violent images, etc.).

More problematic however are the correlations of the three
scales. It is obvious from the experimental results that we
have not succeeded in creating sounds that cause emotions
varying independently along the three dimensions of emo-
tions used here. On the contrary, systematic patterns of
judgements appear in the judgements: videos causing pleas-
ant emotions caused at the same time dominant reactions,
and conversely. This is further confirmed when considering
that no scale is correlated with any metric of ity. Indeed,
following the results of Västfjäll et al. [20], the sounds were
created along three aspects: naturalness, spectral centroid,
and tonality. This last parameter was assumed to be corre-
lated to the arousal judgements, which is not the case here.
A possible explanation is that tonality is probably a relevant

parameter for long and continuous sounds such as aircraft
noise, but not for short impact sounds. Note that other sys-
tematic patterns of variations in the arousal valence space
(i.e. “boomerang-shaped”) have also been reported for other
acoustic stimuli [2].

The variations of spectral centroids of the sounds are
fairly correlated with the judgements on the three scales.
The two groups of sounds (natural vs. synthetic) have pro-
duced slightly different emotional reactions: natural sounds
are judged as causing more pleasant and more dominant
feelings than synthetic sounds. These two aspects of the
sounds are therefore here the predictors of the emotional re-
actions.

5 CONCLUSION

This article is the first in a series aiming at studying users’
emotional reactions when manipulating sound-mediated in-
teractive objects. A experimental object (the Flops glass)
was designed. It is a plastic glass capable of capturing the
extent to which it is tilted. The object implements the metaphor
of virtual items stored in it that are dropped when it is tilted.
Each item virtually dropped out of the Flops glass produces
sound when impacting the surface below.

The study reported here aimed at assessing the influence
of the sounds solely on users’ emotional reactions. Thirty-
two sounds were created, with the purpose of testing the va-
lidity of the conclusions found in [20] for aircraft sounds,
when extended to the case of the impact sounds used in
the Flops glass. The sounds were therefore created so as
to vary along two acoustical parameters: spectral centroid,
and tonality index. Two kinds of sounds were used: records
of “natural” impacts, and samples of sounds synthesized by
various additive-substractive algorithms. The three parame-
ters investigated had previously been found to influence the
emotional reactions of participants listening to the aircraft
sounds.

In the experimental study conducted here, 25 participants
watched videos of a user manipulating the Flops glass. These
videos were all the same, except for the sounds. They had
to report their emotional reactions on three scales: valence,
arousal and dominance. They used the Self-Assessment Manikin
proposed in [1]. The results show that the two types of
sounds influenced the emotional reactions: natural sounds
were found to be slightly more pleasant, and they caused
participants to feel more in control than synthetic sounds.
These conclusions are consistent with those found in [20].
However, no scale appeared to be correlated with any de-
scriptor related to the tonality of the sounds. Furthermore,
the judgements on the three scales were correlated, indicat-
ing that the sounds caused emotional reactions that varied
along a single axis: from pleasant, calm, and in-control feel-
ings, to unpleasant, exciting and dominated feelings. This
suggests a single positive-negative dimension. However, it

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 5



can be noted that whereas natural sounds caused more pleas-
ant feelings than synthetic sounds, they did not cause calmer
feelings, indicating that the participants were able to distin-
guish the three scales.

These conclusions offer interesting results for followup
studies on emotional reactions to sound-mediated interac-
tive objects. They allow, for instance, to select sounds caus-
ing negative, neutral or positive reactions. The next study
that is planned will address the influence of the usability of
the interface on users’ emotional reactions. A interesting
related issue is the interaction between emotional reactions
caused by the sounds, and those caused by the usability.
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ABSTRACT

This paper focuses on everyday sounds and in particular
on sound description, sound understanding, sound synthe-
sis/modelling and on sonic interaction design. The argument
made in this paper is that the quantitative-analytical reduc-
tionist approach reduces a phenomenon into isolated indi-
vidual parts which do not reflect the richness of the whole,
as also noted by Widmer et al. [1]. As with music, so is it
for everyday sounds that multidimensional approaches and
techniques from various domains are required to address
the complex interplay of the various facets in these types of
sounds. An empirically inspired framework for sonic interac-
tion design is proposed that incorporates methods and tools
from perceptual studies, from auditory display theories, and
from machine learning theories. The motivation for creat-
ing this framework is to provide designers with accessible
methods and tools, to help them bridge the semantic gap
between low-level perceptual studies and high-level semanti-
cally meaningful concepts. The framework is designed to be
open and extendable to other types of sound such as music.

1 Introduction
There is a growing acknowledgement [1] that reductionis-
tic approaches cannot reflect the rich variety within sound.
However, it has yet to be systematically addressed in the
SMC 1 community or within any of the related fields such
as auditory display or sonic interaction design. This article
synthesises and organises the existing research within these
fields. It presents a discussion on the qualitative and quantita-
tive research that led to the development of a foundation for
a framework, its structure and components, and examples of
its application towards a practical empirically based design
framework. This framework uses multiple approaches to
capture different aspects of the sounds under exploration as
a means of providing a better reflection of their richness.

There is no single methodological framework that can
deal adequately with the complex socio-cultural context of

1 http://www.smcnetwork.org/

SMC 2009, July 23-25, Porto, Portugal

Copyrights remain with the authors

auditory display design in a coherent and non-reductionist
manner. This is a similar problem faced by most design
oriented research, a suggestion by Melles [2] has been to take
a pragmatic stance towards methodology, where methods
are selected and combined according to their usefulness for
achieving specific goals. This approach of design research
has found support in many methodological dialogues such as
those discussing multimethod research [3]. The framework
presented is structured to support the selection of sounds
while allowing the exploration of specific aspects of the
sounds. Our approach suggests it is possible to gather the
necessary information using complementary techniques [4].

A general observation from many auditory display de-
signers is that auditory icons are not easy to design [5, 6].
This research has synthesised and organised the existing
work to provide an empirically based auditory design process.
The studies and methods explored provide indicative trends,
which can assist designers in making the best selection and
use of everyday sounds in their interface. In selecting these
methods, preference was given to lighter weight approaches
suitable for use outside strict laboratory conditions. This
allows designers access these methods and the framework at
an acceptable cost and without access to dedicated facilities
such as listening booths or anechoic chambers. A number of
additional criteria such as ease of use, prior similar use in the
field or related fields, ability to concisely present the results,
and time required to use the method were also considered.

The underlying rationale was to provide a similar type of
approach to that of discount HCI as proposed by Nielsen [7].
Designers need empirically based or inspired methods to
guide their overall design process, which do not suffer from
the specificity of psychoacoustic studies or that require a
relatively long time to conduct. A typical design problem is
wider than those addressed by psychoacoustic studies and the
approach of this framework joins these disciplines in a man-
ner that is accessible at a reasonable cost to designers. The
benefit from this type of approach should be a reduction in
the ad-hoc selection of auditory icons and similar sounds [6].
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2 Existing Design Methodologies In Sonic In-
teraction Design

There are few design methodologies which are specifically
situated within the field of Sonic Interaction Design (SID).
Our framework was inspired by the work in the EU FET
Closed project [8], by work on interactive public installa-
tions [9], and by work on narrative inspired interactive arte-
facts [10]. The first methodology was focused at the creation
of functional artefacts and had close roots to industrial de-
sign and interaction design. The second methodology was
targeted at interactive public spaces and came from an in-
teraction design background that was complemented by em-
pirical explorations. The third methodology came from an
interaction design background with strong influences from
film and game design to focus on creating narrative driven
interactive artefacts. It aimed to create narrative sound arte-

facts. The three methodologies had different goals and un-
derstanding their origins can help in clarifying their distinct
methodologies.

2.1 Designing Functional Artefacts

The EU FET Closed project [8] explored many aspects of
sonic interaction design including the creation of functional
artefacts as shown in Figure 1. It looked especially at kitchen
sounds and how to integrate basic design practises together
with interaction design to create functional artefacts. An
example of this type of artefact is the Spinotron [11], which
explored the link between sound objects and pumping ac-
tions. It used rolling and wheel/ratchet parameterised sound
synthesis models 2 linked to real-time sensor data. The syn-
thesis model design was based on the concept of a ratcheted
wheel, where the motion or pumping of the device controlled
the rotation of the wheel. The methodology promotes a com-
plementary use of basic design methods to formalise and
structure ethnographic approaches. The evaluation aspects
in this methodology incorporate the ideas of material anal-
ysis and of interaction gestalts as shown in Figure 1. The
goal of this methodology is to integrate these aspects to help
products fit within their contexts of use by providing broader
views of evaluation. This wider view includes holistic mea-
sures of experience and takes the functional performance of
end users of the device or interface into account.

2.2 Designing Interactive Public Spaces

The Shared Worlds project [9] explored designing for inter-
active public spaces, in particular public transport spaces and
market spaces. Shannon airport in County Clare, Ireland was
the site of one of these interventions. An interactive portal
was designed to allow travellers in the departures lounge the
ability to send electronic postcards home using either stock
photos or their own digital images. The sonic aspect of this
installation was used to help travellers browse the collection

2 SDT impact and rolling models -
http://closed.ircam.fr/uploads/media/SDT-0.4.3b.zip

Functional Artefacts
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Figure 1: The design process developed by the CLOSED project [8]

for creating functional artefacts.

of images. The scenario and further details are discussed
by Fernström et al. [12]. Brainstorming and mood boards
helped generate the initial ideas. These were then sketched
and video prototyped or role-played to help evaluate the
concepts. The most promising concepts were evaluated and
tested using rapid audio prototyping tools such as PureData.
This approach and the rapid audio prototyping tools allowed
for the creation of four different iterations and evaluations
within the space of a month. The process is illustrated in
Figure 2.
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Figure 2: The design process developed for interactive public

spaces [12].
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2.3 Designing Narrative Sound Artefacts

The concept of narrative is important in both film and game
design and inspired this methodology proposed by Hug [10].
It applies a design oriented research process to explore narra-
tive approaches in the creation of interactive sound artefacts
as shown in Figure 3. The view in this methodology is that
artefacts are socio-cultural components within everyday life
and are dynamic rather than static things. This approach
creates exemplar prototypes for possible future scenarios and
evaluates them using wizard of oz prototyping in a work-
shop setting. The studies in this approach generate a set of
metatopics that can help create new scenarios and ideas.

Linking film and game 

narrative strategies for design 

to interactive sound artefacts 

using a workshop context

Narrative Sound Objects

Sonic Interaction Design 
Approach for Narrative 

Sound Artefacts
Setup the 

Workshop Context
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Instruction in SID 

Competences

Collection and 

Analysis of 

Interactions

Sonic Resign of the 

Everyday Object 

Interactions

Prototype Wizard Of Oz 

Version
Evaluate

Evaluate and Discuss 

Prototype
Feedback

Figure 3: The design process for designing narrative sound ob-

jects [10].

2.4 Shortcomings of the Existing Methodologies

The three methodologies show the focused nature of the ex-
isting methodologies in sonic interaction design. They are
often heavily design biased and aim at creating or proto-
typing artefacts for evaluation. This approach typically fits
within a sound creation view and often does not focus on
the analysis or empirical investigations of the created arte-
facts. our framework attempts to bridge the gap between
sound creation and analysis while ensuring the empirically
inspired methods remain accessible and useful for interaction
designers.

3 An empirically inspired framework for sonic
interaction design

The framework we propose is aimed at providing designers
with accessible tools and methods in a manner that allows
for the easy bridging of the semantic gap between low-level
perceptual studies and high-level semantically meaningful

concepts. Our framework takes the view that the sonic inter-
action design process is split into two stages, sound creation
and sound analysis. The sound creation stage is where a
real sound is adapted or designed to meet the needs of the
designer. It includes where the designer creates a new sound
that is specifically tailored to the auditory design or context.
The second stage, is the sound analysis stage where the sound
or group of sounds are examined to ensure their suitability
for use or to gain further insights into them from the per-
spective of potential listeners. In the cases of the functional

artefacts [8] and of the interactive public spaces [12], the
methodologies are both somewhat contained within the first
stage of sound creation. The narrative sound artefacts [10]
methodology is situated within the sound analysis or second
stage of the framework. The approaches from these method-
ologies are tailored for specific goals, while the framework
presented here aims to be more generalised. This means that
there is a certain overlap from these methodologies that is
implicit in the framework. A further caveat is the focus of
the methods is at an individual level rather than at a group
level, however the framework could easily be combined with
group oriented techniques such as rich user cases [13] or the
descriptive analysis process [14] to address this issue. The
focus on the individual level is because time is a practical
consideration for many designers and individual techniques
are much less time consuming than most group oriented
approaches [14].

3.1 Framework of Sonic Interaction Design

The implicit view we used as the method for evaluation
of auditory icons selection in the early conceptual stages
of design is shown in Figure 4. This approach consists of a
number of successive steps, beginning with a definition of the
context and purpose of the auditory display and ending with
an actual evaluation of the auditory icons. The framework
is open and adaptable to include new types of sounds or
methods. The foundations of this framework are presented
in this paper, as it is hoped that future research will improve
its potential and practicality for interaction designers. The
existing methods used in the framework include repertory
grids [15], similarity ratings/scaling [16], sonic maps & ‘ear-

witness accounts’ [17], ‘earbenders’ [18], the context to
basic design approach [19], in addition to aspects from the
three earlier methodologies. A deeper introduction into these
techniques is given in our earlier research [20].

3.1.1 Sound Creation:

The first stage is the definition, selection, creation, and ad-
hoc evaluation of the sounds. This workflow creates and
rapidly assesses the sounds within the design group or by
the designer on their own. This approach depends on the
skill of the designer as incorrect combinations or choices
of sounds may occur, in addition to inappropriate mappings
for the domain. The second empirically inspired stage can
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Figure 4: Two stages in our sonic interaction design process.

help designers build on this stage to ensure the best sound
selections are made for the particular context. This stage is
shown as the top part (blue highlighting) of Figure 4.

• 1 - Context and Auditory Display Definition: The pur-
pose of the auditory display is defined, the context
is determined, the initial conceptual design including
possible sounds and mappings are created.

• 2 - Selection of Sounds: A pool of sounds that can fit
the selected mappings are gathered and organised for
evaluation. These sounds can be real, synthetic or a
mix of both.

• 3 - Create the Sounds: If necessary edit the existing
sounds or create new sounds. These sounds can be
real, synthetic or a mix of both.

• 4 - Listen to the Sounds: If they do not sound right for
the mapping or events, try again with other sounds.

3.1.2 Sound Analysis:

The second stage is the use of empirically inspired methods
to improve the selection and understanding of the sounds.
The methods present a number of perspectives, depending
on whether it is attributes / mappings, confusion metrics, or
listeners’ narratives being explored. The methods available

in the framework are designed to be open for extension to
include other adaptions or new methods. This allows for
many different perspectives on the sounds and helps inform
the designer about the range of possibilities that exist within
the given design space. The sound analysis stage is shown as
the bottom part (green highlighting) of Figure 4.

• 5 - Evaluate Scaling / Mappings of the Sounds: The
participants listen and compare the sounds and the
mappings or attributes being used.

• 6 - Auditory Characterisation of Story/Scene/Account:
This is where a narrative for the sounds and environ-
ment are created.

• 7 - Elicit Descriptors & Constructs: The participants
created descriptors for the sounds presented.

• 8 - TaDA & Sonic Mapping: Analyse the narrative and
break it down into the different types and aspects of
sounds occurring.

• 9 - Narrative Sound Artefact Creation: The workshop
narrative approach as discussed in section 2.3.

• 10 - Rating of Constructs & Descriptor Categorisa-

tion: Each participant rated the stimuli using these
constructs created in the previous stage.
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• 11 - Hearsay Analysis / Structuring: Take the auditory
patterns and key sounds to create a short summary of
salient points that could be reused in other auditory
display contexts.

• 12 - Causal Uncertainty Measures: The categorisation
details can be used to calculate the causal uncertainty
of sounds.

• 13 - Structuring of Constructs: Cluster analysis, multi-
dimensional scaling and principal component analysis
of the ratings data can clarify attributes and reduce
dimensionality of the data as well as removing redun-
dancy.

• 14 - Definition of Attributes, Construction of Scales:
The construct groups are analysed for their content.
The appropriate descriptions for the participant identi-
fied attributes are then formulated. The rating scales
are defined from these attributes.

• 15 - Validation of Scales: The scales created can be
explored in terms of existing categorisations and tax-
onomies to test the appropriateness of the scales.

• 16 - Category Refinement: The details from the ear-
lier causal uncertainty measures and from the scales
can help suggest the removal of particular sounds as
unsuitable for use in the particular sonic context.

• 17 - Evaluation: The details and results are further
analysed to produce the final evaluation results and
summary of the evaluation.

3.2 Simplification of the framework

This evaluation method consists of a number of steps, it
is envisaged that in future when auditory icons and their
subjective qualities are better know that some stages may
be simplified or found to be redundant. The use of several
methods helps to triangulation the results and shows where
additional steps may be added to incorporate new techniques
within the framework.

3.3 How to use this framework

There is no how-to or best practise for using this framework
or the suggested techniques either individually or collectively.
The most appropriate way to adapt these subjective methods
is to adopt one or two complementary techniques and use
them in a small exploratory design study to see the value they
bring to address a particular design issue. The main goal of
this paper is to provide a short review for practitioners of the
framework and allow them to make the appropriate choice
of technique for their design goal.

While some of these methods may not be as ‘rich’ as
others, they can still provide additional insights on different
facets of the sound or sounds. A number of the methods

overlap in terms of what is needed from participants and as
a result a single experimental session can easily generate
data which can be analysed by several of the methods. The
listening test approach [21] asks participants to write verbal
descriptions of what they have just heard. These descrip-
tions are similar to the personal constructs collected with the
Repertory Grid method [15], the key sounds found using the
Sonic Map & Earwitness approach [17], and when described
in more detail are similar to the short stories in the Earben-
ders method [18]. Previous studies [4] have shown how
the Repertory Grid method [15] and Ballas’s causal uncer-
tainty method [22] can be used on the same set of collected
responses to analysis different yet complementary aspects.
The similarity scaling technique [16] uses direct scaling of
sound stimuli and as such it requires a separate experimental
session. This can be an advantage as participants focus on
a single scaling task rather than being asked to scale and
provide written descriptions. The method could easily be
combined with a context-based rating [23] task, a sorting
task or with a discrimination task [22].

4 Discussion

A motivation in creating this framework work was the lack
of support for designers wishing to use empirically inspired
methods to answer their design questions. The issue is that a
typical design problem is more wide ranging than those typi-
cally addressed by psychoacoustic studies. This framework
presents an approach that is accessible at a reasonable cost to
designers and without the need for dedicated facilities such
as listening booths or anechoic chambers.

5 Conclusions

This paper introduced a framework for empirically based
design within the domains of auditory display and of sonic
interaction design. The two key conceptual stages were intro-
duced and related back to the existing methodologies covered
in Section 2. This approach builds upon existing techniques
and highlights certain areas of overlap where the methods
within the framework can be used to complement each other.
This framework is the foundation for an accessible empirical
approach that can be easily used by novice designers.

The results of this framework will provide greater details
to designers on the salient cognitive attributes of sound and
help to uncover pragmatic mental models. The aim of this
work is to help guide newcomers to sonic interaction design
and help them in determining what methods are most appro-
priate to answer their particular questions or design needs.
This review has provided an overview of techniques which,
when applied can help deepen knowledge and contribute to
answering the question raised by Hug [24] about how to
design sounds for ubiquitous technology.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 11



6 Acknowledgements
The research is supported by Grant No. ILRP/202x from
Enterprise Ireland under the Industry Lead Research Pro-
gramme. The authors wish to thank John Bowers, Stephen
Barrass, Guillaume Lemaitre, and Nicolas Misdariis for their
useful conversations and advice.

7 References
[1] G. Widmer, D. Rocchesso, V. Välimäki, C. Erkut,
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ABSTRACT

This paper presents a methodology for the synthesis and
interactive exploration of real soundscapes. We propose a
soundscape analysis method that relies upon a sound object
behavior typology and a notion of “sound zone” that collo-
cates objects typologies in spatial locations. Then, a graph-
based model for organising sound objects in space and time
is described. Finally, the resulting methodology is discussed
in relation to a case study.

1 INTRODUCTION

The term “soundscape” was firstly introduced (or at least,
theoretically discussed) by R. Murray Schafer in his well-
known book The tuning of the world [8]. Murray Schafer
and his associates of the World Forum For Acoustic Ecology
studied for the first time the relation between sounds, envi-
ronments and cultures. Then, the diffusion of the term has
continuously increased, and currently the notion of sound-
scape plays a pivotal role at the crossing of many sound-
related fields. It is worth noting that, despite the profusion
of usages, there are neither models nor applications aiming
at a simulation of a soundscape starting from the analysis of
an existing one. To this goal, here we propose an analytical
methodology for the description of soundscapes and a sys-
tem for its re-synthesis, driven by the analytical results. The
system allows for a real-time interaction.

2 A METHODOLOGY FOR ANALYZING
EXISTING SOUNDSCAPES

The simulation of an existing soundscape requires to ana-
lyze the soundscape itself in order to provide data to be used
in the re-synthesis process. The analysis aims at gathering
data from the real environment. Our methodology is based
on a multi-step process. We start by focusing on an “absent-
minded” exploration of the soundscape: the analyst must be
perceptually open and adhere to a passive listening strategy.
In this way it becomes possible to identify the most relevant
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sound objects of the overall soundscape, i.e. the ones that
are evident even to the least aware listeners. Traditionally,
the soundscape studies have insisted on a tripartite typol-
ogy of sounds in relation to their socio-cultural function:
keynote sounds, signal sounds, soundmarks [8]. The iden-
tification of sound objects allows for a subsequent classi-
fication based on phenomenological and semiotic elements
(more later). An active listening strategy is then performed,
with the aim of locating the sound objects in the space. It
is thus possible to create a sound map. Then, we focus on
the analysis of the temporal organization of the soundscape,
in order to retrieve specific sequences of sound objects. A
database is produced containing the recordings of raw audio
material related to the identified sound objects. On one side,
large portions of soundscape are recorded with an omnidi-
rectional microphone: so, a large quantity of raw material is
available for editing and processing. On the other side, high
directivity microphones are used to capture a wide variety
of emissions while minimizing undesired background.
Two issues emerge from the analysis.
The first is related to sound classification. The one used by
studies in acoustic ecology typically refers to socio-cultural
and aesthetic aspects of sound, and it needs to be oriented
toward the simulation of soundscape [11], [12]. Here we
propose a supplementary classification that focuses on the
perceptual and indexical properties of the soundscape and
integrates elements from the theory of “sound object” [10]
and from the research in “audiovision” [5]. Sound objects
can be classified according to the following types:

• events: an event is a single sound object of well-defined
boundaries appearing as an isolated figure. In this
sense, it is similar to a signal as defined in soundscape
studies.

• sound subjects: a sound subject represents the behav-
ior of a complex source in terms of sequencing rela-
tions between events. In other words, a sound subject
is a description of a sound source in terms of a set of
events and of a set of sequencing rules.

• atmospheres: in relation to sound, Böhme has pro-
posed an aesthetics of atmospheres [3]. Every sound-
scape has indeed one or more specific “scenic atmo-
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Figure 1. The classroom example: four sound zones.

spheres”, which includes explicitly an emotional di-
mension. An atmosphere is an overall layer of sound,
which cannot be analytically decomposed in single
sound objects, as no particular sound object emerges.
Atmosphere characterizes quiet states without rele-
vant sound events.

A second issue concerns the distribution of sounds in space.
Many scholars have noted that a soundscape can be decom-
posed as a group of several acoustic scenographies, which
are then recomposed through the listener’s exploring expe-
rience [1], [2], [14], [7]. As soundscapes are not uni-
form, the listener’s experience is enhanced when s/he en-
counters sound aural transitions during her/his exploration
of the environment [3]. When a listener is spatially explor-
ing the soundscape, he can notice several perceptual differ-
ences in the sounds. In particular, the sound environment
can be decomposed into internally homogeneous sub-parts.
These sub-parts are here referred to as “sound zones”. By
the study of sound zones, sound aural transitions between
them can be individuated, analysed and and re-synthesized
in the simulation. Sound zones can differ in dimension and
in number of elements, but they are characterized by typical
sources, i.e. sound emissions are often present in a region
and absent (or only rarely heard) in the others. The sound-
scape will then results from the summation of all the sound
zones, that the listener will be able to explore. As an exam-
ple, we can consider the following situation: in a university
classroom with acoustic insulation walls, closed doors and
windows, a professor is speaking in front of a very silent
audience. The professor voice is loud and clear in all the
classroom, without any relevant irregularity. By contrast,
we can imagine the opposite situation: doors and windows
are open, the thin walls are incapable of blocking any envi-
ronmental sound, outside there are roadworks, a reception
party is running in the hall just behind the door, a few stu-
dents joke and laugh while the professor keeps explaining

loudly. This second soundscape (represented in Figure 1) is
completely different from the first one. Considering that the
classroom is wide enough, it would be very simple to move
around the space and run across several recognizable micro-
soundscapes. Someone near the door can notice that recep-
tion party sounds are louder than any other sound source
coming from the classroom. As s/he moves to the desk,
s/he can hear the professor’s voice, and so on. In the first
case it is possible to identify a soundscape consisting of one
only zone; in the second case four sound zones are clearly
defined. Thus, even if their boundaries can be fuzzy, each
zone can be considered as completely independent from an-
other. This means that it is possible to describe the behavior
of each zone. A soundscape results from the interweaving
of each zone behavior.

3 A GRAPH-BASED MODEL FOR SOUNDSCAPE
RE-SYNTHESIS

In this section we propose a model able to re-synthesize a
soundscape starting from sound object introduced before.
We discuss a system to organise sequences of sound objects
in space and time, then we take into account the relation be-
tween the system and sound objects/sound zones.
The re-synthesis process meets two requirements. First, it
must be generative, i.e. capable to create an infinite set of se-
quences of sound objects from a finite set of sampled sound
objects. Second, the algorithm must be able to merge the
information coming from the sequencing process with the
user’s navigation data. In this way, the simulated sound-
scape can be explored interactively. The generative model,
named GeoGraphy, is based on graphs (for a more detailed
description see [13]). Graphs have proven to be powerful
structure to describe musical structures ([9]). Still, a com-
mon feature of all these graph representations devised for
music is that they generally do not model temporal infor-
mation: on the contrary, the model relies on time-stamped
sequences of sound objects. The sequencing model is a di-
rect graph (see Figure 2), where each vertex represents a
sound object (sampled from the analysis phase) and each
edge represents a possible sequencing relation on pairs of
sound objects. This graph is actually a multigraph, as it is
possible to have more than one edge between two vertices;
it can also include loops. Each vertex is labeled with its rel-
ative sound object duration and each edge with the temporal
distance between the onsets of the two sound objects con-
nected by the edge itself. The graph defines all the possible
sequencing relations between adjacent vertices. A sequence
of sound objects (a track) is achieved through the insertion
of dynamic elements, called “graph actants”. A graph actant
is initially associated with a vertex (that becomes the origin
of a path); then the actant navigates the graph by following
the directed edges according to some probability distribu-
tion. Each vertex emits a sound object at the passage of a
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(a) (b)

Figure 2. (a) Graphs and Listener. (b) A graph representing the relations among atmospheres, events and sound subjects in a
zone.

graph actant. Multiple independent graph actants can navi-
gate a graph structure at the same time, thus producing more
than one track. In case a graph contains loops, tracks can
also be infinite. As modeled by the graph, the sound ob-
ject duration and the delay of attack time are independent:
as a consequence, it is possible that sound objects are su-
perposed. This happens when the duration of the starting
vertex label is longer than the duration of the chosen edge
(in Figure 2, the edge e between vertex 4 and 5). Thus,
there will be as many superposed tracks as graph actants.
In order to allow the inclusion of the exploration process
graphs are placed in a two-dimensional space: in this way,
the original location of a sound object can be represented.
Each vertex is given a radiation area: the radius indicates
the maximum distance at which the associated sound object
can be heard. Inside the map of graphs, a “Listener” is de-
fined. The Listener is identified by a position, an orientation
and an audibility area (see Figure 2, a). The position is ex-
pressed as a point in the map; the orientation as the value in
radiant depending on the user’s interaction control; the audi-
bility area defines the perceptual boundaries of the Listener.
The Listener can be thought as a function that filters and pa-
rameterizes the sequences of sound objects generated by the
graph actants. Every time a vertex is activated by a graph
actant, the algorithm calculates the position of the Listener.
If the intersection between the Listener’s audibility area and
the vertex’s energetic area is not void, then the Listener’s
orientation and distance from the vertex are calculated, and
all the data (active vertex, position, distance and orientation
of the Listener) are passed to a DSP module retrieving from
the database the recorded samples and processing them ac-
cording to some spatialization model (e.g. reverberation,

low-pass filtering, amplitude scaling, etc.).
To sum up, in our system a soundscape emerges as the rela-
tion between the set of tracks generated by the graph actant
navigating the graphs and the filtering function defined by
the Listener.
Through the GeoGraphy model and the sound zone mod-
ular description it is possible to generate a target complex
soundscape. In Figure 2 (a), each zone is described by a ded-
icated graph. As discussed, zones can overlap their audibil-
ity with other zones, depending on the radiation of the sound
sources that compose it. For that reason GeoGraphy pro-
vides the radiation area concept: it indicates the maximum
distance at which the associated sound object can be heard.
It is set according to dynamics annotations taken during the
analysis phase. It is thus possible to regulate the radius of
each element to interbreed the parent zone with the others.
This modular description process allows to easily represent
“sound pollution zones”. In Figure 2 (a) a zone is repre-
sented by the generative loop 2 between vertices 4 and 5,
respectively having radii I4 and I5. Similarly, “the genera-
tive loop 1” individuates one more zone, and the intersection
between the elements 2 and 5 is the portion of space where
the sounds of the two zones can be hearable. A soundscape
is the summation of all the graphs apt to describe the sound
zones that a listener will be able to explore. A zone in it-
self is the summation of all the sub-graphs representing at-
mospheres, events, and sound subjects. The soundscape is
made by a continuous fusion process between sound figures
and backgrounds. In this sense, each zone has a core grant-
ing continuity to the structure, and to the resulting auditory
stream. The core is formed by the atmospheres, that con-
sist several ambient sound materials (i.e. long field record-
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ings), aiming at representing different natural “almost-quiet
state” nuances. In Figure 2 (b) the atmospheres 1 to 4 allow
the formation of a background against which semiotically
and indexically relevant signals can emerge. Atmospheres
can be connected to other atmospheres and to events and
sound subjects. Their durations is typically set longer than
the edges connecting them to events and sound subjects: in
this way, atmospheres are still present when the events and
sound subjects are activated by the actant. Atmospheres can
then generate a background layer, while sound events and
sound subjects reach the close-up perceptual level and then
quickly disappear. Events can be thought as isolated signals.
On the contrary, sound subjects feature a double nature. In
Figure 2 (a) they are represented, for sake of simplicity, as
single vertices, standing for a complex but unitary acoustic
behavior. But a sound subject properly is a subgraph, or-
ganized recursively in a core surrounded by events, like a
sub-zone. An example of sound subject is discussed in the
next section.

4 A CASE STUDY: THE MARKET OF THE PORTA
PALAZZO IN TURIN

The market is a typical case of a socio-culturally relevant
soundscape. In particular, the market of the Porta Palazzo
in Turin has a long tradition as it has been established more
than 150 years ago. It is the greatest outdoor market in Eu-
rope, and it represents the commercial expression of the cul-
tural heritage of the city of Turin. During the century, it has
tenaciously retained its identity, characterized by the obsti-
nate will of the workers of sharing its government’s respon-
sibility. It is probably the part of Turin where the largest
number of social different realities and cultures coexist, both
of Italian and of foreign origins [6]. As a consequence, its
soundscape manifests an impressive acoustic richness. First,
it includes languages and dialects from all the regions of
Italy, South America, Eastern Europe, North Africa. More,
there are many qualitatively different sound sources: every
day the market serves 20,000 persons (80,000 on Saturday),
and 5,000 persons are working in it every day. It can be said
that the Porta Palazzo soundscape belongs to the Italian cul-
tural heritage.
The analysis of the case-study initially focused on the socio-
cultural dimension of the market and has started from the
urban redevelopment survey by the Porta Palazzo public ad-
visory committee [6]. More, short informal interviews with
local workers, customers and workers’ representatives have
been realized. The interviews were done during the first
“absentminded” explorations of the place, that made it pos-
sible to annotate the most pervasive sound objects. As an
example, the sound of plastic shopping-bags is a unique
keynote sound represented as a mass of sound events. The
shouts of the merchants is another multi-particle keynote
in which the listener of the marketplace soundscape is im-

mersed: the most intense, vibrant, repetitive, significant ad-
vertising messages have been recorded to be simulated. In
some sense, their sum is the pervasive call of the market:
the Porta Palazzo voice. Finally, one can notice that there
is a specific keynote sound in certain border regions that in-
vades all the space: the noise of motor vehicles and car-
riages. As an example, in the customers opinion, the arrival
of the streetcar number 4 is the unique sound source that
can be heard throughout the whole soundscape, acquiring
specific nuances in each zone (i.e. due to reverberation and
to low frequency distance attenuation). Hearing this sound
object makes one think immediately of the Porta Palazzo
market. This is a very interesting strong semantic associa-
tion picked up during interviews.

Then, sound signals have been taken into account, in par-
ticular those related to specific stands, giving origin to com-
plex sound subjects: five typical stand sounds have been an-
alyzed. It must be noted that a reduced set of samples has
proven to be rich enough to describe different stands, as they
could be differentiated by their grouping in different graph
structures. A particular sequence of events has led to cre-
ate the specific “shopping” sound subject: plastic rustle, pa-
per rustle, clinking coins, cash opening, clinking coins, cash
closing. The stands of the anchovy sellers have proven to be
very different from all other stands: they include sounds of
metal cans, of anchovies being beaten over wood plates, of
olives thrown in oil, of noisy old scales.

Subsequently, we define the sound zones: the analysis
of the soundscape led to five independent zones formed by
distinctive elements. In this way, it has been possible to
record specific atmospheres. In Figure 3 all the zones are
assigned an identifying index.

The zones 1 and 2 are characterized by the sounds of
motor vehicles. Zone 1 is mainly characterized by a sound
atmosphere made up of little delivery trucks, hand-carts and
gathering of packing boxes from stands. It is the only street
accessible by any vehicles as bus, trams, cars and motorbike.
Instead, in the zone 2 there are two important sound fea-
tures: the load area of big delivery trucks and the street ded-
icated to public transport, with rail system allowing street-
car passage. Both the zones present sounds related to bread,
mint and spice hawkers. Zone 3 is a diffused area showing
a mixup of sounds related to market and to street/parking
areas. This feature has required to aptly adjust the radius of
sound sources to describe its fuzzy sonic boundaries. In ad-
dition, some emissions related to the daily process of assem-
bling/disassembling stands are present. Zone 4 is formed by
different and rare stands; it presents a less prominent sound
density because the passage area is bigger, so the sound of
walking costumers, hand-cart distribution, empty box col-
lecting process, are louder than other sound objects. More,
many atypical stands are positioned in this zone, making
its atmosphere unique. The motor sound is almost imper-
ceptible, with the exception of some very loud source (as
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Figure 3. Plant of the Porta Palazzo market: organization in
sound zones.

streetcar 4). Zone 5 presents only vegetable and fruit stands:
transit ways are thin and rare, and only walking people can
pass through. The shouts of the merchants reach the highest
intensity and mask all the pollution sound coming from the
other zones, while the many sound signals (activities and
voices) make the soundscape particularly frenetic, a disar-
ranged composition of sound objects making it a “pure” ex-
ample of market soundscape.
The graph structure of a sub-part of zone 2 is showed in Fig-
ure 4 (a). The graph is a sub-part of zone 2. Edges define the
sequencing rules between a possible atmosphere (labelled
“1:XAtmo...”, a four minute recording) of that specific sub-
part, and nine indexical sound events. The atmosphere de-
scribes the almost quiet state of that area, generated by the
continuous walking of costumers and the activity of some
mint hawkers. The sound events describe activities by dif-
ferent vehicles. The number of repetitions of a sound object
(i.e bus, tram, delivery truck, motorbike) is proportional to
its statistical relevance: there are four tram objects, then two
for bus and trucks, and only one for motorbike. No car was
noticed here. The graph is cyclic, thus generating potentially
infinite tracks. In this case, each possible path is designed to
have the same duration of the atmosphere. So the time du-
ration of edge connection Edurxy

between vertices are set
according to the following rule:

EdurAtm2 + Edur23 + ... + EdurxAtm = V durAtm

In this way a long, looping background is continuously var-
ied by the superposition of different other sound objects. By
only using nine objects it has been possible to represent a
complex soundscape.

Figure 4 (b) depicts the graph of a sound subject. The
graph represents the behavior of a delivery truck. The deliv-
ery trucks arrive at that zone, unload the products, and leave
back. By connecting three “core” objects 1b, 1c, 5 and nine
sound events, it allows the simulation of several instances of
the truck. Here the sound subject reveals its sub-zone nature.
The topological structure of the graph includes a start event
(1) and an end event (10). The core objects are almost quiet
recordings. As an example, 1b refers to a stationary truck
with running motor while 1c refers to a truck making some
accelerations. They are placed topologically in the center
of the graph structure, providing a continuous background
against which other smaller sound objects appear and disap-
pear. As in the previous example, all the possible paths re-
activate a core before its duration has finished. But there is
an exception: after the end event the auditory stream stops,
as the graph is acyclic. The graph can be made cyclic by the
addition of edges connecting the end vertex 10 to the start
vertex 1. These looping edges can have durations spanning
over a large interval, from 15 to 530 seconds. After a path
simulating the truck delivery has reached the end event, it
is thus possible that the start event is emitted straight after
that: the sound result will then be perceived as an activity
of the same acousmatic subject. By contrast, when the path
restarts a long time after the end vertex has finished, the re-
sult can be perceived as the arriving in the soundscape of a
new truck.

5 CONCLUSIONS AND FUTURE WORK

The notion of soundscape is increasingly relevant not only
in contemporary culture and acoustic ecology but also in
many other fields, such as, e.g. audiovisual productions, in
which soundscape is now a fundamental part of the whole
soundtrack. The proposed system is able to generate sound-
scapes from original sound materials but without relying
on loops. In this way, the typical “sound mood” of the
original space is preserved: at the same time, the result-
ing soundscape is no more fixed, but undergoes a contin-
uous variation thanks to the graph dynamics, due to prob-
abilistic connections. The system was been implemented
in the SuperCollider audio real-time synthesis programming
environment, which allows the efficient real-time synthe-
sis of the soundscape and its interactive exploration by the
user [15]. A major issue in our system concerns the gen-
eration of multigraphs, actually to be carried out manually
and potentially quite time-consuming. We are planning to
extend the system so to include the automatic generation
of graphs starting from information stored in the database
or from sound-related semantic repertoires (see [4]). The
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(a) (b)

Figure 4. (a) Screenshot from the current SuperCollider implementation: the graph describes the sequencing rules of a part of
zone 2. (b) Graph sequencing rules of the delivery truck sound subject.

database itself can eventually include not only sound sam-
ples created from direct recording but also from available
sound libraries. Sound automatic recognition could led the
automatic definition of some parameter (i.e. sample dura-
tions labelling vertices). An interesting perspective is to in-
vestigate user-generated, online databases such as Freesound 1 :
in this case the graph generation process can be governed by
social tagging.
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ABSTRACT

IEEE 1599-2008 is an XML-based standard originally in-
tended for the multi-layer representation of music informa-
tion. Nevertheless, it is versatile enough to describe also in-
formation different from traditional scores written according
to the Common Western Notation (CWN) rules. This paper
will discuss the application of IEEE 1599-2008 to the au-
dio description of paths and scenarios from the urban life or
other landscapes. The standard we adopt allows the multi-
layer integration of textual, symbolical, structural, graphi-
cal, audio and video contents within a unique synchronized
environment. Besides, for each kind of media, a number of
digital objects is supported. As a consequence, thanks to the
features of the format the produced description will be more
than a mere audio track, a slideshow made of sonified static
images or a movie. Finally, an ad hoc evolution of a stan-
dard viewer for IEEE 1599 documents will be presented, in
order to enjoy the results of our efforts.

1 INTRODUCTION

IEEE 1599-2008 is originally a format to describe single
music pieces. For example, an IEEE 1599 document can be
related to a pop song, to an operatic aria, or to a movement
of a symphony.

Based on XML (eXtensible Markup Language), it fol-
lows the guidelines of IEEE P1599, “Recommended Prac-
tice Dealing With Applications and Representations of Sym-
bolic Music Information Using the XML Language”. This
IEEE standard has been sponsored by the Computer Society
Standards Activity Board and it was launched by the Tech-
nical Committee on Computer Generated Music (IEEE CS
TC on CGM) [1].

The innovative contribution of the format is providing a
comprehensive description of music and music-related ma-
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terials within a unique framework. In fact, the symbolic
score - intended here as a sequence of music symbols - is
only one of the many descriptions that can be provided for
a piece. For instance, all the graphical and audio instances
(scores and performances) available for a given piece are
further descriptions; but also text elements (e.g. catalogue
metadata, lyrics, etc.), still images (e.g. photos, playbills,
etc.), and moving images (e.g. video clips, movies with a
soundtrack, etc.) can be related to the piece itself. Please
refer to [2] for a complete treatment of the subject. As ex-
plained in Section 4, such a rich description allows the de-
sign and implementation of advanced browsers.

In this work we are interested in a particular application
of IEEE 1599 that goes beyond the original goals of the stan-
dard. In fact, instead of applying it to a traditional CWN
score, we are going to describe in IEEE 1599 the sound-
scape of a urban environment using a city map as a score
and the different hours of a day to generate different perfor-
mances.

In the following we will introduce the key features of the
standard comparing their traditional meaning in the music
field to our new perspective. After, we will describe a gen-
eralized viewer for IEEE 1599 format usable both for tradi-
tional music pieces and for our goal, namely the audio sce-
nario reproduction. Finally, a case study will be discussed,
by using the audio material recorded during 2008 Sound and
Music Computing conference held in Genoa (Italy).

Before starting the discussion, a point should be clari-
fied. In our work, a format to encode music information is
adapted in order to provide a comprehensive description of a
sound environment. This is made possible by the flexibility
of the XML encoding we adopt, but it could seem a forcing.
We have chosen a format oriented to music since a score is
made of symbols corresponding to music events; in our case,
the concepts of score and event must be generalized, but the
navigation of the audio scenario is similarly driven by events
belonging to a predetermined “score”. Among many XML-
based formats available for music description, IEEE 1599
has proved to be effective, and the reasons are explained in
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Figure 1. The XML stub corresponding to the IEEE 1599
multi-layer structure.

Section 2. As shown by the case study, the final result is
a multimedia description of city sounds that goes beyond a
collection of unrelated materials: the audio environment is
depicted at different moments of a typical day; these audio
objects are related and synchronized through the occurrence
of shared events, which constitute the common score. Fur-
thermore, audio contents are integrated with other multime-
dia objects both to provide a comprehensive description and
to allow innovative ways of browsing.

2 DEFINITION OF MUSIC EVENT

The mentioned comprehensiveness in music description is
realized in IEEE 1599 through a multi-layer environment.
The XML format provides a set of rules to create strongly
structured documents. IEEE 1599 implements this charac-
teristic by arranging music and music-related contents within
six layers [3]:

• General - music-related metadata, i.e. catalogue in-
formation about the piece;

• Logic - the logical description of score in terms of
symbols;

• Structural - identification of music objects and their
mutual relationships;

• Notational - graphical representations of the score;

• Performance - computer-based descriptions and exe-
cutions of music according to performance languages;

• Audio - digital or digitized recordings of the piece.

In IEEE 1599 code, this 6-layers layout corresponds to the
one shown in Figure 1, where the root element ieee1599
presents 6 sub-elements.

The previous list is clearly related to music contents, but
in our work layers can be used in a wider context. Before
discussing this matter in depth, we have to introduce a key
concept of the format, namely the spine.

Since contents are displaced over various levels, what is
the device that keeps heterogeneous descriptions together
and allows to jump from one description to another? The
Logic layer contains an ad hoc data structure that answers
the question. When a user encodes a piece in IEEE 1599
format, he/she must specify a list of music events to be or-
ganized in a linear structure called “spine”. Please refer
to Figure 2 for a simplified example of spine. Inside this
structure, music events are uniquely identified by the id at-
tribute, and located in space and time dimensions through
hpos and timing attributes respectively.

Each event is “spaced” from the previous one in a relative
way. In other words, a 0 value means simultaneity in time
and vertical overlapping in space, whereas a double value
means a double duration of the previous music event with
respect to a virtual unit. The measurement units are inten-
tionally unspecified, as the logical values expressed in spine
for time and space can correspond to many different abso-
lute values in the digital objects available for the piece.

In the example shown in Figure 2, and regarding it as a
music composition, event e3 forms a chord together with
e2, belonging either to the same or to another part/voice,
as the attributes values of the former are 0s. Similarly, we
can affirm that event e3 should last twice the duration of e0
(and e1), as e4 occurs after 2 time units whereas e1 (and
e2) occurs after only 1 time unit. For further details please
refer to the official IEEE draft of the format [4].

In conclusion, the role of the structure known as spine is
central for an IEEE 1599 encoding: it provides a complete
and sorted list of events which will be described in their het-
erogeneous meanings and forms inside other layers. Please
note that only a correct identification inside spine structure
allows an event to be described elsewhere in the document,
and this is realized through references from other layers to
its unique id (see Section 3). Inside the spine structure only
the entities of some interest for the encoding have to be iden-
tified and sorted, ranging from a very high to a low degree
of abstraction.

In the context of music encoding in IEEE 1599, how can
be a music event defined from a semantic point of view? One
of the most relevant aspects of the format, which confers
both descriptive power and flexibility, consists in the loose
but versatile definition of event. In the music field, which is
the typical context where the format is used, a music event is
a clearly recognizable music entity, characterized by well-
defined features, which presents aspects of interest for the
author of the encoding. This definition is intentionally vague
in order to embrace a wide range of situations. A common
case is represented by a score where each note and rest are
considered music events. The corresponding spine will list
such events by as many XML sub-elements (also referred as
spine events).

However, the interpretation of the concept of music event
can be relaxed. A music event could be the occurrence of a
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Figure 2. An example of simplified spine.

new chord or tonal area, in order to describe only the har-
monic path of a piece instead of its complete score, made of
notes and rests.

Brought to the extreme, the meaning of music event can
be extended to comprehend audio events, such as the ring-
ing of church bells or the environmental sounds of a square.
Starting from this point of view, our works aims at discov-
ering and exploiting the potentialities of IEEE 1599 format.
This a challenging matter as both the format and a num-
ber of software tools (e.g. viewers and editors) are already
available, but the attempt to apply them to this context is
completely original.

3 EVENTS IN A MULTI-LAYER ENVIRONMENT

After giving a correct interpretation to the concept of spine-
event, and after the creation of the spine structure, events are
ready to be described in the multi-layer environment pro-
vided by IEEE 1599. As stated in Section 2, the format
includes six layers, which implies 6 families of descriptors
for contents.

This section will show that the concept of heterogeneous
description is implemented in IEEE 1599 by heterogeneous
descriptions of each event contained in spine. While hetero-
geneity is supported by the whole, inside each layer we find
homogeneous contents, namely contents of the same type.
The Audio layer, for example, can link n different perfor-
mances of the same piece, as well as recordings taken at
different times in the same place. In order to obtain a valid
IEEE 1599 document, not all the layers must be filled; how-
ever their presence provides richness to the description.

In musical terms, the layer-based mechanism allows het-
erogeneous descriptions of the same piece. For a composi-
tion, not only its logical score, but also the corresponding
music sheets, performances, etc. can be described. In this
context instead, heterogeneity is employed in order to pro-
vide a wide range of audio descriptions of the same environ-

ment. This concept will become clear in the following.
Now let us focus on the presence and meaning of events

inside each layer. The General layer contains mainly cata-
logue metadata that are not referable to single music events
(e.g. title, authors, genre, and so on). From the perspective
of this paper, the General layer could have a poor mean-
ing. Nevertheless, this layer presents a sub-element called
related files, a container for 1..n specification(s) of
external digital objects such as photos, somehow related to
the piece but not directly related to the occurrence of music
events. For related files sub-element, two attributes
are available: start event ref and end event ref,
containing the identifiers of events listed in spine. These
attributes allow to synchronize respectively the appearance
and disappearance of static graphical objects with the oc-
currence of spine events, and they are useful for multimedia
presentations. In our case study, we will employ this feature
to implement a slideshow of the route, made of images and
short text descriptions.

The Logic layer, which is the core of the format, faces
music description from a symbolic point of view: it contains
both the spine, i.e. the main time-space construct aimed at
the localization and synchronization of events, and the sym-
bolic score in terms of pitches, durations, etc. The latter
aspect is not present in our work; on the contrary the for-
mer “logic” description takes a key role for all the other lay-
ers, which refer to spine identifiers in order to link heteroge-
neous descriptions to the same events. Please note that only
spine is strictly required by IEEE 1599 format.

Originally, the Structural layer has been designed to con-
tain the description of music objects and their causal rela-
tionships, from both the compositional and musicological
point of view. This layer is aimed at the identification of
music objects as aggregations of music events and it defines
how music objects can be described as a transformation of
previously described objects. Here music events are referred
in order to create horizontal (e.g. melodic themes), vertical
(e.g. chords), or other aggregations of symbols (e.g. generic
segments). In our work, this layer can be used to highlight
relationships among events along the route. For example, if
two squares are encountered along the way, the Structural

layer can link the corresponding events. As usual, event lo-
calization in time and space is realized through spine refer-
ences.

For the remaining layers, the meaning of events is more
straightforward. The Notational layer describes and links
the graphical implementations of the logic score, where mu-
sic events - identified by their spine id - are located on digital
objects by absolute space units (e.g. points, pixels, millime-
ters, etc.). In the case of environmental sounds, the places
where they are recorded can be identified over a map. These
maps can be the counterpart of the graphical scores as re-
gards our work.

The Performance layer is devoted to computer-based per-
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formances of a piece, typically in sub-symbolic formats such
as Csound, MIDI, and SASL/SAOL. This layer is not used
for our goals.

In the Audio layer events are described and linked to au-
dio digital objects. Multiple audio tracks and video clips,
in a number of different formats, are supported. The device
used to map audio events is based on absolute timing val-
ues expressed in milliseconds, frames, and so on. Our case
study, as discussed in Section 5, includes only three audio
tracks, but video clips could be included as well.

Finally, let us concentrate on the cardinalities supported
for events layer-by-layer. In the Logic/Spine sub-layer, the
cardinality is 1 - namely the presence is strictly required -
as all the events must be listed in the spine structure. In
the Audio layer, on the contrary, the cardinality is [0..n] as
the layer itself can be empty (0 occurrences), it can encode
one or more partial tracks where the event is not present
(0 occurrences), it can link a complete track without repe-
titions (1 occurrence), a complete track with repetitions (n
occurrences), and finally a number of different tracks with
or without repetitions (n occurrences). Similarly, the No-

tational layer supports [0..n] occurences. In our case, the
relevant events listed in spine will be mapped only once for
each digital object.

4 BROWSING OF IEEE 1599 DOCUMENTS

In the current section we treat the problem of browsing when
many multimedia objects are available, as in the IEEE 1599
environment. Our purpose is presenting a comparison be-
tween the standard use with strictly music-related contents
and our new application of the format. The interface illus-
trated in this section represents the evolution of earlier soft-
ware demos and working applications based on the IEEE
1599 format. It implements the functions and follows the
guidelines detailed in [5]. However, till now such an inter-
face has been used only for traditional CWN scores, and in
this sense our approach is completely new.

Thanks to the standard, contents can be presented tex-
tually, aurally and visually in near real-time to maximize
multimedia and multimodal enjoyment of music. In the up-
per part of Figure 3 an interface for pop songs encoded in
IEEE 1599 is proposed. Heterogeneity in music contents is
reflected by the layout of controls and views. Players, pan-
els, floating windows or other devices are used to present
multimedia contents in a unique framework. Different mul-
timedia types are kept separated by using different controls,
whereas objects of the same type are grouped within the
same control. For instance, the part of the interface dedi-
cated to audio/video contents contains the playlist of such
media objects (dynamically loaded and syncrhonized from
the IEEE 1599 file) and the common controls of a media
player. Similarly, the panel dedicated to score images con-
tains the list of scores, a control to select the pages of each

Figure 3. The interface for multi-layer browsing applied to
a pop song and to city sounds.

score (once again dynamically loaded from the IEEE 1599
file) and a number of image-oriented navigation tools.

For the goals of this paper the interface has been adapted
to the presentation of our material, as illustrated by the lower
part of Figure 3. Multimedia and navigation controls can re-
main unalterated, as the key differences between a music
application and this case are not due to a change in media
types, rather to a change in the paradigm used to interpret
their functions. For instance, now the custom media player
loads an audio track of the route and the slider allows to go
backward and forward in the audio/video material, whereas
the main window (previously used as the “score” panel) con-
tains one of the provided maps of the path itself. The se-
lection tools, that originally have been designed to switch
the current score page and music performance, still work in
real-time to switch the current map and audio.

Moreover, the interface has been designed to allow the si-
multaneous enjoyment of all the views involved in the rep-
resentation of the same piece. Please note that also non-
temporized descriptions (e.g. the related files) are accessi-
ble. Related files often do not require synchronization, as
they are ancillary representations in general not strictly re-
ferrable to music events. Usually, in music field this sub-
element is employed to link on-stage photos, sketches, fash-
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ion plates, and so on. Our software application, on the con-
trary, takes full advantage of related files temporization by
showing photos taken during the recording session. The re-
sult is a sort of slideshow that enriches the overall descrip-
tion of the route.

5 AN EXAMPLE: ENVIRONMENTAL SOUNDS
ALONG A PEDESTRIAN ROUTE

In order to demonstrate the effectiveness of our approach,
we have encoded in IEEE 1599 format the results of an
experience made during the Sound and Music Computing
conference held in Genoa last year (SMC 2008). In that
occasion, we recorded the environmental sounds along a
short pedestrian path, going from the cathedral (Piazza San
Lorenzo, � in Figure 4) to the harbour (Ponte degli Spinola,
� in Figure 4). This route is about 0.5 km long and it takes
about 7 minutes on foot. Sounds were completely acquired
three times, namely during three different sessions, trying to
respect the same temporization for each capture. We were
interested in unveiling the similarities and differences that
characterize city life during the phases of a day. To this end,
we chose 1am, 9am and 6pm. As a result, we realized that:

• some audio events were quite similar and character-
istic for a given place (e.g. the bells of San Lorenzo
church), even disregarding time;

• other audio scenarios clearly identified a place or con-
text, but during the day they suffered the consequences
of variable human activities (e.g. at the harbour);

• finally, some environmental sounds occurred only in a
track (e.g. the transit of an ambulance or the noise of
children playing soccer), which adds descriptive rich-
ness but decreases the characterizing effect of the au-
dio event over the environment.

Listening to the three mentioned audio tracks was an in-
volving activity indeed, but these digital objects appeared
to the listener as something unrelated. In other words, the
rationale behind the experiment was clear, but many aspects
of interest could have been unveiled only through a synchro-
nization among tracks, the integration with other materials
(texts, static images, videos, etc.) and the implementation
of ad hoc navigation tools to jump from a media to an-
other and to enjoy such a comprehensive description in a
unique framework. From this perspective, many similarities
emerged with the multi-layer fruition of music provided by
IEEE 1599. In that very moment, the idea presented in this
paper was born.

Thanks to the features explored in the previous sections,
translating our pedestrian route into a city-map based score
is easy. Music events identified in spine now become places
of interest along the chosen path. The original composi-
tion is made of a sequence of music events, as well as a

Figure 4. Three representations of the route.

route is made of a sequence of places to visit. Music sym-
bols have a space location over the score, say (x,y) coor-
dinates in pixels, but this information can change from one
printed version to another; similarly, the exact localization
of places over a map depends on the graphical representa-
tion provided by the map itself. In Figure 4 graphical rep-
resentations have been scaled to make comparisons easier,
nonetheless this operation is not required for an IEEE 1599
encoding. However some slight differences are evident be-
tween the two upper maps and the lower one. Finally, the
original sequence of music events can be translated into dif-
ferent temporized sequences during performances, and this
originates a number of audio tracks; similarly, the transit
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across given map points in general occurs at different mo-
ments, and this aspect was captured by our audio recordings.

The points of interest along the route have been marked
by numbers. In our path, � denotes the start point, namely
San Lorenzo church, � identifies the intersection among
narrow alleys of the centre, � is the crossing with a con-
gestioned avenue, � denotes an underpass across the urban
elevated motorway, � identifies the tracking pier for ferries,
and � represents the destination, located at the old dock near
the aquarium.

The resulting IEEE 1599 document contains 6 events,
listed in the spine structure like in Figure 2. The hpos and
timing attributes have a similar meaning, since the virtual
localization in time and space does not refer to a score but
to the mentioned pedestrian path. For instance, the relative
spacing between each couple of places could be expressed
in meters as well as in number of steps. Such events have
been mapped within 3 graphical objects and 3 audio objects.
For each point of interest, also static images with a text de-
scription have been inserted in the General layer, in order to
generate a slideshow too.

Through this case study, we have proposed only a basic
demonstration of the potentialities provided by the format
in union with a browsing tool. In broader terms, this experi-
ence could be generalized to take into account a number of
different scenarios and purposes. For instance, all the main
touristic routes of a typical city visit could be represented
and proposed in a Web interface to visitors. Another ap-
proach consists in encoding sounds not along a continuous
path, but statically in a number of places of interest (from
a historical, scientific, or other perspective), once again at
different moments of either the day or the year. Further-
more, applications to artistic expression and multimedia art
installation could emerge.

6 RELATED WORKS

Our work moves from previous experiences such as those
cited in [6] and [7]. A number of projects have been carried
out about sonification, environmental sounds recording and
interaction with city soundscapes. In this sense, we have
been explicitly inspired by the “Sons de Barcelona” project
by the Grup de Recerca en Tecnologia Musical (MTG) of
Universitat Pompeu Fabra - Barcelona. Another source of
inspiration is the Freesound project, namely a collaborative
database of Creative Commons licensed sounds uploadable
and downloadable from the Web.

However, our approach is original as we propose an in-
tegrated interface to navigate continuously a map of envi-
ronmental sounds. Besides, we have explored the use of
a new XML-based standard format in order to provide an
overall description of city soundscapes. Thanks to the fea-
tures previously mentioned, IEEE 1599 in our opinion can
be efficiently adopted as the format underlying other similar

projects.

7 CONCLUSIONS

IEEE 1599 is an XML-based standard originally designed
for music pieces. As demonstrated by this paper, the flexi-
bility of the format allows to describe also not-strictly mu-
sical contents. We have applied such an encoding to the
environmental sounds of a pedestrian route, and developed
an application for the visualization and the interaction with
multimedia contents. Such an experimental work can be ex-
tended in order to provide a virtual visit of an environment
driven by a navigable soundtrack.
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ABSTRACT

The paper describes the development of the hyper-kalimba,
an augmented instrument created by the authors. This de-
velopment was divided into several phases and was based
on constant consideration of technology, performance and
compositional issues. The basic goal was to extend the sound
possibilities of the kalimba, without interfering with any
of the original features of the instrument or with the per-
former’s pre-existing skills. In this way performers were
able to use all the traditional techniques previously devel-
oped, while learning and exploring all the new possibilities
added to the instrument.

1 INTRODUCTION

The Hyper-kalimba is a Digital Musical Instrument created
by the authors with the support of the Input Devices and Mu-
sic Interaction Laboratory 1 at McGill University, directed
by Prof. Marcelo Wanderley. It consists of a kalimba (a tra-
ditional African thumb piano) augmented by the use of sen-
sors, which control various parameters of sound processing
performed by custom software developed in Max/MSP. All
the sounds produced are the result of real-time processing
of the kalimba sound. The hyper-kalimba has been used in
concerts since October 2007, both in improvisational con-
texts and in written pieces. There were several stages in the
development of the instrument. Throughout this develop-
ment, all the traditional kalimba techniques and sound pos-
sibilities were preserved. In each of the stages, some per-
formance capabilities were added to the instrument. The
mapping was then fixed for a certain amount of time, allow-
ing the performer to learn the new techniques, before more
possibilities were added.

1 www.idmil.org
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2 AUGMENTED INSTRUMENTS

Miranda and Wanderley indentify four main types of dig-
ital musical instruments, according to their resemblance to
acoustic instruments: augmented musical instruments, instru-

ment-like gestural controllers, instrument-inspired gestural

controllers, and alternate gestural controllers[8]. Augmented
musical instruments, also called hyper-instruments, are cre-
ated by adding sensors and new performance possibilities
to traditional, pre-existing musical instruments. Examples
of augmented instruments include the hypercello created by
Tod Machover [7] and, in the percussion area, a zarb with
sensors developed at IRCAM by percussionist Roland Auzet
[1].

Sensors added to an instrument can capture both ges-
tures that are made to produce the normal sounds of the
instrument (effective or instrumental gestures), as well as
accompanying gestures that performers often make while
playing[2]. New gestures can also be added to the perfor-
mance technique. If new gestures are required of the per-
former, it is very important that they do not interfere too
much with their existing playing technique. For example,
most standing instrumentalists, like violinists, are not used
to using foot pedals when playing, so this new gesture -
pressing the pedal - can interfere with the performance[6].
The choice of sensors and the way they can be used and
placed on the instrument require careful study. In devel-
oping the hyper-kalimba efforts were made to make use of
existing instrumental and accompanying gestures from tra-
ditional kalimba technique, and only a few simple new ges-
tures were used.

3 THE KALIMBA: CHARACTERISTICS AND
LIMITATIONS

The kalimba is a modern development of the Mbira (a tra-
ditional African thumb piano). The instrument used in this
project was the Hugh Tracey Alto Kalimba with pick-up.
This alto model, created by the English ethnomusicologist
Hugh Tracey, has 15 notes, corresponding to two octaves of
a western diatonic G major scale (figure 1). It also has a
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built-in piezo contact microphone inside the wood body of
the instrument.

The instrument is played with right and left thumbs press-
ing down pieces of metal of different lengths, which are
called tines[3]. Each tine is tuned to one of the 15 notes.
The right thumb usually plays the right side - tuned to thirds
from G to G - and the left thumb plays the left side - tuned
to thirds from A to F� (Figure 1). Two consecutive notes
can be played with the same thumb, producing the interval
of a third. Combining both thumbs can produce different
intervals, but they are always restricted by which notes each
thumb can reach. The range (2 octaves) and the tonality
(G Major) are other limitations of the instrument. One ef-
fect that is possible to control in some acoustic kalimbas is
tremolo. Some instruments have sound holes on the front
and/or back part (figure 2). Covering and uncovering these
holes (the front one with the thumb, the back ones with the
third fingers) produces a tremolo effect. This is not acous-
tically possible in the kalimba used for this project, since it
has a solid wooden body and no holes. The effect, however,
can be imitated electronically, as will be described later.

G
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D
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The Hugh Tracey Alto Kalimba

Figure 1. The Hugh Tracey Alto Kalimba.

Figure 2. Back view of a kalimba (with two holes); Back
view of the hyper-kalimba (with two pressure sensors).

4 EXTENDING THE INSTRUMENT

4.1 The first version (October 2007)

The first sensors added to the instrument were two pressure
sensors. They were added to the back of the instrument,

inspired by the holes that are present in some kalimbas. A
kalimba performer is accustomed to using the third fingers
of each hand to cover and uncover these holes. The use of
this instrumental gesture was thus very natural.

The pressure sensors detect the amount of pressure ap-
plied to them. The first two sliders in the Max patch shown
in figure 3 register this: the figure indicates that the right
sensor is not being pressed (value=0) and the left sensor is
being moderately pressed (value=300, on a scale from 0 to
1000). These two sensors were used to control pitch modu-
lation and ring modulation effects, which can also be used to
imitate a tremolo effect (as described later in section 4.2.1).

The piece A la luna, by Fernando Rocha and Ricardo
Cortés, was written and performed for the instrument at this
stage of development. A la luna is a structured improvi-
sation for hyper-kalimba and pre-recorded and processed
voice sounds. The structure of the piece is based on the
poem “Noturno Esquematico” by Frederico Garcia Lorca.
The words of the poem (recorded by Raquel Gorgojo) were
manipulated electronically by Ricardo Cortés to create a rich
sound texture, which is combined with the sounds produced
in real time by the hyper-kalimba. The result is a dense
atmosphere of sounds, in which the words of the poem are
masked, appearing clearly only in the last section, when they
are triggered by the notes F�, E, D and C, produced by the
kalimba. The pitch detection was made with the use of the
Max/MSP port of Miller Puckette’s fiddle∼ object.

Figure 3. Hyper-kalimba Max/MSP patch showing input
data from sensors.

4.2 The second version (February 2008)

The next sensor added to the instrument was a three-axis ac-
celerometer, which enabled the measurement of the tilt of
the instrument, both in the vertical and horizontal axis, as
illustrated in Figure 3. The dial in the center shows the in-
strument’s left-right tilt position (in this case the instrument
is slightly tilted to the left). The next slider shows the instru-
ment’s front-back rotation, from a downward position of the
front of the instrument to an upward one (in this example,
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the front of the instrument is in an upward position). Fi-
nally, the patch is able to recognize when the instrument is
upside-down (since the box is not marked, in this case the
instrument is not upside-down). Tilting the instrument is an
accompanying gesture that is very common among kalimba
players, and it does not affect the playing technique. More-
over, in many traditional African kalimbas, the front-back
rotation is, indeed, an instrumental gesture. Some instru-
ments present a metal ring placed around each tine (Figure
4). These ringers vibrate when the tine is vibrating, creating
a buzz effect. Rotating the instrument controls the amount
of the effect. By pointing the instrument down, the rings
move close to the end of the tines (where they are fixed to
the instrument). The vibration is then minimum, so it is the
buzz effect. When the instrument is level and the ringers are
in the middle part of the tines, the vibration is maximized
and so is the effect[4].

Figure 4. The Hugh Tracey Karimba with metal rings for
buzz effect.

4.2.1 Mapping of the instrument at this stage

Pressure Sensor 1 (pressureR): controls a pitch transposi-
tion effect. The harder it is pressed, the greater the effect.
Pressure Sensor 2 (pressureL): controls a ring modulation
effect. The pressure applied to the sensor determines the
frequency used to modulate the sound of the kalimba. When
the pressure is low (less than 300), this frequency is less than
8Hz, which creates an effect similar to a tremolo. Pressing
harder causes the frequency to become higher and the effect
is a change in the timbre of the instrument.
Position (horizontal axis): controls a multi-tap delay ef-
fect. When tilted to the left the delay is panned to the left;
when tilted to the right, it is panned to the right.
Position (vertical axis): Pointing the front of the instrument
down adds reverb; pointing it up adds very short delays, im-
itating the buzz effect found in traditional kalimbas. Main-
taining an extreme upward position can generate a feedback
effect.

The vertical axis also influences the pitch transposition
process. Pointing the front of instrument down causes the

transposition to go down. The further down the instrument
is pointed, the larger the downward range of the transposi-
tion will be. Thus, the lowest pitch can be obtained when
the instrument is pointing down and strong pressure is ap-
plied to the right pressure sensor. Conversely, the highest
notes on the instrument can be obtained by pointing it up
and strongly pressing the right sensor. When the instrument
is level, however, the maximum range of the transposition is
one half tone up. In fact, at this position any pressure (on
pressureR) larger than 600 produces a half tone transposi-
tion. This is a gesture that can be repeated with accuracy by
the performer as well as captured by the sensors. By using
it, the performer is able to play chromatic passages.

Upside down: When the instrument is upside down, the
loop being played (if there is one) is randomly altered in
speed and volume. After 45 seconds the loop goes to nor-
mal speed and fixed volume. If the instrument remains up-
side down, the loop starts to fade out. In addition to these
sensors, two Midi pedals were used in this mapping. The
information coming from these pedals is shown on the right
side of figure 3. Pedal 1 is an ON/OFF switch; and pedal 2
triggers one of 6 positions.

Pedal 1: When the pedal is pressed (ON), it freezes the
value of all the sensors, so the parameters for sound pro-
cessing remain fixed until the pedal is pressed again (OFF
position). The only exception is the right pressure sensor,
which is also fixed when the pedal is ON, but as soon as it
is pressed for more than 100 milliseconds, it starts to work
again, allowing for pitch transposition.

Pedal 2: controls the recording and playback of the audio
loops used in the performance. When the pedal is pressed
(status 1), the patch records the live sound until it is released
(status 2). When the pedal is pressed (status 3) and then
released (status 4) again, the loop is played in reverse at a
speed that makes the length of the loop the same as the time
interval between status 3 and 4. Status 5 (pressing the pedal)
starts a fade out, and status 6 (releasing) ends the loop. The
next time the pedal is pressed this cycle starts again.

The work Improvisation for Hyper-kalimba is a struc-
tured improvisation that explores all these possibilities. It
also highlights some traditional characteristics of the kalimba
and its repertoire: its melodic aspect and the use of ostinato,
here transformed by electronic treatments. The first phrase
of the piece, e.g., is played at a lower transposition (one oc-
tave down), and recorded. This recording is later looped as
the performer plays variations of the same phrase, untrans-
posed (i.e., one octave higher). The piece ends after the per-
former places the instrument upside-down in a stand. This
gesture, clearly a conclusive one, triggers an erratic effect
of altering the loop in volume and speed, followed by a 30
second fade-out.
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4.3 The current version (from July 2008)

In the current version, the pedals were replaced by two digi-
tal buttons, one placed on the left and one on the right side of
the instrument. The buttons have the same functions as the
pedals. With the use of buttons all the performer’s control
over the sound processing is made directly on the instru-
ment.

Some new features have been added to the instrument,
using combinations of gestures. Pressing the left button
(which corresponds to pedal 1) and the left pressure sensor
together adds an extra sound to the one played by the per-
former. If the instrument is tilted down the added sound is an
octave lower; if the instrument is level it is a fourth lower;
finally, if the instrument is tilted up, the added sound is a
fourth above. To stop this effect the performer has to repeat
the same original gesture. All and any of the three sounds
can be combined, creating the possibility of playing chords.
The current mapping also allows for starting the loops of
phrases at the same speed at which they were recorded; af-
ter recording the phrase, the performer should just press and
release the right button very quickly (less than 400ms be-
tween pressing and release). These new possibilities have
been used in several concerts, both in Brazil and Canada.

5 TECHNICAL DESCRIPTION

Since the kalimba model chosen for this project already con-
tains a piezo-electric contact microphone, it was only nec-
essary to add sensors - for measuring finger pressure and
tilt - and two buttons. An Arduino Mini microcontroller
board 2 was used for sensor data acquisition and data were
communicated to the computer over USB. Two Interlink
force-sensing resistors were used on the underside of the
kalimba to sense finger pressure; the sensors were covered
with a layer of closed-cell foam to give the performer some
kinesthetic feedback as pressure is applied. An STMicro
LIS3L02AS4 three-axis accelerometer was used to measure
movement and tilt.

The audio signal and sensor data from the hyper-kalimba
is sent to a laptop computer, where a custom-made Max/MSP
patch is used to map the control parameters to sound pro-
cessing. The mapping used in the instrument aims to pre-
serve the melodic characteristic of the instrument, but also
to create new sound possibilities.

6 DISCUSSION: TECHNOLOGY, COMPOSITION,
AND PERFORMANCE

The development of the hyper-kalimba was based on care-
ful consideration and balancing of technology, performance
and compositional concerns. An example of these interre-
lations is the evolution of the control over the transposition

2 www.arduino.cc

effect. In the first mapping of the instrument, the transpo-
sition was controlled only by the right pressure sensor and
was always upward. Strong pressure could create up to a
four-octave transposition, producing a very different timbre,
which was explored in A la luna. However, small transpo-
sitions, like a half tone, were difficult to achieve accurately.
With the introduction of the 3-axis accelerometer, the angle
of the instrument could then be mapped to control the range
of the modulation. This new mapping made it considerably
easier to play half tone transpositions and also allowed for
a downward transposition. These new features were used in
Improvisation for Hyper-kalimba.

In fact, as the instrument developed, new gestures were
explored and could potentially be mapped. Mapping choices
facilitated certain sounds or effects, and this had consequences
in the musical material. Conversely, when specific sounds
were sought in the improvisations or compositions, effec-
tive ways and gestures to create and control them had to
be found. The use of instrumental and accompanying ges-
tures that are characteristic to the instrument was prioritized,
since new gestures might interfere with pre-existing tech-
nique. The active participation of an accomplished kalimba
player was essential to understanding and utilizing the ges-
tures to be used. The new gestures that have been added
are very simple: pressing and releasing the two buttons.
Another important aspect was considered in the mapping
choices: gestures that could be controlled and captured ac-
curately were mapped to musical results that needed to be
more accurately controlled (e.g., control of a half tone pitch
modulation). On the other hand, gestures that could not be
controlled or captured very accurately were mapped to mu-
sical results that allowed some indeterminacy (e.g., amount
and speed of delay effect).

The realization of any piece of music, independent of
style, period or culture, depends not only on the possibil-
ity of producing sounds but also on the level of control over
these sounds [5]. The potential for incorporating both tradi-
tional techniques and new features with a considerable level
of control makes the hyper-kalimba very engaging for per-
formers, composers and audience. The instrument has al-
ready been used in several concerts, both in improvisational
contexts and in different written pieces.

7 CONCLUSION

The sensors and the patch provide the kalimba with new
performance and sound possibilities, such as pitch bend,
tremolo, extended range, and delay. All the sounds pro-
duced are the result of manipulation in real time of the kalimba
sound. This helps to preserve the melodic characteristic of
the instrument and its own characteristic voice. In addition,
the sensors added to the instrument do not interfere with the
traditional technique. Rather, they create new gestures that
complement this technique. All the new possibilities were
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implemented in different stages. While exploring a new vo-
cabulary of gestures, the performer was able to explore new
sound possibilities, and composers were able to know the
instrument better. The instrument was played and tested in
several concerts.

Currently, new features are being added to the instru-
ment. The main idea is to keep introducing new possibilities
without affecting the technique already developed. Differ-
ent mappings can be created and are welcome, but having
one fixed mapping allows the performer to develop a bet-
ter control of the instrument, being able to explore all its
possibilities and nuances, like a traditional acoustic instru-
ment. In fact, when one learns to play an instrument, he or
she always starts with the basic techniques before moving to
extended techniques. In this sense, the process of develop-
ing the hyper-kalimba, divided in stages, is closely related
to learning an acoustic instrument, and it takes advantage of
all the performer’s existing skills.
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Música Eletroacústica,” in Proceedings of the II ‘IHC -

Interação Humano-Computador’ Conference. Camp-
inas: Unicamp, 1998.

[6] M. Kimura, “Creative process and performance practice
of interactive computer music: a performer’s tale,” Or-

ganised Sound, vol. 8, no. 3, pp. 289–296, December
2003.

[7] T. Machover, “Hyperinstruments - A Progress Report
1987 - 1991,” Massachusetts Institut of Technology,
Tech. Rep., 1992.

[8] E. R. Miranda and M. M. Wanderley, New Digital In-

struments: Control and Interaction Beyond the Key-

board. Middleton, Wisconsin: A-R Publications, 2006.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 29



REAL-TIME DTW-BASED GESTURE RECOGNITION EXTERNAL OBJECT
FOR MAX/MSP AND PUREDATA

Frédéric Bettens
Faculty of Engineering (FPMs) - TCTS Lab

7000 Mons, BELGIUM
frederic.bettens@fpms.ac.be

Todor Todoroff
ARTeM

1030 Bruxelles, BELGIUM
Faculty of Engineering (FPMs) - TCTS Lab

7000 Mons, BELGIUM
todor.todoroff@skynet.be

ABSTRACT

This paper focuses on a real-time Max/MSP implementa-
tion of a gesture recognition tool based on Dynamic Time
Warping (DTW). We present an original ”multi-grid” DTW
algorithm, that does not require prior segmentation. The
num.dtw object will be downloadable on the numediart
website both for Max/MSP and for Pure Data. Though this
research was conducted in the framework described below,
with wearable sensors, we believe it could be useful in many
other contexts. We are for instance starting a new project
where we will evaluate our DTW object on video tracking
data as well as on a combination of video tracking and wear-
able sensors data.

1 INTRODUCTION

The ”Dancing Viola” project, described in more details in
[7], was led at the Faculté Polytechnique de Mons within
the numediartprogram and is linked to viola player Do-
minica Eyckmans. It covers some of the aspects of the long-
term project ”Extension du corps sonore” launched by
Musiques Nouvelles, a contemporary music ensemble in
Mons, that aims at giving intrumental music performers an
extended control over the sound of their instrument. The
intention is to extend the understanding of the sound body
from the instrument only to the combination of the instru-
ment and the whole body of the performer. Whereas usual
augmented instruments designs track the gestures used to
play the instrument to expand its possibilities, this specific
project focuses on using non-musical gestures to transform
the sound of the instrument. Our approach is dictated by
the nature of Dominica’s project: she is actually dancing
while playing the viola and we track her dancing move-
ments rather than her hands movements. But the recogni-
tion algorithm we present here is not limited in any way by
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this specific context, as we have successfully demonstrated
using a database of hands gestures measured with sensors
placed on the hands. Gesture recognition is a welcome ad-
dition to an interactive performance and can be used to trig-
ger events, to adapt the response of the virtual instruments
according to the detected gestures, or to move through the
various steps of a performance. As other modules like hit
detection, mapping, interpolation (also developed within the
”Dancing Viola” project and described in [8]) or sound syn-
thesis and transformations, must be running simultaneously
on the same computer, it is essential to minimize the com-
putational load. This Max/MSP object is being integrated in
the ARTeM software framework for the concerts with Do-
minica Eyckmans, as well as for other artistic works.

While using similar hardware (cf. 2.1), the atomic ges-
ture recognition algorithm developed by Benbasat and Par-
adiso [1] is not suitable in our project: as dance movements
are usually chained without pauses and cannot be decom-
posed in a concatenation of elementary movements along
one accelerometer axis only, we have to consider an algo-
rithm that can deal with unconstrained fluid motions, with-
out the knowledge of the start and end of a gesture.

As for Automatic Speech Recognition (ASR) applica-
tions, the most popular algorithms used for gesture recog-
nition are Dynamic Time Warping (DTW) [5, 4] and Hid-
den Markov Models (HMMs) [2]. In our framework, the
aim is to develop a user-dependent recognition system with
a small gesture vocabulary and a database of limited size.
As some gestures should be added, removed, enabled, or
disabled easily and quickly, without any training procedure,
we chose for the DTW algorithm, which we adapted to make
it usable in real-time without the need for segmentation.

This report is divided in following sections: after a brief
description of the system, we present the gesture recognition
module, by describing our ”multi-grid” DTW algorithm and
its real-time Max/MSP implementation, as well as some pre-
liminary results, and we conclude with future investigations.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 30



2 SYSTEM

2.1 Sensors

The sensor system allows for the data of two sensors (each
a combination of a 3-axes accelerometer and a 2-axes gyro-
scope), placed on both ankles of the performer, to be trans-
mitted every 8ms wirelessly over Wi-Fi. More details on the
sensors can be found in [7]. The placement on the ankles
presents a minimal hinderance even for movements on the
ground. Depending on the results of further experimentation
with the new software tools we will consider the need, the
type, and the placing of additional sensors on Dominica’s
body.

2.2 Software framework

The ARTeM software, developed inside the Max/MSP envi-
ronment to map sensor data to parameters of various sound
transformation algorithms, is organized around a modular
concept: the audio paths of the various virtual instruments
are connected through a matrix, with external inputs and
outputs of virtual instruments injected from the top and redi-
rected with selectable level, to the inputs of the virtual in-
struments and the external sound outputs.

Figure 1. A data recording: 3-axes accelerometer (black)
and 2-axes gyroscopic data (green) for left and right ankles.

The sensors data (Figure 1) are received as UDP packets
through the normal Wi-Fi interface. An external decodes
the custom protocol, scales the raw data and defines a name
space depending on configuration messages sent to its input
and outputs data as messages. All samples are then made
available through a send/receive scheme throughout all the
patches.

3 GESTURE RECOGNITION

3.1 DTW algorithm

The classical DTW algorithm uses Dynamic Programming
(DP) principles to determine the best nonlinear mapping

(Figure 2) between the temporal indices of the test sequence
(i = 1..I) and those of the reference sequence (j = 1..J),
assuming that both these sequences have been segmented.
We denote by d(i, j) the (non-negative) ”local distance” (or
dissimilarity measure) between the test frame Ti and the ref-
erence frame Rj (where a frame is composed of the data of
all sensors and axes at a given time), and by D(i, j) the ”ac-
cumulated distance” along the sub-path between the origin
and the current node (i, j). The algorithm aims at minimiz-
ing these accumulated distance values and/or at extracting
the associated best path (i.e., the sequence of nodes) in the
DTW grid (Figure 2). A classical way of computing the ac-
cumulated distance value D(i, j) along a sequence of nodes
(ik, jk) (k = 1..K) consists in weighting the local dis-
tance elements d(ik, jk) with transition costs that depend on
the predecessor (ik−1, jk−1), and summing up the weighted
values:

D(i, j) =
K∑

k=1

W (ik, jk; ik−1, jk−1) d(ik, jk) (1)

These transition costs raise the issue of normalization when
computing paths of different lengths (e.g. when a test ges-
ture is compared with several reference gestures of unequal
duration). Dividing the optimal distance by the ”path length”
(i.e. the sum of all weights along the path) leads to the math-
ematical expression of an average ”cost per node” and, using
the following symmetric transition cost type [6]:

Wk = (ik − ik−1) + (jk − jk−1) (2)

the normalization factor (I + J) is path-independent. The
question of the weight of the local distance corresponding
to the first node is solved by computing the transition cost
between a ”fictitious” original node (0, 0) and the first node.
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Figure 2. Mapping between two time series and DTW grid.
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3.1.1 DTW search constraints

• Monotonicity and strict endpoint constraint. In its
strictest form, any candidate path must not only be
monotonic, meaning that ik−1 ≤ ik and jk−1 ≤ jk,
but also begin at (1, 1) and end at (I, J) exactly.

• Global path constraints. Itakura [3] suggests the spec-
ification of the maximum allowable compression and
expansion factors (λmax ≥ 1 and λmin ≤ 1, with
e.g. λmin = 1/λmax ), whereby all paths must en-
tirely lie within a parallelogram (Figure 3a). Another
global constraint, proposed by Sakoe and Chiba [6],
requires that the paths lie within a simple strip around
a purely linear path: |jk − ik| ≤ R, where R is the
”window width” (Figure 3c).

Figure 3. Global constraints: (a) Itakura, (b) Itakura (re-
laxed), (c) Sakoe and Chiba

• Local path constraints. The expansion or compression
ratio between test and reference can also be limited
locally, in the neighbourhood of each node. These
local constraints are usually defined by listing the le-
gal transitions. Equations 3 and 4 show the local path
constraint implemented, where each node (ik, jk) can
be reached from three different sets of predecessors
(Figure 4):

D(ik, jk) = min( D1, D2, D3) (3)

with:

D1 = D(ik − 1, jk − 2) + 2d(ik, jk − 1) + d(ik, jk)
D2 = D(ik − 2, jk − 1) + 2d(ik − 1, jk) + d(ik, jk)
D3 = D(ik − 1, jk − 1) + 2d(ik, jk)

(4)

• Relaxed endpoint constraint. To address the issue of
locating accurately and in real-time the endpoints of
a test sequence, the constraints are relaxed by permit-
ting the path to start from one of the following nodes:
(1, 1) to (1+εi1 , 1), or (1, 1) to (1, 1+εj1), and to end
at one of the following nodes: (I − εi2 , J) to (I, J),
or (I, J − εj2) to (I, J) (Figure 3b). Consequently,
the different paths associated to each of the candidate

Figure 4. Local constraints

terminal nodes are compared on the basis of their nor-
malized accumulated distances, where the global nor-
malization factor (iK + jK) is determined by the final
coordinates only.

When only the starting point is approximately known,
lower and upper bounds of the other endpoint may
be found: e.g. Imin = J/2 and Imax = 2J , when
the expansion/compression ratio lies in the range be-
tween 1/2 and 2 (if we neglect εi1 and εj1 values). In
this context, since the ending point is a priori almost
unknown, we decide to remove the margin parame-
ters εi2 and εj2 , as well as to remove the global con-
straints that were linked to that ending point (i.e. two
straight lines in Figure 3b). Finally, the gesture is re-
stricted to end somewhere between the bounds Imin

and Imax along the i axis, and strictly at J along the j
axis (Figure 5). In other words, the warping consists
in aligning the whole reference sequence with a test
sequence (or subsequence) that may be up to twice as
long or twice as short.

Figure 5. Final global constraints (with R = ∞) and set of
admissible ending points

Figure 6 shows an example of local (left) and normalized
accumulated (right) distance matrices for similar (top) and
different (bottom) gestures, with following parameter val-
ues: εi1 = 8, εj1 = 0, λmin = 0.5, λmax = 2, and R = ∞.
Low distance values (depicted by blue pixels) are obtained
when comparing similar gestures. Conversely, high dissimi-
larities are observed when the tested gesture is very different
from the reference one, resulting in a worse matching score.
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Figure 6. Local (left) and Normalized Accumulated (right)
Distance Matrices for similar (top) and different (bottom)
gestures

3.1.2 ”Multi-grid” DTW algorithm and real-time Max/MSP

implementation

Only few implementations of DTW do not require prior seg-
mentation. Oka [5] presents a continuous DP algorithm,
which is an efficient real-time method as the different paths
originating from all possible starting points are simultane-
ously competing in the same DTW grid (one per reference
gesture). However, he does not explain how to include global
constraints. On the other hand, Ko [4] describes a method
including these constraints, but at the cost of a higher com-
putational load, as whole new paths are calculated from each
new starting point (i.e. at every time instant) in the accumu-
lated distance matrix (for each reference gesture).

Our ”multi-grid” DTW algorithm provides a compromise
solution. The method uses simultaneously a set of shifted
DTW grids, each one hypothesizing another starting point
(or set of consecutive starting point candidates when
εi1 �= 0) for the test sequence. The time shift between two
successive DTW grids will generally be equal to
hop size = 1 + εi1. The number of simultaneously active
grids can be limited to the following quantity:
Smax = ceil(Imax/hop size). As J may vary from one
gesture to the other, Imax and Smax are also depending on
the specific reference gesture. At every time instant, one
best score (possibly ”infinite” at the beginning) is computed
in each shifted grid, and the minimum value of all these nor-
malized accumulated distances is assigned to the given ref-
erence gesture. Despite the computation of several shifted
grids, a low complexity can be achieved via an iterative im-
plementation (like in [4]), where only one partial column
D(i, j) is evaluated in each grid at a given time i (for each
reference gesture), instead of all (partial) preceding columns
from the starting point.

Figure 7 illustrates normalized accumulated distance ma-
trices for successive shifted DTW grids when test and refer-
ence gestures are similar. A good matching score is obtained

for the low shift values, while it becomes worse when the
delay increases.

Figure 7. Normalized Accumulated Distance Matrices for
successive shifted DTW grids (similar gestures)

Figure 8 also illustrates normalized accumulated distance
matrices for successive shifted DTW grids, but when test
and reference gestures are different. Again, the matching
scores obtained in this latter figure are worse than the scores
obtained in the former one.

Figure 8. Normalized Accumulated Distance Matrices for
successive shifted DTW grids (different gestures)

Finally, the overall gesture recognition module has been
implemented as a Max/MSP external (see Figure 9), which
includes the ”multi-grid” DTW algorithm, as well as the
pre- and post-processing stages described hereafter. It also
evaluates and displays the time compression/expansion ra-
tio, providing feedback to the artist (e.g. during rehearsals).

3.2 Pre-processing and distance metrics

The pre-processing of the sensors data and the calculation
of the local distances are not part of the DTW algorithm
itself, but their computation is a preliminary stage, briefly
explained in this subsection.

The current version of our system implements a down-
sampling stage (with a factor 4), preceded by a lowpass fil-
tering step, and uses the L1-distance, whose computation is
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Figure 9. num.dtw Max/MSP external

very efficient as its expression is made of a (weighted) sum
of the absolute value of differences. During this calculation,
the sensors data are weighted, as some of them are varying
within completely different ranges of values and expressed
in different units (e.g. accelerometer data ±2g and angular
velocity ±500◦/s). The easiest way consists in normalizing
the samples axis per axis (e.g. dividing them by 2 and 500,
respectively).

3.3 Post-processing

In the current Max/MSP implementation, the post-processing
consists in selecting, at each moment, the gesture with the
lowest normalized accumulated distance and validating its
recognition if this value is below a user-defined global thresh-
old.

3.4 Preliminary results

We first tested our ”multi-grid” DTW algorithm offline, on a
small database composed of recordings of 44 isolated dance
gestures (with a sampling period of 8ms). Each individ-
ual unsegmented test gesture was compared with each seg-
mented reference gesture.

As a result of all these pair-wise comparisons, we ob-
tained a ”pseudo confusion matrix” (Figure 10), the small
amount of recorded data preventing us from deriving actual
statistics. However, one can see that the main diagonal is
in blue colour, because each gesture is very similar to itself,
and the blocks of blue pixels are explained by the presence

Figure 10. Gesture ”pseudo confusion matrix”
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of several occurences of the same gesture in our database.
This representation allowed us to examine the ambiguity
between some different pre-defined gestures and to get in-
formation about an appropriate fixed global threshold or a
series of gesture-based threshold values.

Our DTW algorithm was also used in a second applica-
tion. The sensors were attached to the wrists of the second
author and a dozen of left and/or right arm movements were
successfully recognized in real-time. The post-processing
was slightly modified into an N-best strategy (N = 3), that
is, displaying continuously the three best matched gestures.
However, the correct gesture was always classified in first
position, except when the execution was too fast (e.g. more
than two times faster, while a factor 2 was the maximum
fixed by local and global constraints).

4 CONCLUSION AND FUTURE WORK

A real-time DTW-based gesture recognition tool has been
developed, with a great flexibility provided by its set of pa-
rameters (minimum and maximum expansion and compres-
sion ratios, ”window width”, sensor axes weights, user-
defined global threshold, etc.) and it has been successfully
tested on two different small databases. We are finalizing
the port of the external to Pd.

Algorithmic improvements include the addition of other
local constraints types (only equation 4 is implemented now)
and the ability to activate and/or deactivate specific refer-
ence gestures on the fly.

Some investigations are worth trying as far as the pre-
processing is concerned: e.g. removing the gravity com-
ponent to derive tilt-invariant features, testing different lev-
els of downsampling, applying nonlinear quantification, etc.
Some work could also be accomplished to improve post-
processing: the single global distance threshold might be re-
placed by gesture-dependent threshold values and the mea-
sured time expansion/compression ratio could be taken into
account.
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University of Music and Performing Arts Graz

Institute of Electronic Music and Acoustics
{eckel, pirro, sharma}@iem.at

ABSTRACT

Motion-Enabled Live Electronics (MELE) is a special
approach towards live electronic music aiming at increas-
ing the degree of the performers’ embodiment in shaping
the sound processing. This approach is characterized by the
combination of a high-resolution and fully-3D motion track-
ing system with a tracking data processing system tailored
towards articulating the relationship between bodily move-
ment and sound processing. The artistic motivations driving
the MELE approach are described, an overview of related
work is given and the technical setup used in a workshop
exploring the approach is introduced. Brief descriptions of
the pieces realized in the workshop and performed in the fi-
nal concert inform the presentation of the conclusions drawn
from the workshop.

1 INTRODUCTION

This paper describes a workshop exploring a particular ap-
proach towards live electronic music aiming at increasing
the degree of the performers’ embodiment in directing or
shaping the sound processing. The workshop took place
in the context of the impuls 2009 1 international ensem-
ble and composers academy for contemporary music held
biannually at the University of Music and Performing Arts
Graz (KUG). Six composers and six performers from Eu-
rope, North America and Japan participated in the one-week
workshop entitled Motion-Enabled Live Electronics held in
the CUBE performance space [1] at the Institute of Elec-
tronic Music and Acoustics (IEM). The six pieces prepared
for – and further developed during – the workshop were pre-
sented in the CUBE in a concert entitled Enacted Electron-

ics. This concert took place on February 22nd 2009 and was
transmitted via multi-channel Internet streaming to two re-
mote locations in the context of the CO-ME-DI-A 2 project,
one of which in Graz (MKL at Kunsthaus) and the other one

1 c.f. http://www.impuls.cc/, accessed 2009/04/12
2 c.f. http://www.comedia.eu.org, accessed 2009/04/08
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Copyrights remain with the authors

in Paris (IRCAM). In this paper we explain what motivates
our approach, we describe the system developed to realize it
and we report about the experiences made in the workshop
and the concert.

2 MOTIVATIONS

Motion-Enabled Live Electronics (MELE) uses state-of-the-
art motion tracking 3 of the performers’ instruments or body
parts (e.g. head, arm, or wrist) to inform the sound process-
ing and projection. There are several motivations for the
MELE approach.

In a typical live electronics concert, where the sound of
the instruments is picked up with microphones to be pro-
cessed and then projected via loudspeakers, the performers
on stage may either resort to simple interfaces such as ped-
als and switches to control the processing or the live elec-
tronics are controlled by an additional operator off-stage.
MELE was developed with the aim of providing perform-
ers with autonomous and intuitive control of the live elec-
tronics. MELE insures intuitiveness by unobtrusive bodily
control (no need for physical interfaces other than tracking
markers) and autonomy through independence from addi-
tional operators. These will still be needed to ensure optimal
sound pickup and projection, but they will be less concerned
with actually performing the live electronics. Performing
should be in the hands of the performers as much as possi-
ble, for allowing them to fully identify with their very role,
especially with respect to the live electronics.

In playing a musical instrument, the performer’s body
typically extends into this instrument – the instrument be-
coming part of the performer’s body schema (in the sense
defined in [2]). In order for the performers’ bodies to extend
into the sound processing and projection as much as they
usually do into their instruments, a more bodily access to
live electronics is in need. This is difficult to achieve with
standard controllers because of the low dimensionality and
low spatial or temporal resolution of their control spaces.
In using refined motion-based interfaces for live electronics,
sound processing and projection may rather be enacted than
operated by the musicians, which is one of the goals of our
approach.

3 c.f. http://www.vicon.com, accessed 2009/04/08
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From a composer’s point of view, being able to make
use of the location and orientation of the performers’ instru-
ments or body parts to inform the sound processing opens up
completely new perspectives of conceiving the stage space
as an interface. For instance, this space may be structured
as a parameter space in which the performers navigate by
moving about the stage. Or the relative distances and ori-
entations of the musicians may inform the live electronics
such as to include socio-spatial and psycho-spatial aspects
of performance. One may think of the performers to inhabit

a composed virtual stage space. Of course, all these aspects
assume employing mobile instruments that may be carried
around by the performers while playing.

Through detailed motion tracking of the musicians or
their instruments, accompanist or ancillary gestures 4 may
be harnessed (”instrumentalized”) to shape the transforma-
tion and spatialisation of the instrumental sound. Besides
their effect as ”expressive movements”, these gestures also
color the sound of the instrument as a consequence of the
movement, which results into a varying acoustic excitation
of the performance space [4]. Therefore, when used for
controlling the spatialisation of the processed instrumental
sound, the audible effect of these gestures will be recog-
nized as highly familiar by the audience, heightening their
empathy with the performer and enhancing their immersion
in the performance.

3 RELATED WORK

As described in the section 4, the MELE approach and setup
are rather particular. Therefore there is not so much other
work directly related to MELE. Of course, various kinds of
motion tracking have been used to control sound processing
and synthesis (e.g. with the EyesWeb system [5] or with
VNS 5 used to create what Winkler calls ”motion-sensing
music” [6]), but very rarely high-definition systems such as
the one employed in MELE have been used in stage perfor-
mances. This is due to the low availability of such technol-
ogy and the complexity of using it in live performance. It
was one of the objectives of the MELE workshop, to show
that such systems can be used successfully in a concert situ-
ation. Nevertheless, MELE shares many aspects with work
in the field of gestural control of sound synthesis, processing
and spatialisation, which has received wide attention in the
field of sound and music computing during the last decade
(e.g.[7] and [8]). MELE is closely related to tracking-based
approaches such as TrakHue [9], where the live electron-
ics are controlled via body motion. Recently a special fo-
cus on questions concerning gesture controlled spatialisa-
tion can be noticed (e.g. the work of Marshall et al. [10] and

4 ”those gestures that are part of a performance, but that are not produced
for the purpose of sound generation” [3])

5 c.f. http://homepage.mac.com/davidrokeby/vns.html, accessed
2009/04/10

Figure 1. A 4-marker tracking target mounted on a clarinet
using a Marschgabel fitting (and microphone attached)

Schacher [11]). Although MELE has also been used to con-
trol sound spatialisation, its approach is more holistic in the
sense that sound processing and spatialisation are consid-
ered in common – as being inseparable aspects of live elec-

tronics. One of the objectives of MELE is to offers a frame-
work to treat both aspects in concert. In most of the work
related to MELE, the sound is produced or transformed by
the motion of the audience (such as in installation situations,
e.g. using a system like VNS) or by dance performers (e.g.
[6]). The project that had the biggest influence on MELE
is the Embodied Generative Music (EGM) project 6 , which
also supplied much of the technological infrastructure de-
scribed next.

4 THE MELE SETUP

This section describes the features of the setup that has been
proposed by the workshop organizers to the participants.
These features have been communicated to the composers
before they developed their pieces for the MELE setup. The
preparation of these pieces has been followed closely by the
workshop organizers prior to the workshop, so composers
arrived at the workshop with almost finished scores or at
least clearly defined concepts.

The setup was determined by the studio and performance
space in which the workshop and the concert took place.
This space is equipped with a 24-channel hemispherical loud-
speaker array optimized for Ambisonics spatialisation and a
video motion tracking system 7 . The setup constrained the
stage space to a circular region in the center with a diame-
ter of about 6 meters. The audience was seated in a circle
around the stage. The stage space was fully covered by the
tracking system, allowing for relatively large movements of
up to three musicians to be tracked. As the loudspeakers

6 c.f. http://embodiedgenerativemusic.org, accessed 2009/04/10
7 composed of 15 M2 cameras and a V624 data station by Vicon
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Figure 2. The MELE setup, signal and data flow

were located behind the audience, a very intimate situation
arose for performance and sound spatialisation – the musi-
cians and the audience actually sharing the same acoustic
and visually unoriented space.

The musicians were equipped with wireless microphones
and tracking markers, either mounted on their instruments
(figure 1) or worn on their arms (figure 4) or heads (figure
6). The mounting solutions were developed with the musi-
cians prior to the workshop and were also determined by the
way the musicians’ motions were used in the pieces. An im-
portant requirement for the solutions adopted was that they
should not interfere in any way with the musicians’ normal
playing and moving about the stage.

The computer infrastructure of the MELE setup consists
of 3 machines, one dedicated to the tracking, a second one to
tracking data and audio signal processing and a third one to
the spatialisation (figure 2). The tracking system was con-
trolled with the iQ2.5 software by Vicon. The tracking data
was translated to OSC with the utility QVicon2OSC 8 and
the Ambisonics spatialisation was realized with the Pd ap-
plication CUBEmixer [12]. The tracking data was processed
using a specialized toolkit implemented in SuperCollider
(the EGM toolkit) and developed in the context of the EGM
project. Sound processing was realized with Max/MSP or

8 c.f. http://sonenvir.at/downloads/qvicon2osc, accessed 2009/04/10

Figure 3. Video still of Annegret Mayer-Lindenberg (vi-
ola), Jason Alder (clarinet), and Dana Jessen (bassoon) play-
ing Jesse Broekman’s piece Langs Rafels

SuperCollider – depending in the composers preferences.
All communication between the mentioned programs was
realized via OSC.

The particularity of the MELE setup can be seen in the
combination of a high-resolution fully-3D tracking system
with a tracking data processing system tailored towards ap-
plications articulating the relationship between bodily move-
ment and sound processing – the EGM toolkit. The tracking
system ensures a very high spatial (below 1 mm) and tem-
poral (120 Hz) resolution, a low overall latency (about 20
ms from movement to sound), and a large tracking volume
(more than 60 m3). The EGM toolkit provides modules for
data conditioning (e.g. geometrical transformations, scal-
ing, filtering, clipping), feature extraction (e.g. speed, ac-
celeration, periodicity analysis, relative distances and orien-
tations), and physical modeling for the specification of the
dynamics of virtual instruments (e.g. mass spring systems,
potential energy surfaces). These physical models are typ-
ically used for generating synthesis and processing control
parameters rather than sound.

5 WORKSHOP

Every composer used the MELE tool in his or her own way
and developed an individual approach and concept of com-
posing within the setup. In every piece a different idea
for linking bodily movement and sound was investigated.
In some cases a collective instrument was built that estab-
lished a performative relationship between musicians and
composer while in other pieces a “scene” was set up where
spatial relations between the musicians were established.
The performers shaped and spatialised their own or each
others’ processed sounds. Thus the idea of influencing sound
through individual physicality was in some compositions
expanded to a collective behavior. In some pieces these
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choices focused on the physical and musical interplay be-
tween the musicians. In other compositions an environment
was set up in which the performer interacted with sound
sources or sound objects.

Different choices were taken and mixed in the use of im-
provisation as a compositional tool. Some compositions
fixed the performers movements in the score while others
left the kind and range of activity open for improvisation
with space or sounds. Also different approaches using and
integrating the proposed tool itself in the composition could
be noticed. While some composers created a scored piece
that was then projected into space and complemented with
processed sounds, others started from the interaction and
sound processing possibilities offered by the setup to de-
velop the whole piece. Yet another option that was explored
was to present an electroacoustic composition that was then
interpreted with the help of the MELE tool by a musician
controlling the spatialisation or the dynamics of the elec-
tronic part.

In his trio Langs Rafels for clarinet, alto, and bassoon,
Jesse Broekman explores hidden layers of instrumental tim-
bre revealed by his sound treatment. The musicians navi-
gate each others’ timbre spaces by moving about the stage,
their spatial orientation shaping the sound spatialisation. In
Langs Rafels, the clarinet, the bassoon and the right arm of
the alto player are tracked (figure 3).

In Carlo Ciceri’s duo Violata for alto and flute, the spa-
tialisation of the processed sound is related to the positions
of the musicians on stage as they revolve around the cen-
trally placed music stands. The movements of the musi-
cians’ right arms induce subtle and organic micro-variations
in the spatialisation keeping the projected sound alive (fig-
ure 4).

For his piece Tball for trumpet, David Pirrò created a vir-
tual object with which the performer plays by participating
in a real-time physical simulation. In listening to the sound
resulting from the interaction and watching the behavior of
the instrumentalist, the object appears in our imagination. In
Tball, the trumpet’s bell is tracked (figure 5).

For his violin and bass clarinet improvisation duo A Short

Walk Through Time, Stephan Prins built a granulation-based
virtual instrument which is played collectively by the per-
formers’ head positions and orientations. The composer is
performing as well by controlling certain aspects of the in-
strument with a fader box. In A Short Walk Through Time,
the two musicians wear tracked caps (figure 6).

In Gerriet K. Sharma’s piece cornerghostaxis #1 the bas-
soonist is accompanied by a fixed four-channel electroa-
coustic composition. The spatial behavior of the performer
very subtly controls the spatialisation of the piece, thus al-
lowing for an intimate relationship between the unprocessed
instrument and the electronic sounds. In cornerghostaxis #1,
a tracking target is attached to the bassoon (figure 7).

Tuning into paranoia by Shiori Usui is a piece for a trum-

Figure 4. Video still of Annegret Mayer-Lindenberg (viola)
and Marie-Noëlle Choquette (flute) playing Carlo Ciceri’s
piece Violata

Figure 5. Video still of Paul Hübner playing David Pirrò’s
piece TBall

Figure 6. Video still of Marieke Berendsen (violin) and Ja-
son Alder (bass clarinet) playing Stefan Prins’ piece A Short

Walk Through Time
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Figure 7. Video still of Dana Jessen (bassoon) playing Ger-
riet K. Sharma’s piece cornerghostaxis #1

pet and a bass clarinet player engaging in a dramatic situ-
ation on stage. The expression of their musically enacted
state of mind is enhanced by the live electronics processing
and its control through their socio-spatial relationship. In
Tuning into paranoia the second bell of the trumpet and the
head of the bass clarinet player are tracked (figure 8).

6 CONCLUSIONS

The role of the performers was central to the whole work-
shop. They confirmed that they could gain a new and dif-
ferent access to the issues concerning performance with live
electronics. As the control of the electronics was “attached”
to their bodies and their movement, the effect on the re-
sulting sounds was more direct, without mediation through
other external devices that they would have to learn to use
or play. Because of the unobtrusiveness of the tracking they
could move relatively freely in the space and in some cases
forget the markers they were wearing or that were attached
to their instruments. These preconditions assured that they
could get more conscious about the changes they could pro-
voke in the sound and in the spatialisation and get a more
precise control of these. In a conclusive meeting after the
final concert, having then a clearer overview of the possi-
bilities of MELE, some of them felt that in some pieces not
all the potential implicit in this approach has been explored
by the composers and that they would like to explore live
electronics much further in such a setup. In other cases the
musicians – especially those involved in the pieces that used
physical models to drive sound synthesis and projection –
underlined that they felt having achieved a clearer under-
standing of the dynamics of the electronics and how they
could influence it. In fact, during the rehearsals of these
pieces the musicians surprisingly asked for a more com-
plex thus a more “realistic” interaction with the programmed
physical model, that was in the beginning kept simple, in or-

Figure 8. Video still of Jason Alder (bass clarinet) and Paul
Hübner (trumpet) playing Shiori Usui’s piece Tuning into

paranoia

der to achieve a finer control on the sound.
The fact that a large volume was reliably tracked gave the

performers the possibility to move relatively unconstrained
in the space. For the audience this created the impression
that the musicians were playing in a “scene”, an environ-
ment in which different things happen, controlling diverse
aspects of the live electronics. This situation is opposed to
similar contexts in which gestures or smaller movements are
used to drive the live electronics. If a limited range of ac-
tion is used by the performers, the impression is created that
they are playing an additional instrument, highlighting their
interaction with this “device”.

As a consequence, the musicians felt themselves and their
actions on stage very much in the focus of the audience’s at-
tention, which resulted in a different awareness of their per-
formance. After the final concert, besides underlining that
they surely will integrate these experiences in future perfor-
mances, the performers formulated the need for a choreo-
graphic support, especially concerning the “mise en scene”
aspects. But also the composers had to deal with issues con-
cerning more explicitly the performance situation, which
demanded to be composed or choreographed besides the
notes that have to be played by the musicians.

A general issue that emerged during the MELE workshop
concerned how composers and performers work together on
a piece. In the end it became clear to all of the participants,
that in the particular situation of this workshop, where the
performers were deeply linked also with the electronics part
of the pieces and thus to compositional choices and ideas, a
collaborative way of working was needed involving equally
both musicians and composers. This resulted in most of the
cases in a process in which the performers took actively part
in the composition by taking decisions and developing ideas.
The composers had to relate to aspects of the performance
from a compositional point of view, guiding and supporting
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the musicians and taking into account their needs and con-
straints. This way of working together that established itself
almost naturally was felt as very inspiring and rewarding by
all the participants.

The MELE workshop was an intensive period of experi-
mentation where many new but also already developed ideas
were tested and put into work. Another important result is
that both composers and performers could gain different in-
sights in their work and especially in the relation between
each other. These aspects are not specific to the particu-
lar context in which they were worked out – the CUBE or
MELE – but refer to general issues concerning performance
aspects thus applying to very different contexts.

As we have described in section 5 of this paper, the pieces
realized during the workshop were very different from each
other, adopting different strategies for the use of the track-
ing data and ways to link bodily movement to sound pro-
duction and spatialisation. The spectrum of the solutions
ranged from “classical” mappings to new approaches that
used physical models as an intermediary level in the inter-
action of the musicians with the dynamics of the sound pro-
duction and spatialisation. Particularly these last approaches
were very inspiring especially for the performers as they
could relate easily to such systems, gaining a very precise
and intimate control of the electronics in those pieces.

Given the success of the workshop and the great interest
of composers and instrumentalists in our approach, the next
MELE workshop will be offered in the context of impuls

2011 at KUG in Graz. Interested instrumentalists and com-
posers should contact the first author of this paper in time,
as only a few participants can be accepted.
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ABSTRACT

The Voice Integration/Segregation Algorithm (VISA) 

proposed by Karydis et al. [7] splits musical scores

(symbolic musical data) into different voices, based on a 

perceptual view of musical voice that corresponds to the 

notion of auditory stream. A single ‘voice’ may consist of 

more than one synchronous notes that are perceived as 

belonging to the same auditory stream. The algorithm was

initially tested against a handful of musical works that were 

carefully selected so as to contain a steady number of 

streams (contrapuntal voices or melody with 

accompaniment). The initial algorithm was successful on 

this small dataset, but was proven to run into serious 

problems in cases were the number of streams/voices 

changed during the course of a musical work. A new 

version of the algorithm has been developed that attempts to 

solve this problem; the new version, additionally, includes 

an improved mechanism for context-dependent breaking of 

chords and for keeping streams homogeneous. The new 

algorithm performs equally well on the old dataset, but 

gives much better results on the new larger and more 

diverse dataset.

1. INTRODUCTION

It appears that the term ‘voice’ has different meanings for 

different research fields (traditional musicology, music 

cognition and computational musicology) - a detailed 

discussion is presented in [2]. A perceptual view of voice 

adopted in previous voice separation modelling attempts [7, 

13], allows for multi-tone simultaneities in a single ‘voice’ 

– this is the most significant difference of such model(s)

with other existing voice separation models [4, 9, 10, 11, 

12, 14]. 

Standard understanding of the term voice refers to a 

monophonic sequence of successive non-overlapping 

musical tones; a single voice is thought not to contain multi-

tone sonorities. However, if ‘voice’ is seen in the light of 

auditory streaming, then, it is clear that the standard

meaning is not sufficient. It is possible that a single 

monophonic sequence may be perceived as more than one 

voice/stream (e.g., pseudopolyphony or implied polyphony) 

or that a passage containing concurrent notes may be 

perceived as a single perceptual entity.

In Figure 1, all existing algorithms that are based on 

purely monophonic definitions of voice (except Kilian and 

Hoos’s [8] algorithm that allows fewer voices if forced by 

the user), would detect five voices that clearly are not 

independent voices. The VISA algorithm [7] and the new 

version presented in this paper detect two voices/streams 

that correspond to melody and accompaniment.

Figure 1 How many voices in this excerpt from Chopin’s 

Mazurka Op.6, No.2?

It is suggested that a general musical voice/stream 

segregation algorithm should be able to cope with any kind 

of music, not just musical textures that are constructed by 

the use of a steady number of monophonic voices (e.g. 

fugues, chorales, string quartets, etc.). Such an algorithm, 

among other things, is very useful for developing MIR 

systems that enable pattern recognition and extraction 

within musically pertinent ‘voices’ – for instance, there is 

no reason to ‘look’ for melodic patterns in homophonic 

accompanimental parts of songs.

In this paper, initially, a number of problems related to 

voice/stream separation not addressed by the model 

proposed in [7] are presented. A brief description of the 

first prototype version of the Voice Integration/ 

Segregation Algorithm (VISA) follows, and, then, a 

number of improvements to the algorithm are given. After 

an evaluation of the new prototype on a more extended 
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and diverse groundtruth dataset, the paper is concluded by 

some future suggestions for further improvements.

2. VOICE SEPARATION MODELS

Voice separation models based on a monophonic definition 

of voice (REFERENCES) attempt to determine a minimal 

number of lines/voices such that each line consists of 

successions of tones that are maximally proximal in the 

temporal and pitch dimensions. Such models perform well 

on music that is composed of a steady number of 

voices/lines, but fail to give musicologically or perceptually 

relevant results in most other cases. The horizontal 

integration of notes relies primarily on two fundamental 

auditory streaming principles: Temporal Continuity and 

Pitch Proximity [6]. 

Adopting a perceptual view of voice, which is very close 

to the notion of auditory stream, two recent studies [7, 12] 

allow multi-tone simultaneities in a single ‘voice’. In 

addition to the two previously mentioned perceptual 

principles these models enable vertical integration based on 

the Synchrony Note Principle [2], whereby ‘notes with 

synchronous onsets and same inter-onset intervals IOIs 

(durations) tend to be merged into a single sonority.’

VISA [7] starts by identifying synchronous notes that 

tend to be merged into single sonorities and, then, uses the 

horizontal streaming principles to break them down into 

separate streams (most algorithms ignore the vertical 

component). This is an optimisation process wherein 

various perceptual factors compete for the production of a 

‘simple’ interpretation of the music in terms of a minimal 

number of streams. If the reader is not acquainted with 

VISA, we suggest that section 3.1 be read before the next 

section (2.1). 

The algorithm presented herein has been developed as a 

means to explore more systematically the ideas and 

principles of musical auditory streaming in symbolic 

musical data; it is an exploratory prototype that requires 

further development. The proposed prototype is not directly 

comparable to other voice separation algorithms as its 

underlying definition of ‘voice’ is different and has a 

different aim. In this paper we will compare our new 

version of VISA with the earlier version [7].

2.1. Problems of VISA and improvements 

VISA was initially tested on ten musical examples [7] that 

were carefully selected so as to contain a steady number of 

streams (i.e. musical works comprising of contrapuntal 

melodic lines, or of melody and homorhythmic 

accompaniment). The algorithm performed well on this 

limited dataset. However, we discovered that the algorithm 

ran into serious problems when tested on music that 

contained non-homorhythmic homophonic 

accompanimental textures or diverse musical textures 

(homophonic and polyphonic together). 

The main problem of this early version of the algorithm 

is that, when a new voice/stream appears, it is available for 

continuation throughout the rest of the piece. This is no 

serious problem in contrapuntal polyphonic works where 

the number of voices remains steady throughout a musical 

work. However, in homophony we usually have a single 

stream, i.e. one harmonic homorhythmic stream, or two 

streams, i.e. one melodic voice plus rhythmically 

independent accompaniment. Occasionally, additional 

rhythmically independent lines may appear locally but these 

usually disappear after their emergence rather than remain 

active throughout the rest of the piece. 

When the early version of VISA breaks a homophonic 

piece into three (or more) streams locally, it tries to find the 

best continuation for these three streams throughout the rest 

of the piece; occasionally the third stream may erroneously 

be selected to continue stream 1 or 2, or all three streams 

may continue in parallel. For instance, in Figure 2 (measure 

11) we have three streams - the algorithm considers the 

upper voice as stream 3 since it has already allocated 

streams 1 and 2 to the first notes in the measure – the 

mistake is then propagated to the rest of the score as the 

next top notes are closer to stream 3 (actually, stream 2 is 

abandoned and stream 3 and 1 remain active in reverse 

order, i.e. stream 3 above stream 1). In Figure 3 the 

algorithm erroneously locates three streams in measure 29 

(as the bass note overlaps with the following notes of the 

chord they cannot all be placed in one stream – see 

discussion in Section 4), and from there on it continues 

‘giving’ notes to all three streams rather than returning to 

two streams (melody and accompaniment). Such a relatively 

simple mistake may decrease accuracy dramatically as a 

local increase in streams may be erroneously be propagated 

throughout the rest of the score.

Figure 2 Excerpt from Beethoven’s Sonata Op.2, No.1, 

Allegro Con Brio.

Figure 3 Excerpt from Chopin’s Waltz Op. 64, No.1 

A simple solution has been introduced to address this 

problem. The solution is based on the observation that in 

homophony, music is perceived as a single stream that may 

be ‘fattened’ or ‘thinned’ by adding or subtracting extra 

streams, whereas in polyphonic music, streams have an 
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independent life and are equally important. Following this, 

when the texture is locally homophonic (i.e. many notes 

start and end together), the algorithm is forced to switch 

back to streams 1 and 2 after having identified three (or 

more) streams. This simple modification increased accuracy 

significantly as seen in Table 1.

A second important improvement involves the breaking 

of chords consisting of equal duration notes. In the early 

version of VISA this was partially incorporated in the 

program in association to the Top Voice Rule, i.e., the top 

voice should be minimally fragmented. This is handled by 

adding a penalty to the cost of a voice continuation that 

does not fulfil this rule. To find the continuation with the

minimal cost, a chord may be split so that one note can be 

assigned to the top voice. In our new proposal, a chord 

consisting of equal duration notes is split into sub-chords 

based on the context of existing or forthcoming independent 

streams. That is, if in the vicinity of the current chord there 

are more voices, the chord may be split so as to match the 

adjacent voice structure. The Top Voice Rule, thus, 

becomes a special case of this general vertical cluster 

splitting process. For instance, in Figure 4 we perceive a 

melodic line that lies within a static harmonic stream; the 

chords marked by an asterisk consist of equal duration notes 

so initially they are merged into a single vertical cluster by 

VISA – the proposed function that breaks chords (vertical 

clusters) ‘pulls out’ the second note of these chords and 

assigns it to the independent melodic voice. 

Figure 4 Opening of Chopin’s Mazurka Op. 6, No.2.

Further smaller modifications that improve the 

algorithm’s performance include the following: Firstly, the 

pitch distance between notes/chords takes into account not 

only the pitch of the current notes and the last notes of 

preceding voices, but also the second-to-last notes of 

preceding voices. In case the last pitches of two voices 

coincide, the algorithm could not decide which current pitch 

should be assigned to which of the two unison pitches; 

taking into account the second-to last pitches resolves such 

ambiguous cases. Secondly, the distance metric takes into 

account not only pitch and temporal distance, but 

additionally a new parameter that favours homogeneity of 

streams in terms on number of co-sounding tones. In other 

words, linking a chord cluster with many tones to a single 

note is discouraged and contributes to a larger distance, 

whereas linking similar density clusters adds smaller cost. 

We discovered that this homogeneity factor solved 

problems in a number of cases; however, there are cases 

where this factor is counterproductive.

3. THE REVISED VISA ALGORITHM

The previous algorithm posed by Karydis et al. [7] and also 

our current revised implementation consist of two steps: 

fist, vertical integration which merges notes with same 

onsets and durations if the musical context is homophonic, 

and second, links notes/chords horizontally into 

voices/streams. 

3.1. Brief description of VISA

The original Voice Integration/Segregation Algorithm [7] 

accepts as input a musical piece in symbolic form and 

outputs the number of detected musical voices/streams. At 

present, the algorithm is applied to quantized musical data; 

expressively performed musical data require quantization 

before being fed into the algorithm. The appropriate number

of streams is determined automatically by the algorithm and 

can be lower than the maximum number of notes of the 

largest chord.

VISA moves in a step-wise fashion through the input 

sequence of musical events (individual notes or concurrent 

note sonorities). Let the entire musical piece be represented 

as a list L of notes that are sorted according to their onset 

times. A sweep line, starting from the beginning of L, 

proceeds through the onset times in L. The set of notes that 

have onsets equal to a position of the sweep line is denoted 

as sweep line set (SLS).

For a set of concurrent notes at a given point (SLS), we 

have to determine when to merge them according to the 

Synchronous Note Principle. Because it is possible that 

synchronous notes may belong to different voices, we need 

a way to decide if such merging should be applied. For each 

SLS, the algorithm examines a certain musical context 

(window) around them. If inside the window, most co-

sounding notes have different onsets or offsets, then it is 

most likely that we have polyphonic texture (independent 

monophonic voices), so occasional synchronous notes 

should not be merged - each note is considered to be a 

singleton cluster. If most notes are concurrent (same onsets 

and IOIs) implying a homophonic texture, then they should 

be merged - concurrent notes form a cluster. This way, each 

SLS is split into a number of note clusters. At the present 

stage, the window size w and homophony/polyphony 

threshold T have been determined manually (same for all 

the data) by finding values that give optimal results for the 

selected test data set.

For each SLS in the piece, we have a set of previously 

detected voices (V) and the current set of note clusters (C). 

Between every detected voice of V and each note cluster of 

C, we draw an edge to which we assign a cost. The cost 

function calculates the cost of assigning each cluster to each 

voice according to the Temporal Continuity Principle and 

the Pitch Proximity Principle. Notes that overlap receive a 

cost value equal to infinity. 
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A dynamic programming technique finds the best 

matching (lowest cost) in the bipartite graph between 

previous voices and current clusters. If voices are fewer 

than clusters, then one or more voices may be (temporarily) 

terminated. If clusters are fewer than voices, then new 

voices may appear. The matching process, additionally, 

takes into account two constraints. The first one is that 

voice crossing should be avoided. Therefore a sub-optimal 

solution in terms of cost may be required that avoids voice 

crossing. The second one is that the top voice should be 

minimally fragmented (Top Voice Rule by [11]). This is 

handled by adding a penalty to the cost of a matching that 

does not fulfill this rule - to find the matching with the 

minimal cost - a cluster may be split into sub-clusters, so 

that one can be assigned to the top voice.

3.2. Revised Version of VISA 

3.2.1. Numbering of Voices/Streams

In music that is primarily homophonic, the tendency is to 

have one or two stable streams (pure homorhythmic texture, 

or melody and harmonic accompaniment), whereas further 

independent voices/streams appear only locally (see 

discussion in Section 2.1). To avoid keeping ‘alive’ extra 

voices/streams (e.g. third or fourth stream), a simple 

solution has been introduced: when the texture is locally 

homophonic (i.e. many notes start and end together), the 

algorithm is forced to switch back to streams 1 and 2 after 

having identified three (or more) streams. That is, when in 

the MatchingVoicesToClusters procedure we have more 

voices than clusters and also the context is homophonic, the 

current clusters are assigned to the basic streams 1 and 2. 

In the middle of the excerpt in Figure 5 we have three 

Voices, V1: {N5, N10}, V3: {N6, N9, N11, N12} and V2: 

{N7, N8}. In the next SLS, note N13 is closer to V2 but is 

assigned to V1 because the algorithm prefers to abandon V3 

moving back to the main two voices.

Figure 5 The third voice {N6, N9, N11, N12} is abandoned

and, N13 continues the first voice – see text.

3.2.2. Vertical Integration and BreakCluster Method

If a number of notes are integrated vertically (they have 

same durations) and if the local context is homophonic, then 

the BreakCluster procedure is activated. This procedure 

looks ahead in the next three SLSs (more generally it can be 

designed to look in the local neighborhood before and/or 

after the current SLS); if it finds (using ClusterVertically) 

that there exist more clusters in one of the following SLSs 

than in the current SLS, it moves backwards from the SLS 

(with more clusters) breaking one by one its preceding 

clusters till it breaks the current SLS cluster. Preceding 

clusters are broken according to how close notes in the to-

be-broken clusters are to the notes of the SLS with more 

clusters.

In the example of Figure 6, notes in the current SLS1 

are clustered vertically into a single cluster as they have 

same onsets and durations, and also the context is 

homophonic. In this case, BreakCluster is activated and 

checks whether in any of the next three SLSs there are more 

clusters than in the current SLS. SLS2 and SLS3 contain a 

single cluster, but ClusterVertically splits SLS4 into 3 

clusters: {N13}, {N14}, and {N15, N16}. Now, moving 

backwards it breaks the cluster in SLS3 into three clusters 

based on pitch proximity: {N9}, {N10} and {N11, N12}, 

then breaks SLS2 into {N5}, {N6} and {N7, N8} and, 

finally, the current cluster SLS1 into {N1}, {N2} and {N3,

N4}. In a different scenario, if an SLS before the third SLS 

contained more than one clusters, then the BreakCluster 

procedure would have moved from that SLS backwards to 

the current SLS. 

Figure 6 Breaking vertical clusters based on context. 

3.2.3. Matching notes to voices and cost calculation 

As mentioned in Section 3.1, after determining the clusters 

for each SLS, a bipartite graph is created for matching notes 

to voices. Each cell (i,j) of the graph designates the cost 

(distance) between the last cluster assigned to voice i and 

the current cluster j. In the previous implementation only 

pitch and time difference is taken into account for the 

calculation of the cost. In the current implementation we 

add a factor that relates to the difference of the number of 

notes in the two clusters. This difference, that is a kind of 

homogeneity factor (see Section 2.1), is calculated as dh=|ni 

–nj|/ ni +nj (where ni is the number of notes in cluster i) and 

contributes by 25% to the total cost (along with 50% pitch 

difference contribution plus 25% inter-onset difference). In 

the example of Figure 7, note N6 is closer to cluster {N2, 
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N3, N4} than cluster {N7, N8, N9} is in terms of average 

pitch, but the {N7, N8, N9} is assigned to cluster {N2, N3, 

N4} because the total cost is lower when the homogeneity 

factor is taken into account. 

Figure 7 Homogeneity factor (lower chords are assigned to 

the same voice).

In the previous implementation for the cost calculation, 

only the last note/cluster in each voice was taken into 

account. There are cases, however, where more 

notes/clusters from the past are necessary to resolve 

ambiguity. In the current implementation, the pitch for each 

voice is calculated as the weighted average of the pitch of 

the last two notes/clusters of each voice (80% of the last 

cluster and 20% of the second-to-last cluster). In the 

example of figure 8, notes N1 and N3 have the same pitch, 

so there is ambiguity in assigning the next notes N4 and N5 

to the previous voices. If next-to-last notes are taken into 

account, then the second voice containing note N2 and N3 

will have a lower average pitch than the first voice 

(containing N1) and will be matched correctly to N5.

Figure 8  Resolving ambiguity in pitch distance. 

4. RESULTS AND FUTURE WORK

The proposed algorithm has been tested on a set of musical 

extracts for piano.
1

The dataset has been annotated by a 

music theory research student that was instructed to indicate 

voices/streams on the scores after listening to the excerpts –

a number of musical examples were discussed with him 

before doing this task – the student did not have knowledge 

of the computational implementation. The dataset that acted 

as groundtruth contains the ten pieces used in the initial 

testing of VISA [7] plus 22 excerpts primarily from piano 

sonatas by Beethoven (only the openings of the different 

sections have been annotated, as it is a very tedious task to 

                                                          
1

These pieces were downloaded in Melisma format from the 

Kern collection (http://kern.humdrum.org)

manual annotate the full scores). The sonatas have been 

selected as they comprise of diverse musical textures, i.e. 

homophonic and contrapuntal textures. In future, larger 

number of music experts may provide groundtruth and/or 

empirical studies may generate more reliable datasets 

against which to test algorithms.

The accuracy of the proposed algorithm is measured as 

the weighted sum for each voice of the proportion of notes 

correctly assigned to a voice i over the total number of 

notes of voice i – each such proportion is multiplied by Pi, 

where Pi is the percentage of notes belonging to voice i

against the overall number of notes. Assuming N is the 

number of voices, the accuracy is measured according to 

equation (1).

��
�

N

1i

i
i voiceofnotes#

i voice toassignedcorrectly notes,#
PAccuracy (1)

In essence, accuracy counts the total number of notes that 

have been correctly assigned to the appropriate voice 

(according to the groundtruth), divided by the total number 

of notes. This accuracy measure is rather strict in the sense 

that notes that may have been placed together correctly in 

the same voice but may have been tagged incorrectly (e.g. 

placed together in voice x instead of voice y) are all counted 

as wrong. This is the main reason why in some cases 

accuracy is still low.

As can be seen in Table 1, the modifications 

incorporated in the current version of VISA improve 

significantly the performance of the algorithm. The average 

performance of the old version of VISA for the 22 new 

excerpts is 0.68 (first 22 excerpts in Table 1), whereas the 

average performance for the new version of VISA is 0.84, 

which means a 23% increase (16 percent units). The new 

algorithm does not improve performance on the limited old 

dataset (last 10 excerpts in Table 1) that was carefully 

selected to contain excerpts with steady number of ‘clean’ 

voices/streams. However, these tests show that overall we 

have a more flexible algorithm that performs well on 

diverse musical textures.

Voice/stream segregation is a difficult problem 

influenced by many different competing factors. The 

development of computational models such as the VISA 

algorithm is seen as a means to explore the mechanisms of 

voice separation to gain a better understanding of the 

problem with a view to developing more reliable computer 

models.

The current model can be improved in two ways: firstly, 

by redesigning the whole algorithm so as to take into 

account local context in a more integrated manner. Rather 

than matching clusters of one SLS to the last notes/clusters 

of previous voices (adding ad hoc cases in which the 

context is taken into account), it may be more powerful to 

look continuously for optimal solutions within a larger 

context. 

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 46



Secondly, further segregation factors must be taken into 

account such as tonal fusion, parallelism, pattern similarity, 

and, even, new overall integration/segregation strategies. 

For instance, the current method does not allow merging 

non-isochronous overlapping notes – it is clear, however, 

that there are cases where this should be allowed (e.g. the 

notes in the accompaniment of mm. 29-31 in Figure 3 

clearly belong to the same voice/stream due to harmonic 

reasons).

Old

VISA

New

VISA

Beethoven, Sonata 2-1 Allegro 0,66 0,86

Beethoven, Sonata 2-1 Adagio 0,82 0,86

Beethoven, Sonata 2-1 Minuet 0,61 0,73

Beethoven, Sonata 2-1 Prestissimo 0,93 0,93

Beethoven, Sonata 2-2 AllegroVivace 0,62 0,80

Beethoven, Sonata 2-2 LargoApp 0,69 0,91

Beethoven, Sonata 2-2 Scherzo 0,49 0,75

Beethoven, Sonata 2-2 Rondo 0,60 0,82

Beethoven, Sonata 2-3 AllegroConBrio 0,40 0,87

Beethoven, Sonata 2-3 Adagio 0,62 0,77

Beethoven, Sonata 2-3 Scherzo 0,74 0,73

Beethoven, Sonata 2-3 AllegroAssai 0,96 0,94

Beethoven, Sonata 10-2 Allegro 0,87 0,89

Beethoven, Sonata 10-2 Allegretto 0,43 0,73

Beethoven, Sonata 10-2 Presto 0,90 0,92

Beethoven, Sonata 13 Grave 0,72 0,98

Beethoven, Sonata 13 AdagioCantabile 0,23 0,56

Beethoven, Sonata 13 Rondo 0,94 0,85

Brahms, Waltz Op39 No8 0,80 0,89

Chopin, Mazurka Op6 No2 0,84 0,93

Chopin, Mazurka Op7 No1 0,70 0,92

Chopin, Waltz Op64 No1 0,43 0,91

Bach, Fugue BWV846 0,92 0,92

Bach, Fugue BWV859 0,96 0,93

Bach, Fugue BWV856 0,87 0,94

Bach, Fugue BWV852 0,97 0,91

Bach, Fugue BWV772 0,99 0,99

Bach, Fugue BWV784 0,96 0,96

Chopin, Mazurka Op7 No5 1,00 0,97

Chopin, Mazurka Op67 No4 0,88 0,88

Chopin, Waltz Op69 No2 0,90 0,96

Joplin, Harmony Club Waltz 0,98 0,92

Table 1 Accuracy for voice separation by the previous and 

the current implementation of VISA (the last ten pieces 

were used in the evaluation of the old VISA [7]).

5. CONCLUSIONS

The proposed voice separation algorithm incorporates the 

two principles of temporal and pitch proximity, and 

additionally, the Synchronous Note Principle. Allowing 

both horizontal and vertical integration enables the 

algorithm to perform well not only in polyphonic music that 

has a fixed number of ‘monophonic’ lines, but in the 

general case where both polyphonic and homophonic 

elements are mixed together. We have shown in the above 

preliminary experiment that the proposed algorithm can 

achieve good performance in diverse musical textures in 

terms of identifying perceptually relevant voices/streams. 
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ABSTRACT

This paper presents a formal model of Schoenberg’s
guidelines for convincing chord root progressions. This
model has been implemented as part of a system that
models a considerable part of Schoenberg’s Theory of
Harmony. This system implements Schoenberg’s the-
ory in a modular way: besides generating four-voice
homophonic chord progressions, it can also be used for
creating other textures that depend on harmony (e.g.,
polyphony).

The proposed model generalises Schoenberg’s guide-
lines in order to make them applicable for more use
cases. Instead of modelling his rules directly (as con-
straints on scale degree intervals between chord roots),
we actually model his explanation of these rules (as
constraints between chord pitch class sets and roots,
e.g., whether the root pitch class of some chord is an
element in the pitch class set of another chord). As a
result, this model can not only be used for progressions
of diatonic triads, but in addition also for chords with
a large number of tones, and in particular also for mi-
crotonal music beyond 12-tone equal temperament and
beyond 5-limit harmony.

1 INTRODUCTION

Computational models of music theory are interesting
for at least two reasons. Firstly, declarative models
improve our understanding of the theory. Secondly,
computational models can also be used as tools in the
composition process.

Tonal harmony has often been modelled declaratively.
Surveys on this subject are provided in [7] and [2]. Par-
ticular important is the system CHORAL [3, 4], which
creates four-part harmonisations in the style of Johann

SMC 2009, July 23-25, Porto, Portugal
Copyrights remain with the authors

Sebastian Bach for given choral melodies. It imple-
ments about 350 rules, and received much attention for
the musical quality of its output. The music represen-
tation MusES [6] has been used for harmonic analysis,
melody harmonisation, and modelling jazz improvisa-
tion. A number of other systems also do automatic
melody harmonisation. For example, [13] proposes a
lucid system with a small set of 20 rules, which creates
four-part harmonisations of a choral melody. [10] de-
scribes another system that automatically harmonises a
given melody. Coppelia [14] creates homophonic chord
progressions, which additionally feature a rhythmical
structure. [9] presents a further system that generates
choral harmonisations in the style of Johann Sebastian
Bach.

The authors of [7] claim that the “technical problem
of four-voice harmonization may now be considered as
solved”. However, existing systems only solve a special
subtask of harmony: instead of creating a harmonic
progression from scratch, these systems harmonise a
given melody, most often creating a new chord for each
melody note (choral harmonisation). Also, most ex-
isting systems create solutions that are very modest
musically. For example, only the systems of Ebcioglu
and Phon-Amnuaisuk address modulation at all. Even
Ebcioglu’s highly complex system CHORAL formalises
possible chord progressions simply by quasi a transition
table that only allows for common progressions. For ex-
ample, in major the degree II is mostly followed by V ,
and by I or VI only under specific conditions, 1 while
the diminished triad viio is always followed by the tonic
I [3, p. 240 f]. Yet, these chords can progress to any
degree in principle.

We argue that modelling harmony is not a solved
problem yet. Harmony is a highly complex phenome-
non as demonstrated by the library of harmony text-
books available. Still missing is a system that models

1 Ebcioglu’s rule set states that II can only be followed by I
or VI if some non-bass voice moves by a third skip from the VI
(the fifths of the II chord) to the I.
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harmony on the level of abstraction presented by ac-
claimed theory texts like [11]. For example, using a
transition table for chord progressions is a useful short-
cut, but theorists like Schoenberg teach us better alter-
natives.

This paper describes a system that models a con-
siderable part of Schoenberg’s Theory of Harmony [11].
This system generates self-contained harmonic progres-
sions – instead of harmonising existing melodies – and
can so create the harmonic backbone of new compo-
sitions. The harmonic model is modular for applica-
tions beyond four-part harmonisations. It can serve as a
foundation for modelling musical styles that depend on
harmony (e.g., Baroque counterpoint), and can also be
an interesting composition tool. Schoenberg has been
selected as theoretical foundation, because this text-
book is unique in its focus on writing convincing chord
progressions, instead of focusing on analysis, melody ac-
companiment or figured bass (as many other harmony
textbooks do).

For space limitation, this paper details only one as-
pect of Schoenberg’s theory, but this aspect is of partic-
ular importance. In the chapter “Some Directions on
Writing Favourable Progressions” (“Einige Anweisun-
gen zur Erzielung günstiger Folgen” [11, p. 134 ff]),
Schoenberg presents guidelines on root progressions that
result in particularly convincing chord sequences. 2 This
paper formalises these guidelines. To our knowledge,
these guidelines have never been modelled before. The
model has been implemented in Strasheela [1].

In addition, this model generalises these guidelines
for chords with a large number of notes (as long as we
know their root), and in particular also for microtonal
music beyond 12-tone equal temperament and beyond
5-limit harmony [8]. Schoenberg discusses his guide-
lines only in the context of triads in a diatonic scale as
he formulates his rules on the scale degree of chords.
Nevertheless, his detailed explanation of these rules are
more general. Instead of formalising Schoenberg’s rules
directly, this paper actually models his explanation of
these rules. Doing so makes his concepts applicable for
more music, but also puts some corner cases of classical
harmony in a new light.

Plan of Paper

The rest of this paper is organised as follows. Schoen-
berg’s guidelines on root progressions are recapitulated
in Section 2. Section 3 presents a model that formalises
and generalises these guidelines. Musical results are
presented in Section 4. The paper ends in a summary
(Section 5).

2 A summary of these guidelines can also be found at the be-
ginning of his book “Structural Functions of Harmony” [12].

2 THE MUSIC THEORY

Schoenberg distinguishes three root progression cases:
ascending, descending and super-strong progressions.
In an ascending progression, the chord root progresses
a fourth up / a fifths down (e.g., V −I) or a third down
(e.g., I − VI ). Schoenberg calls such progressions also
strong and advocates their unreserved use.

A descending progression – quasi a reversed ascend-
ing progression – proceeds a fifths up (I−V ), or a third
up (e.g., I − III ). Schoenberg avoids the term weak,
but nevertheless discourages their unconfined use. In-
stead, Schoenberg recommends that in a sequence of
three chords C1, C2, C3 the sequence C1, C2 can only
be descending if C1, C3 is ascending (e.g., III −V − I).
In that case, the purpose of the middle chord C2 is
similar to the purpose of a passing note in a melody.

Finally, a super-strong progression connects two chords
whose root are a second apart (e.g., V,VI or V, IV ).
Such progressions are typically used in a deceptive ca-
dence. Because their quality can be considered too
strong, Schoenberg advises to use them sparely.

Schoenberg argues at length possible reasons for the
different qualities of these progressions. These will be
briefly reported below when they are formalised.

3 THE FORMAL MODEL

This section presents the formal model of Schoenberg’s
guidelines for favourable chord progressions. The model
implements Schoenberg’s explanation instead of his ac-
tual rules.

Our full system defines a rich and highly extend-
able music representation designed for modelling a wide
range of music theories. This representation provides a
rich collection of score objects including elements such
as notes, or rests, analytical concepts such as inter-
vals, scales, chords, or meter, grouping concepts such
as containers that arrange their content sequentially or
parallel in time, as well as concepts for organising musi-
cal form such as motifs. For brevity, this section intro-
duces only a small fraction of this representation that is
sufficient for modelling Schoenberg’s guidelines on root
progressions.

A chord C is a score object that represents the an-
alytical notion of a chord or harmony. This analytical
object is silent when the score is played, but influences
the pitches of note objects. For the present model, a
chord object encapsulates only two attributes: the pitch
classes of the chord pcs and its root root . Both these
attributes are variables in the logic or constraint pro-
gramming sense. root is a finite domain integer, and
pcs is a finite set of integers. In Schoenberg’s theory,
the root of a chord is always a member of its pitch class
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set: root(C) ∈ pcs(C). For example, the root of the
diminished triad {B, D,F} is B.

We will now model Schoenberg’s notion of ascending,
descending and super-strong progressions as Boolean
functions on pairs of consecutive chord objects C1 and
C2. Schoenberg explains that in an ascending progres-
sion the root of a former chord is “over-ruled” by a new
root in the following chord. Formally, the root of C1 is
also a member of the pitch class set of C2, but the root
of C2 was not contained in C1 (Figure 1).

isAscending1(C1, C2) := root(C2) /∈ pcs(C1)
∧ root(C1) ∈ pcs(C2)

Figure 1. Ascending progression: the root of the first
chord is also contained in the second chord, but the
root of the second chord is new

In a descending progression, the root of the second
chord is a “parvenu” according to Schoenberg, the ruler
(root) of the first chord quasi backs down to one of his
former “subjects”. Formally, a non-root pitch class of
the first root becomes root in the second chord (Figure
2).

isDescending(C1, C2) := root(C2) ∈ pcs(C1)
∧ root(C1) �= root(C2)

Figure 2. Descending progression: a non-root pitch
class of the first root becomes root in the second chord

In ascending and descending progressions, chords share
common pitch classes (what Schoenberg calls a “har-
monic band”). In a super-strong progression, all pitch
classes of the second chord are new and there are no
common pitch classes (Figure 3).

isSuperstrong(C1, C2) := pcs(C1) ∩ pcs(C2) = ∅

Figure 3. Super-strong progression: two consecutive
chords do not share any pitch classes

Schoenberg only discusses these three cases, because
he discusses only diatonic triads. However, there exist
two further cases in principle. Firstly, two different
chords can share the same root as in C −Cmin (Figure
4).

Secondly, outside the set of diatonic triads there ex-
ist progressions that are connected by a harmonic band,

isConstant(C1, C2) := root(C1) = root(C2)

Figure 4. Constant progression: two (possibly differ-
ent) chords share the same root

but that are neither ascending nor descending progres-
sions according to the definitions above. For example,
the triadic progression C − E� shares common pitch
classes (the tone G), but it belongs to none of the
categories above. In our subjective assessment these
progressions also feel strong, like the ascending pro-
gressions. Instead of introducing a fifths category, we
therefore propose a generalised version of isAscending
as an alternative that includes also those progressions
where the second chord has a new root, but the root of
the first chord is not contained in the second (Figure
5).

isAscending2(C1, C2) := root(C2) /∈ pcs(C1)
∧ pcs(C1) ∩ pcs(C2) �= ∅

Figure 5. Ascending progression (generalised version):
the root of the second chord is new, but both chords
share common pitch classes

Following some speculation in Schoenberg’s treatise,
we also implemented a progression strength measure-
ment that combines all the cases above in a single nu-
meric measurement, and that for a more fine-grained
discrimination additionally takes the cardinality of the
harmonic band into account, weighted against the total
number of chord pitch classes.

Finally, Figure 6 implements Schoenberg’s recom-
mendation that a descending progression is resolved as
quasi a “passing chord”. 3

resolveDescending(C1, C2, C3) :=
isDescending(C1, C2) ⇒ isAscending(C1, C3)

Figure 6. Resolve descending progressions quasi as
“passing chords”

These functions have been implemented as constraints
in our system: they can be combined with other con-
straints and a solver can find one or more solutions.
For efficiency, our constraint programming system uses

3 Schoenberg recommends this strict version of the rule, a re-
laxed version also permits interchange progressions (e.g., I −V −
I)
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constraint propagation and dynamic variable orderings
customised for this problem [1] (e.g., the solver pro-
gresses from “left to right” in score time but for simul-
taneous score objects always first determines rhythmic
parameters, then scale or chord parameters and finally
the actual note pitch classes and octaves).

4 RESULTS

This section provides musical results that have been
generated by a system that implements the presented
model. Figure 7 shows a chord progression that was
generated with the proposed model. Whereas we only
formalised Schoenberg’s root progression guidelines in
this paper, generating this example obviously required
modelling further aspects of Schoenberg’s theory such
as part leading rules (e.g., avoid parallels, and keep the
harmonic band in the same voice and octave), or the
treatment of chord inversions.

V

��
��

VI

��
��

II

��
��

��

���
�
��

I

�
II

��
��

III

�
�
��

I

��
��

IV

��
��

IV

��
��

III

��
��

VI

��
��

Figure 7. Chord progression generated by the pre-
sented model

Nevertheless, the sequence of the analytical chord
objects is primarily controlled by the constraints pre-
sented above. Only few further constraints are applied
on the analytical chord objects: all chords are diatonic
chords in C major, the progression starts with the tonic
I, and it ends in a cadence. Note that in this particu-
lar case it so happened that no descending progressions
occurred at all. The number of superstrong progres-
sions was explicitly restricted to 20 percent at max-
imum. The examples section of the Strasheela web-
site (http://strasheela.sourceforge.net) contains
a page with further results generated by the presented
model, which also demonstrate other aspects of Schoen-
berg’s theory. These examples are provided with full
source code.

The presented model is highly flexible. It is appli-
cable beyond the common four-voice setting, beyond
the conventional triads, and is even suitable for micro-
tonal music. The first author used this model for com-
posing in 31-tone equal temperament, a temperament
very close to quarter-comma meantone [5]. Figure 8
shows the beginning of a movement of “Harmony Stud-
ies”, a 7-limit harmony cadence, which consists solely

of ascending chord progressions. Remember that en-
harmonic spelling indicate different pitches in 31-tone
equal temperament. While the interval C − E� is the
minor third (6/5), the interval C −D� is the subminor
third (6/7). In order to assist deciphering the notation,
also a harmonic analysis is provided: C harm 7 indi-
cates the harmonic seventh chord over C (4 : 5 : 6 : 7,
notated in meantone as C, E, G,A�), while subharm 6
is a subharmonic sixth chord (1

4 : 1
5 : 1

6 : 1
7 ).
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Figure 8. Beginning of a movement of“Harmony Stud-
ies”, notated in 31-tone equal temperament (meantone)

5 SUMMARY

This paper detailed a formal model of Schoenberg’s root
progression guidelines, an important aspect of his The-
ory of Harmony. Instead of modelling his rules directly
(as constraints on scale degree intervals between chord
roots), we modelled his explanation of these rules (as
constraints between chord pitch class sets and roots).

For chord progressions of diatonic triads in major –
the context in which Schoenberg discusses his guide-
lines – Schoenberg’s rules and the proposed model are
equivalent. Our constraints can thus be used for im-
plementing exercises proposed by Schoenberg’s book as
shown above.

However, the behaviour of our model and Schoen-
berg’s rules differ for more complex cases. According
to Schoenberg, a progression is superstrong if the root
interval proceeds a step up or down. For example, the
progression V 7−IV is superstrong according to Schoen-
berg. In the presented model, however, this progression
is descending! The root of IV is contained in V 7 (e.g.
in G7 − F , the root pitch class F is already the sev-
enths of the preceding chord). Indeed, this progression
is rare in music. By contrast, the progression I − III �
(e.g., C −E�) is a descending progression according to
Schoenberg’s rules. In our proposed model (the vari-
ant isAscending2), this is an ascending progression (the
root of E� is not contained in C), and in our intuitive
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rating this progression does indeed feel strong.
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ABSTRACT

Dissonances in music have had a long evolution history
dating back to days of strictly prohibition to times of en-
richeness of musical motives and forms. Nowadays, dis-
sonances account for most of the musical expressiveness
and contain a full application theory supporting their use
making them a frequently adopted resource of composition.
This work partially describes their theoretical background
as well as their evolution in music and finally proposing a
new model for their computational use.

1 THE CONSONANCE AND THE DISSONANCE

1.1 Cognitive Definition

The term Consonance in music is considered, from a psy-
chological stance, a sound (i.e. interval in chord or arpeg-
gio) that emits a sensation of ease or relaxation of the ear,
something enjoyable. In contrast, dissonance is the oppo-
site sensation, something confusing or aggressive to the ear
[1].

Although the difference between this two terms may be
well-defined with respect to tonal music, their meanings are
profoundly attached to and varies depending on the culture,
the music genre, and even the spoken language. For this,
their cognitive definitions are relative and other factor come
to fulfill their descriptions [2].

1.2 Physical Definition

Physically speaking, a dissonance may be conceived
as the union of the acoustic waves that try to de-

stroy themselves, consonance being the opposite physical
phenomena[3].

1 This interval was considered dissonant in early counterpoint
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Interval Ratio
1st 1:1
8ve 2:1
4th 1 4:3
5th 3:2

Table 1. Perfect consonant intervals and their ratios

Mathematically speaking, the concept of consonance and
dissonance is attached vastly to the ratios between the sound
waves that conform the sound being executed. This ratio, for
a consonance consideration, should be with low numbers as
observed in table 1

Perfect 5th

��

� �

�

�

Unison and 8th

�

�
�

Just 4th

� �
�

Figure 1. Perfect Consonant Intervals

In tonal music, the intervals considered consonant may be
divided in perfect (figure 1) and imperfect (figure 2), per-

fect ones being simpler ratios than their counterpart. Table
2 shows some imperfect consonant intervals and their ra-
tios. On the other hand, the dissonances are the intervals
excluding the ones mentioned before (i.e. Minor 2nd and
7th).

Interval Ratio
Major 3rd 5:4
Minor 3rd 6:5
Major 6th 5:3
Minor 6th 8:5

Table 2. Imperfect consonant intervals and their ratios

The reader may note that the concrete definition and dif-
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Figure 2. Imperfect Consonant Intervals

ferentiation of consonances and dissonances given above
are purely tonal and based on western (common practice)
music. Throughout time, the concept of consonance has
evolved constantly giving way to before-considered disso-
nances being reclassified as consonances because of their
frequent use, as noted in [4].

The choice of this particular vision, as the reader will see
in the model proposed, of dissonance is purely convenient
because of its strong theory background and documented
use.

1.3 Brief historical evolution

The dissonance, as the majority of the compositional tools,
has seen an evolution in which it has enriched itself from
both theory and practice. Each important age in music his-
tory has contributed with its convention of use and theoreti-
cal and stylistic meaning, some more than other but always
keeping a concrete advance.

Initially, the dissonance was non-existent in the sense of the
avoidness of its use because the young age of harmony and
its theory concepts targeted to enrich the consonance com-
pendium.

In ancient Greece, the dissonance was not explored as a
melodic resource although its meaning was already estab-
lished, but yet, the Greeks considered the tritone (3 density
chord) a disturbing sound, this being the base of the har-
mony used in the classical period. [5]

Farther ahead, the baroque age would consider intervals like
the 3rd and the 6th consonant and extend their use to not just
independent entities but also as artistic expressive means. At
the dawn of the classical period the first direct dissonance is
explored as a form with a well defined objective, this was
the V7 or seventh dominant chord.

At the arriving of the romantic and nationalism ages the

use of dissonances was widely frequent and have defined
purpose and process, primary helping the composer explore
new concepts in the harmony theory.

With the establishment of the contemporary music, the dis-
sonances have now the role of directing the harmony in ac-
tual composition, musicologists and composers turn to them
in a daily basis.[5]

2 THE FUNCTION OF THE DISSONANCE

For an accurate computational definition of the dissonance
we have to define its function, use and purpose in music.
Also we have to bear in mind that the function is relative to
each age or musical genre, but is keeps a stable base theory
and form of use.

2.1 Harmonic Function

In defining a concrete function in the process of dissonance,
there also has to be a definition of an inherent character-
istic of musical harmony. The music literature, as nor-
mal literature, possesses moments of tension and relax-
ation, this simple characteristic allows to provide a purpose
and at the same time a tool for the description of a given
melody.

In the case of the dissonances, their harmonic function is no
other than to create tension or confusion to the listener, this
objective is more remarked seeing its aggressive character
depending on the composer’s thoughts, so it is this that sets
its goal to the conversion of a melody to a point of obscurity
and discomfort to the ear[3].

From the aforementioned, modern music has expanded its
use not just to a tension-relaxation characteristic but also to
an independent and complete auditive element that might
represent an idea on its own[6].

2.2 Usage

The cycle of tension-relaxation can be seen as a sequen-
tial process that happens over time, each of the parts of this
process may be seen as a well-defined component or agent
(process with goal). The cycle is generally seen as this flow
[7]:

Preparation → Dissonance → Resolution

Each stage contains unique and shared characteris-
tics:
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Preparation : Its function, as its name indicates, prepares
the listener to the confusion of tension that the dis-
sonance may generate in the melody. Generally, this
preparation carries a harmonic line corresponding to its
tonality.

Dissonance : In this stage, the dissonance or dissonances
are produced, often in weak rhythmic beats and in
strong ones depending on its relevance and sonority.

Resolution : Here, the dissonance need to move to a state
of resolution or relaxation, it is here that the dissonance
is carried to a more pleasing form, often taken to the
main tonality on long beats.

The most evident and early example of this above process
can be observed in the progression I− IV−V7 − I (figure 3),
in this the preparation consists of the first 2 chords and the
dissonance is caused by the dominant seventh, lastly resolv-
ing in the tonic chord C.

�
�

C

�
�

���

F

���

C
����

G7

�

Figure 3. Dissonance using V7

The usage of dissonances expands when the repertory of dis-
sonant chords grow over time, this was also a crucial aspect
of the evolution of this technique, chord like the augmented

sixth or Neapolitan sixth make a wider space of sonority. An
example can be seen a figure 4.

���

Am

��
����

F
�6/C

���

Am

�
����

E7

�

Figure 4. Dissonance enriched with the German augmented

sixth

The next evolution in the use of dissonances is considering
the resolution step as omissible or indefinitely postponed,
often leaving many accumulated to an eventual resolution,
Frédérick Chopin and Richard Wagner were amongst the
main developers of evolution[5]. The illustration of these
can be seen in figure 5.

�
��
�����

B9

�� ��

Em

�� �
����

B7

�
���

F�o

Figure 5. Dissonance without resolution

Modern music refines the concept of dissonance and trans-
forms it when declaring it a unique entity, self-described
and self-functional, making dissonances a complete form
without the need of preparation or resolutions. A very
recognized composer using this concept was Claude De-

bussy.

4
3������� � ����

A�7/G�
���

A�7/G�

� �				

G�7/F�

�
				

G�7/F�

�

Figure 6. Claude Debussy - “La fille aux cheveux de lin”,
measures 8 and 9. Dissonance as individual entity

3 THE REAL-TIME CONCURRENT CONSTRAINT
CALCULUS

Concurrent constraint programming (ccp [8]) is a model
for specifying concurrent systems in terms of constraints.
A constraint is a formula representing partial information
about the shared variables of the system. Examples of con-
straints are: pitch1 = 60 or pitch2 > pitch1 + 2; If variables
pitch1 and pitch2 are in the domain of MIDI values these
constraints specify that pitch1 must be C and pitch2 must be
at least a tone higher than pitch1. The information about the
shared variables resides in a store, which is, in fact, the con-
junction of all the constraints applied to the variables. This
store can be accessed by agents (processes who interact with
the store) with two basic operations: ask and tell.

The Real-Time Concurrent Constraint Calculus (rtcc [9,
10]) is an extension of ccp developed to specify reac-
tive systems with real-time behaviour. In reactive systems
time is conceptually divided into discrete intervals (or time

units). In a time interval, a process receives a stimulus from
the environment, it computes (reacts) and responds to the
environment. The computational processes of rtcc are
summarized in table 3.

P,Q, . . . ::= tell(c) ∣ ∑i∈I when ci do Pi

∣ P ∥ Q ∣ local x in P
∣ unless c next P
∣ catch c in P finally Q
∣ next P ∣ !P ∣ ⋆P

Table 3. rtcc Processes

Intuitively, the process tell(c) adds constraint c to the store
within the current time unit. The ask process when c do P
is generalized with a non-deterministic choice of the form
∑i∈I when ci do Pi (I is a finite set of indices). This pro-
cess, in the current time unit, must non-deterministically
choose one of the Pj (j ∈ I) whose corresponding guard
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constraint cj is entailed by the store, and execute it. The
non-chosen processes are precluded. Two processes P and
Q acting concurrently are denoted by the process P ∥ Q.
In one time unit P and Q operate in parallel, communi-
cating through the store by telling and asking information.
The process local x in P declares a variable x private to
P (hidden to other processes). This process behaves like
P , except that all information about x produced by P can
only be seen by P and the information about x produced
by other processes is hidden to P . The weak time-out pro-
cess, unless c next P , represents the activation of P the
next time unit if c cannot be inferred from the store in the
current time interval (i.e. d ⊭ c). Otherwise, P will be dis-
carded. The strong time-out process, catch c in P finally
Q, represents the interruption of P in the current time in-
terval when the store can entail c; otherwise, the execution
of P continues. When process P is interrupted, process Q
is executed. If P finishes, Q is discarded. The execution
of a process P can be delayed one time unit with next P
(P will be activated in the next time interval). The opera-
tor “!” is used to define infinite behaviour. The process !P
represents P ∥ next P ∥ next(next P ) ∥ . . ., (i.e. !P ex-
ecutes P in the current time unit and it is replicated in the
next time interval). An arbitrary (but finite) delay is repre-
sented with the operator “⋆”. The process ⋆P represents an
unbounded but finite P + next P + next(next P ) + . . .,
(i.e. it allows to model asynchronous behaviour across the
time intervals).

We write∏i∈I Pi, where I = {i1, . . . , in} to denote the par-
allel composition of all the Pi, that is, Pi1 ∥ . . . ∥ Pin . A
bounded replication and asynchrony can be specified using
summation and product. !IP and ⋆IP are defined as ab-
breviations for ∏i∈I nextiP and ∑i∈I nextiP , respectively.
For example, process ![m,n]P means that P is always active
between the next m and m + n time units.

The following simple example illustrates a computational
model in rtcc:

In the case of changing pace of a song’s natural timing such
a ritardando, this behaviour can be modeled as:

!(when ritardando = true do next tell(bpm = 60))
∥ catch ritardando = true in !(tell(bpm = 150))

Intuitively, this process states that the speed of a quarter note
(or crotchet) will be 150 (with process !(tell(bpm = 150)))
until a ritardando signal is given (a presence of constraint
ritardando = true in the store). In the case of the signal
is given, the process !(tell(bpm = 150)) is interrupted and
the speed will change to 60.

4 COMPUTATIONAL REPRESENTATION OF
DISSONANCES

Since the dissonance phenomena in music can be seen as an
ordered sequence of processes (as shown above), we can ex-
press it using concurrent agents that synchronize each other
through signals (constraints) that are global to the whole
system. Each agent may represent each phase in the dis-
sonance process and also delay its execution until the previ-
ous (dependant) phase has been carried out and signals the
system to continue the sequence onto the next phase. The
model we propose is the following:

Conductor[n,m]
def
= Musician ∥ Cycle[n,m]

∥ !(tell(go = 1))
∥ ⋆(!tell(stop = 1))
∥ !(unless stop = 1

next when end = 1
do(Musician ∥ Cycle[n,m]))

Cycle[n,m]
def
= ⋆ (tell(prep = 1)

∥ ⋆[1,n](tell(diss = 1)
∥ ⋆[1,m](tell(res = 1))))

The main entry point of the model is the agent Conductor,
this agent will activate the Musician and a process Cycle to
motivate a dissonance. It also gives a signal to the musician
for starting the melody (!(tell (go = 1)) and eventually (some
time in the future) it will give another signal to make the mu-
sician stop producing music (⋆(!tell (stop = 1))). Addition-
ally, if the stop signal has not already given and the musician
ends a dissonance, Conductor will activate the Musician and
the process Cycle again (this could be seen as a loop for the
musician to continue playing the melody and eventually to
perform a dissonance until the stop signal).

The Cycle process posts the signals for each stage of the
dissonance. Parameters n and m bound the time to change
from one stage to the next.

The agent Musician is defined as follows:

Musician
def
= when go = 1 do

catch prep = 1 in Melody

finally Stage1

Stage1 def
= catch diss = 1 in Preparation

finally Stage2
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Stage2 def
= catch res = 1 in Dissonance

finally Stage3

Stage3 def
= Resolution ∥ tell(end = 1)

The Musician will start executing the process Melody
(supposed to play the main melody of the whole song, may
be through MIDI) waiting to catch the signal prep = 0 dur-
ing it. When it catches the signal, it interrupts (stops) the
Melody and launches the Stage1 of the dissonance.

The same philosophy applies to the agents Stage1 and
Stage2 each of them waiting for the signal that tells to carry
on the next stage in the dissonance sequence, also assuming
that process Preparation plays the preparation and process
Dissonance executes the dissonance.

To conclude the sequence, the agent Stage3 waits for no
signal, instead it launches the process Resolution (also as-
sumed to play a resolution congruent with the dissonance)
and post a signal end = 1 telling the conductor that the cur-
rent dissonance is over.

The process Melody is the main harmonic structure
the musician has planned for the song and is in
charge of evolving the melody so to speak. Processes
Preparation, Dissonance and Resolution will select
non-determinalistically a chord to play from a set of chords
specifically built to fulfill the process’s task. For exam-
ple, the set of chords from the process Preparation is
able to transcend to a dissonance and at this point the pro-
cess Dissonance will take the lead and the set of chords
from where it will choose to play now will be dissonant
ones.

These chords set may be constructed using a relative dis-

tance to the current tonality the melody is carrying. Using
ranges over these distances a set chords can be discriminated
to imply they belong to certain set. The relative distance of
a certain chord is estimated using its notes’ harmonic ra-
tios against the root chord of the tonality and taking the
same principle discussed above of deciding the degree of
consonance and dissonance. Note that the dissonance con-
cept vary in genre or music so the ranges used to make the
chord sets are left for the musician using the model to de-
cide.

5 CONCLUDING REMARKS

In this work, we described the concept of dissonance from
various perspectives and also provided its mathematical re-
lation with the consonances, we presented their musical

evolution and its main function in the context of compos-
ing.

For the appropriate modeling of such problem, it was re-
quired that the usage of the dissonances be expressed in a
sequential form because music is, as many more view it,
a phenomenon occurring over time (melody) and concur-
rently (instruments or voices). Because of this, we chose the
rtcc calculus, its concrete and direct way of treating time
and how it manages asynchronous behaviour made possi-
ble the appropriate modeling of the dissonances as a non-
deterministic process over time.

We also proposed a concurrent model that may be expanded
or reduced easily to fit the management of the dissonance
according to the need of the musician. The reader may see
that any of the steps to make the sequence can be easily
left out without affecting the integrity of the whole system.
For example the musician may avoid the resolution step and
leave all the dissonances unresolved or postpone it indefi-
nitely using the operator ⋆.

We plan to pursue this work in a more practical direc-
tion. We have begun the implementation of an interpreter
of rtcc. We are convinced that a software helps to better
visualize the behaviour of systems, to make possible listen-
ing the audio results of the models in real-time, and to prove
properties in those models. In the AVISPA research group 2

some interpreters and simulators have been developed for
some other extensions of ccp such as ntcc and utcc (see
for example [11, 12, 13]). This knowledge has been useful
for the development of our interpreter. Initial work on the
software has given us encouraging results.
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ABSTRACT

In audio based music recommendation, a well known effect

is the dominance of songs from the same artist as the query

song in recommendation lists. We verify that this effect also

exists in a very large data set at the scale of the world wide

web (> 250000). Since our data set contains multiple al-

bums from individual artists, we can also show that the al-

bum effect is relatively bigger than the artist effect.

1 INTRODUCTION

In Music Information Retrieval, one of the central goals is to

automatically recommend music to users based on a query

song or query artist. This can be done using expert knowl-

edge (e.g.pandora.com), social meta-data (e.g.last.fm),

collaborative filtering (e.g. amazon.com/mp3) or by ex-

tracting information directly from the audio. In audio based

music recommendation, a well known effect is the domi-

nance of songs from the same artist as the query song in

recommendation lists.

This effect has been studied mainly in the context of genre

classification experiments. If songs from the same artist are

allowed in both training and test sets, this can lead to over-

optimistic results since usually all songs from an artist have

the same genre label. It can be argued that in such a scenario

one is doing artist classification rather than genre classifica-

tion. One could even speculate that the specific sound of

an album (mastering and production effects) is being clas-

sified. In [9] the use of a so-called “artist filter” ensuring

that all songs from an artist are in either the training or the

test set is proposed. The authors found that the use of such

an artist filter can lower the classification results quite con-

siderably (with one of their music collection even from 71%

down to 27%). These over-optimistic accuracy results due to

not using an artist filter have been confirmed in other studies

[7] [1]. Other results suggest that the use of an artist filter

not only lowers genre classification accuracy but may also
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erode the differences in accuracies between different tech-

niques [2].

All these results were achieved on rather small data bases

(from 700 to 15000). Often whole albums from an artist

were part of the data base, maybe even more than one. These

specifics of the data bases are often unclear and not properly

documented. In extending these results, we analyse a very

large data set at the scale of the world wide web (> 250000)

with multiple albums from individual artists. We try to an-

swer the following questions:

• Is there an album and artist effect even in very large

data bases?

• Is the album effect larger than the artist effect?

• What is the influence of the size of a data base on

music recommendation and classification?

2 DATA

For our experiments we used a data set D(ALL) of S =
254398 song excerpts (30 seconds) from a popular web-

shop selling music. The freely available preview song ex-

cerpts were obtained with an automated web-crawl. All

meta information (artist name, album title, song title, gen-

res) is parsed automatically from the hmtl-code. The ex-

cerpts are from U = 18386 albums from A = 1700 artists.

From the 280 existing different hierarchical genres, only the

G = 22 general ones on top of the hierarchy are being

kept for further analysis (e.g. “Pop/General” is kept but not

“Pop/Vocal Pop”). The names of the genres plus percent-

ages of songs belonging to each of the genres are given in

Tab. 1. Please note that every song is allowed to belong to

more than one genre, hence the percentages in Tab. 1 add

up to more than 100%. The genre information is identical

for all songs on an album. The numbers of genre labels per

albums are given in Tab. 2. Our data base was set up so that

every artist contributes between 6 to 29 albums (see Tab. 3).

To study the influence of the size of the database on re-

sults, we created random non-overlapping splits of the en-

tire data set: D(1/2) - two data sets with mean number of

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 59



song excerpts = 127199, D(1/20) - twenty data sets with

mean number of songs excerpts = 12719.9, D(1/100) -

one hundred data sets with mean number of songs excerpts

= 2543.98. An artist with all their albums is always a mem-

ber of a single data set.

Pop Classical Broadway

49.79 12.89 7.45

Soundtracks Christian/Gospel New Age

1.00 10.20 2.48

Miscellaneous Opera/Vocal Alternative Rock

6.11 3.24 27.13

Rock Rap/Hip-Hop R&B

51.78 0.98 4.26

Hard Rock/Metal Classic Rock Country

15.85 15.95 4.07

Jazz Children’s Music International

6.98 7.78 9.69

Latin Music Folk Dance & DJ

0.54 11.18 5.24

Blues

11.24

Table 1. Percentages of songs belonging to the 22 genres

with multiple membership allowed.

# labels 1 2 3 4 5 to 8

percentage 22.74 20.68 29.64 20.62 6.32

Table 2. Percentages of albums having 1,2,3,4 or 5 to 8

genre labels.

# albums 6 7 8 9 10

percentage 0.06 22.88 18.59 11.59 8.35

# albums 11 12 13 14 15

percentage 6.88 6.29 5.59 3.59 3.24

# albums 16 17 18 19 20 to 29

percentage 1.65 1.76 2.35 1.18 6.00

Table 3. Percentages of artists having 6, 7, ..., 20 to 29

albums.

3 METHODS

We compare two approaches based on different parametri-

sations of the data. Whereas Mel Frequency Cepstrum Co-

efficients (MFCCs) are a quite direct representation of the

spectral information of a signal and therefore of the specific

“sound” or “timbre” of a song, Fluctuation Patterns (FPs)

are a more abstract kind of feature describing the amplitude

modulation of the loudness per frequency band. It is our

hypothesis, that MFCCs are more prone to pick up produc-

tion and mastering effects of a single album as well as the

specific “sound” of an artist (voice, instrumentation, etc).

3.1 Mel Frequency Cepstrum Coefficients and Single

Gaussians (G1)

We use the following approach to music similarity based on

spectral similarity. For a given music collection of songs, it

consists of the following steps:

1. for each song, compute MFCCs for short overlapping

frames

2. train a single Gaussian (G1) to model each of the songs

3. compute a similarity matrix between all songs using

the symmetrised Kullback-Leibler divergence between

respective G1 models

The 30 seconds song excerpts in mp3-format are recom-

puted to 22050Hz mono audio signals. We divide the raw

audio data into non-overlapping frames of short duration

and use Mel Frequency Cepstrum Coefficients (MFCC) to

represent the spectrum of each frame. MFCCs are a per-

ceptually meaningful and spectrally smoothed representa-

tion of audio signals. MFCCs are now a standard technique

for computation of spectral similarity in music analysis (see

e.g. [4]). The frame size for computation of MFCCs for our

experiments was 46.4ms (1024 samples). We used the first

25 MFCCs for all our experiments.

A single Gaussian (G1) with full covariance represents

the MFCCs of each song [5]. For two single Gaussians,

p(x) = N (x; μp, Σp) and q(x) = N (x; μq , Σq), the closed

form of the Kullback-Leibler divergence is defined as [10]:

KLN(p‖q) =
1
2

(
log

(
det (Σp)
det (Σq)

)
+ Tr

(
Σ−1

p Σq

)

+ (μp − μq)
′ Σ−1

p (μq − μp) − d

) (1)

where Tr(M) denotes the trace of the matrix M , Tr(M) =
Σi=1..nmi,i. The divergence is symmetrised by computing:

KLsym =
KLN(p‖q) + KLN(q‖p)

2
(2)

3.2 Fluctuation Patterns and Euclidean Distance (FP)

Fluctuation Patterns (FP) [6] [8] describe the amplitude mod-

ulation of the loudness per frequency band and are based
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on ideas developed in [3]. For a given music collection of

songs, computation of music similarity based on FPs con-

sists of the following steps:

1. for each song, compute a Fluctuation Pattern (FP)

2. compute a similarity matrix between all songs using

the Euclidean distance of the FP patterns

Closely following the implementation outlined in [7], an

FP is computed by: (i) cutting an MFCC spectrogram into

three second segments, (ii) using an FFT to compute ampli-

tude modulation frequencies of loudness (range 0 − 10Hz)

for each segment and frequency band, (iii) weighting the

modulation frequencies based on a model of perceived fluc-

tuation strength, (iv) applying filters to emphasise certain

patterns and smooth the result. The resulting FP is a 12

(frequency bands according to 12 critical bands of the Bark

scale [11]) times 30 (modulation frequencies, ranging from

0 to 10Hz) matrix for each song. The distance between two

FPs i and j is computed as the Euclidean distance:

D(FP i, FP j) =
12∑

k=1

30∑
l=1

(FP i
k,l − FP j

k,l)
2

(3)

4 RESULTS

4.1 Album/Artist Precision

For the full data base D(ALL)

For every song in the data base D(ALL), we computed

the first nearest neighbour for both methods G1 and FP.

For method G1, the first nearest neighbour is the song with

minimum Kullback Leibler divergence (Equ. 2) to the query

song. For method FP, the first nearest neighbour is the song

with minimum Euclidean distance of the FP pattern (Equ. 3)

to the query song. We then computed the percentage of in-

stances, where the first nearest neighbour is from the same

album (1st AL) or from other albums by the same artist (1st

AR) as the query song (see Tab. 4).

For method G1, 27.87% are from the same album and

35.76% from other albums by the same artist. On average,

there are 13.46 songs on an album and 131.2 songs from one

artist. Considered that there are always more than 250000
songs from other artists, it is quite astonishing that only in

36.37% a song from a different artist turns up as a first near-

est neighbour. For method FP, percentages are quite lower

with only 2.24% from the same album and 26.85% from

other albums by the same artist.

Next we computed the album and artist precision at n.

Album precision at n (AL prec) is the percentage of songs

from the album in a list of the n nearest neighbours, with

Method 1st AL 1st AR AL prec AR prec

G1 27.87 35.76 13.86 8.14

FP 2.24 26.85 0.90 1.63

Table 4. Percentage of first nearest neighbour from same

album (1st AL), from other albums from same artist (1st

AR), album and artist precision (AL prec, AR prec) for G1

and FP.
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Figure 1. Percentage (y-axis) of first nearest neighbour

from same album (dashed line), from other albums from

same artist (solid) for G1 and different size of data set (x-

axis, log-scale).

n being equal to the number of other songs in the same al-

bum as the query song. Artist precision at n (AR prec) is

the percentage of songs from the artist in a list of the n near-

est neighbours, with n being equal to the number of other

songs from the same artist as the query song. For D(ALL)
and method G1, album precision is at 13.86% and artist pre-

cision at 8.14% (see Tab. 4). Precision values for method FP

are very small.

To sum up, there is both an album and an artist effect in

nearest neighbour based music recommendation for method

G1. For this timbre based method, the album effect is even

relatively bigger than the artist effect. For method FP, there

is only a smaller artist effect but no album effect.

Influence of the size of the data base

We repeated the experiments for all the subsets of the data

base as described in Sec. 2. The results depicted in Figs. 1,

2, 3 and 4 show mean values over 100 (D(1/100)), 20

(D(1/20)), 2 (D(1/2)) data sets or the respective single re-

sult for the full data set D(ALL). The percentage of the

first nearest neighbour from the same album decreases from

38.91% for D(1/100) to 27.82% for D(ALL) for method

G1 (Fig. 1). There is a parallel decrease for the first near-

est neighbour from other albums from the same artist for
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Figure 2. Percentage (y-axis) of first nearest neighbour

from same album (dashed line), from other albums from

same artist (solid) for FP and different size of data set (x-

axis, log-scale).
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Figure 3. Precision (y-axis) of album (dashed line) and

artist (solid) for G1 and different size of data set (x-axis,

log-scale).

method G1 (Fig. 1). A similar decrease at lower levels can

be seen for method FP (Fig. 2). As the data sets get larger,

the probability that songs from other artists are more similar

to the query song than songs from the same album or artist,

clearly seems to increase.

Album and artist precision also decrease with increas-

ing size of data set. For method G1, artist precision drops

from 35.99% for D(1/100) to 8.14% for D(ALL) even

falling below album precision (Fig 3). For method FP, artist

precision drops from 19.19% for D(1/100) to 1.63% for

D(ALL) which is at the same low level as album precision

(Fig. 4).

To sum up, both first nearest neighbour rates and preci-

sion values are over estimated when smaller data sets are

used.
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Figure 4. Precision (y-axis) of album (dashed line) and

artist (solid) for FP and different size of data set (x-axis,

log-scale).

4.2 Genre Classification

For the full data base D(ALL)

We also did experiments on the influence of album and artist

filters on genre classification performance. We used nearest

neighbour classification as a classifier. For every song in the

data base D(ALL), we computed the first nearest neighbour

for both methods G1 and FP. For method G1, the first near-

est neighbour is the song with minimum Kullback Leibler

divergence (Equ. 2) to the query song. For method FP, the

first nearest neighbour is the song with minimum Euclidean

distance of the FP pattern (Equ. 3) to the query song. When

using an album filter (ALF), all other songs from the same

album as the query song were excluded from becoming the

first nearest neighbour. When using an artist filter (ARF),

all other songs from the same artist as the query song were

excluded from becoming the first nearest neighbour. When

using no filter (NOF), any song was allowed to become the

first nearest neighbour. To estimate genre classification ac-

curacy, the genre label of a query song squery and its first

nearest neighbour snn were compared. The accuracy is de-

fined as:

acc(squery , snn) =
|(gquery ∩ gnn)|

max(|gquery |, |gnn|)
(4)

with gquery (gnn) being a set of all genre labels for the

query song (nearest neighbour song) and |.| counting the

number of members in a set. Therefore accuracy is de-

fined as the number of shared genre labels divided by the

maximum set size of gquery and gnn. The latter is done

to penalise nearest neighbour songs with high numbers of

genre labels. The range of values for accuracy is between 0

and 1. The baseline accuracy achieved by always guessing

the three most probable genres (“Rock”, “Pop”, “Alternative

Rock”, see Tab. 1) is 37.03%. We decided to use a number
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of three genres for this baseline accuracy because the ma-

jority of songs is labelled with three genres (see Tab. 2).

Average accuracy results for methods G1 and FP are given

in Tab. 5. Without using any filter (NOF), G1 clearly outper-

forms FP (70.69% vs. 46.97%). Using an album filter (ALF)

strongly degrades the performance of G1 down to 58.49%,

but hardly impairs method FP. Using an artist filter (ARF)

further degrades the performance of G1 but also of FP. The

difference between G1 and FP is now much closer (39.56%
vs. 32.38%). However, method G1 barely outperforms the

baseline accuracy of 37.03% and method FP clearly falls

below it.

Method NOF ALF ARF

G1 70.69 58.49 39.56

FP 46.97 45.69 32.38

Table 5. Average accuracies for G1 and FP without (NOF)

and with album filter (ALF) and artist filter (ARF).

To sum up, not using any filter yields very over-optimistic

accuracy results. As a matter fact, results after artist filtering

are very close or even below baseline accuracy. There is

both an album and an artist filter effect for G1. There is

only an album filter effect for FP. Using filters diminishes

the differences in accuracies between methods G1 and FP,

since filters have a bigger impact on G1 than FP.

Influence of the size of the data base

We repeated the experiments for all the subsets of the data

base as described in Sec. 2. The results depicted in Figs. 5

and 6 show mean accuracy values over 100 (D(1/100)), 20

(D(1/20)), 2 (D(1/2)) data sets or the respective single re-

sult for the full data set D(ALL). For both methods G1 and

FP, the accuracy without using a filter (dotted lines in Figs. 5

and 6) decreases with increasing size of data set. For G1,

from 81.66% for D(1/100) to 70.69% for D(ALL). For

FP, from 59.24% for D(1/100) to 46.79% for D(ALL).
There is an almost parallel decrease in accuracy when us-

ing album filters (dashed lines in Figs. 5 and 6). For both

methods G1 and FP, the accuracy when using an artist filter

(solid lines in Figs. 5 and 6) increases with increasing size of

data set. For G1, from 31.28% for D(1/100) to 39.56% for

D(ALL). For FP, from 27.19% for D(1/100) to 32.38%
for D(ALL).

How can this contrary behaviour of decreasing accuracy

for no filter and album filter versus increasing accuracy for

artist filters be explained? Larger data sets allow for a larger

choice of songs to become the first nearest neighbour. This

larger choice of songs can come with the wrong or correct

genre labels. If we use artist filters, this larger choice seems

to make it more probable that a song with the correct genre

label is first nearest neighbour. Otherwise we would not
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Figure 5. Accuracy (y-axis) for no filter (dotted line), al-

bum filter (dashed line), artist filter (solid) for G1 and dif-

ferent size of data set (x-axis, log-scale).
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Figure 6. Accuracy (y-axis) for no filter (dotted line), al-

bum filter (dashed line), artist filter (solid) for FP and dif-

ferent size of data set (x-axis, log-scale).

see the increase in accuracy. If we use no filter or only an

album filter, the larger choice seems to interfere with the

songs from the same artist still in the data base. Songs from

the larger choice sometimes end up being first nearest neigh-

bour instead of a song from the same artist as the query song.

Since most songs from an artist share the same labels, the

larger choice in this case diminishes the accuracy.

To sum up, there clearly is an influence of the data base

size on accuracy performance. Small data sets are too pes-

simistic when artist filters are used. But they are over opti-

mistic if no or only album filters are used.

5 CONCLUSION

There clearly is both an album and an artist effect in mu-

sic recommendation even in very large data bases. For the

timbre based method G1, about one third of the first recom-
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mendations are from the same album and about another third

from other albums from the same artist as the query song.

Considering that every artist has multiple albums in the data

base and that an album contains only about 13 songs on av-

erage, the album effect is relatively bigger than the artist

effect. This suggests that the direct representation of the

spectral information is sensitive to production and master-

ing effects of individual albums. For method FP, there is

only a smaller artist effect but no album effect. This sug-

gests that the more abstract signal representation of the fluc-

tuation patterns is not sensitive to production and mastering

effects of individual albums. But it is still able to model

the common musical sound of an artist across different al-

bums. Please note that we have no way to know whether an

artist is working together with the same recording studio or

sound engineer for more than one album. Our experiments

also show that album and artist effects in music recommen-

dations are over estimated when smaller data sets are being

used.

Since most research on artist filters so far concentrated on

genre classification, we did large scale experiments on clas-

sification accuracy also. We corroborated earlier results that

not using any filter yields very over-optimistic accuracy re-

sults. Using artist filters even reduces results close to or even

below baseline accuracy. As reported before, using artist fil-

ters also diminishes the differences in accuracies between

methods that are effected distinctly by filtering. Addition-

ally, there clearly is an influence of the data base size on

accuracy performance.

As with all large scale performance studies, there remains

the question as to how representative and universally valid

our results are. We are convinced that our data base is repre-

sentative of music that is generally listened to and available

in the Western hemisphere since it is a large and random

subset of about 5 million songs from a popular web-shop.

As to the methods employed, we chose one method that

closely models the audio signal and one that extracts infor-

mation on a somewhat higher level. It is our guess that other

method’s performance will be close to either of our methods

depending on their level of closeness to the analysed audio

signal. The choice of our methods was also influenced by

considerations of computability. After all, 250000 song ex-

cerpts are a lot of data to analyse and both our methods can

be implemented very efficiently. Using nearest neighbour

methods for music recommendation seemed to be the obvi-

ous choice.

With audio based music recommendation maturing to the

scale of the web, our work provides important insight into

the behavior of music similarity for very large data bases.

Even with hundreds of thousands of songs, album and artist

filtering remain an issue.
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ABSTRACT

This paper presents an in–depth study of the social tagging
mechanisms used in Freesound.org, an online community
where users share and browse audio files by means of tags
and content–based audio similarity search. We performed
two analyses of the sound collection. The first one is related
with how the users tag the sounds, and we could detect some
well–known problems that occur in collaborative tagging
systems (i.e. polysemy, synonymy, and the scarcity of the
existing annotations). Moreover, we show that more than
10% of the collection were scarcely annotated with only one
or two tags per sound, thus frustrating the retrieval task. In
this sense, the second analysis focuses on enhancing the se-
mantic annotations of these sounds, by means of content–
based audio similarity (autotagging). In order to “autotag”
the sounds, we use a k–NN classifier that selects the avail-
able tags from the most similar sounds. Human assessment
is performed in order to evaluate the perceived quality of the
candidate tags. The results show that, in 77% of the sounds
used, the annotations have been correctly extended with the
proposed tags derived from audio similarity.

1 INTRODUCTION

Since 2004, collaborative tagging seems a natural way for
annotating objects, in contrast to using predefined taxonomies
and controlled vocabularies. Internet sites with a strong
social component (e.g. last.fm, flickr, and del.icio.us), al-
low users to tag web objects according to their own criteria.
The tagging process can improve then, content organization,
navigation, search and retrieval tasks [9].

Nowadays, in the multimedia domain, prosumers hold an
important role. The term comes from producing and con-
suming at the same time: they create and annotate a vast
amount of data. In fact, audiovisual assets can be manually
and automatically described. On the one hand, users can or-
ganize their music collection using personal tags like: late

SMC 2009, July 23-25, Porto, Portugal
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night, while driving, love. On the other hand, content–based
(CB) audio annotation can propose, with some confidence
degree, audio related tags such as: pop, acoustic guitar, or
female voice. It is clear that both approaches create a rich tag
cloud representing the actual content. Still, automatic anno-
tation based solely on CB cannot bridge the Semantic Gap.
Hybrid approaches, exploiting both the wisdom of crowds
and automatic content description, are needed in order to
close the gap. In this sense, Freesound.org, a collaborative
sound database, contains both elements: it allows users to
annotate sounds, and they can also browse similar sounds to
a given one, according to audio similarity. However, there
are some sounds that are scarcely annotated, thus frustrating
their retrieval using keyword–based search.

The main goal of this paper is to enhance semantic anno-
tations in the Freesound.org sound collection, by means of
content–based audio similarity. We propose an approach to
“autotag” sounds based on the tags available in their most
similar sounds.

2 COLLABORATIVE TAGGING

One of the most interesting aspects of collaborative tagging
is that the whole community benefits from sharing informa-
tion [17]. However, “collective tagging has also the poten-
tial to aggravate the problems associated with the fuzziness
of linguistic and cognitive boundaries” [7]. Users’ contribu-
tions produce a huge classification system that consists in an
idiosyncratically personal categorization. Some of the main
problems concerning collaborative tagging are: polysemy,
synonymy and data scarcity. Furthermore, spelling errors,
plurals and parts of speech also clearly affect a tagging sys-
tem.

Sometimes, polysemous tags can return undesireable re-
sults. For example, in a music collection if one is searching
using the tag love, the results can contain both love songs,
and songs that users like it very much (i.e. a user that loves a
death metal Swedish song, not related with the love theme).

Tag synonymy is also an interesting problem. Even though
it enriches the vocabulary, it presents also inconsistencies
among the terms used in the annotation process. For exam-

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 65



ple, bass drum sounds can be annotated with the kick drum

tag; but these sounds will not be returned when searching
for bass drum. To avoid this problem, sometimes users tend
to add redundant tags to facilitate the retrieval (e.g. using
synth, synthesis, and synthetic for a given sound excerpt).
Yet, there are some approaches to measure semantic relat-
edness between tags [3]. These metrics could be used to
decrease the size of the vocabulary, and also for (automatic)
query expansion to increase the recall in the sound retrieval
task.

Finally, the scarcity and inequality nature of a collabo-
rative annotation process—where usually a few sounds are
well annotated, and the rest contain very few tags—limits
the coverage retrieval of a collection.

3 RELATED WORK

In [16], the authors propose a query–by–semantic audio in-
formation retrieval system. The proposed system can learn
the relationships between acoustic information and words
(tags) from a manually annotated audio collection. The learn-
ing task is based on a supervised multiclass labeling model,
with a multinomial distributions of words over a predefined
vocabulary.

Torres et. al propose a method to construct a musically
meaningful vocabulary [15]. By means of acoustic correla-
tion using canonical component analysis (sparse CCA), they
can remove from the vocabulary those noisy words (not re-
lated with the actual audio content) that have been inconsis-
tently used by human annotators.

The bag–of–frames (BOF) approach has been extensively
used to describe timbrical properties of an audio signal. This
approach is used to extract mid–level descriptions from mu-
sic signals, such as their genre or instrument, but it is also
used to perform timbre similarity between songs. In [1], the
authors find out that this approach tends to generate false
positives songs which are irrelevantly close to many other
songs. These songs are called hubs, and the authors propose
measures to quantify the “hubness” of a given song. This
property affects any system that uses timbrical features to
compute content–based audio similarity.

Cano has studied the strengths and limitations of audio
fingerprinting, and suggests that it can be extended to al-
low content–based similarity search, such as finding similar
sounds using query–by–example [2]. Similarly to our ap-
proach, [14] proposes a non–parametric strategy for auto-
matically tagging songs, using content–based audio similar-
ity to propagate tags from annotated songs to similar, non–
annotated, songs.

In [5], the authors present a method to recommend tags
to unlabeled songs. Automatic tags are computed by means
of a set of boosted classifiers (Adaboost), in order to provide
tags to tracks poorly (or not) annotated. This method allows
music recommenders to include in a playlist unheard mu-

Figure 1. A linear–log plot depicting the number of tags per
sound. Most of the sounds are annotated using 3–5 tags, and
only a few sounds are annotated with more than 40 tags.

sic that otherwise would be missed, enhancing the novelty
component of the recommendations.

4 THE FREESOUND.ORG COLLECTION

Freesound.org is a collaborative sound database where peo-
ple from different disciplines share recorded sounds and sam-
ples under the Creative Commons license, since 2005. The
initial goal was to giving support to sound researchers, who
often have trouble finding large sound databases to test their
algorithms. After four years since its inception, Freesound.org

serves more than 23,000 unique visits per day. Also, there
is an engaged community—with almost a million registered
users—accessing more than 66,000 uploaded sounds.

Yet, only few dozens of users uploaded hundreds of sounds,
whilst the rest uploaded just a few. In fact, 80% of the users
uploaded less than 20 sounds, and only 8 users uploaded
more than one thousand sounds each. It is worth noting that
these few users can highly influence the overall sound anno-
tation process.

4.1 Tag behaviour

In this section we provide some insights about the tag be-
haviour and user activity in the Freesound.org community.
We are interested in analyzing how users tag sounds assets,
as well as the concepts used when tagging. The data, col-
lected during March 2009, consists of around 66,000 sounds
annotated with 18,500 different tags

Figure 1 shows the number of tags used to annotate the
audio samples. The x-axis represent the number of tags used
per sound. We can see that most of the sounds are annotated
using 3–5 tags. Also, around 7,500 sounds are insufficiently
annotated using only 1 or 2 tags. These sounds represent
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more than 10% of the whole collection. It would be de-
sirable, then, to—automatically—recommend relevant tags
to these scarcely annotated sounds, enhancing their descrip-
tions. This is the main goal of the experiments presented in
section 5.

Interestingly enough, in [2], the author analyzed a sound
effects database, which was annotated by only one expert. A
similar histogram distribution to the one presented in Figure
1 was obtained. Specifically, most of the sounds were anno-
tated by the expert using 4 or 5 tags, as it is our case. This
could be due to human memory constraints when assigning
words to sounds or to any object, in order to describe them
[11]. Based on Figure 1, we classify the sounds in three
different categories, according to the number of tags used.
Table 1 shows the data for each class.

Table 1. Sound–tag classes and the number of sounds in
each category.

Tags per sound Sounds
Class I 1–2 7,481
Class II 3–8 42,757
Class III > 8 7,148

Tag frequency distribution is presented in Figure 2. The
x-axis refers to the 18,500 tags used, ranked by descending
frequency. On the one hand, 44% of the tags were applied
only once. This reflects the subjectivity of the tag process.
Thus, retrieving these sounds in the heavy tail area is nearly
impossible using only tag–based search (to overcome this
problem, Freesound.org offers a content–based audio simi-
larity search to retrieve similar sound samples). On the other
hand, just 27 tags were used to annotate almost the 70% of
the whole collection. The best fit of the tag distribution is

obtained with a log–normal function, 1
xe−

(ln(x)−μ)2

2σ2 , with
parameters mean of log μ = 1.15, and standard deviation of
log, σ = 1.46 [4].

The top–5 most frequent tags are presented in Table 2,
and it gives an idea about the nature of the sounds available
in the Freesound.org collection. Field–recording is the most
frequent tag used to describe 6,787 different sounds. All
these frequent tags are very informative when describing the
sounds, in contrast to the photo domain in flickr.com, were
popular tags are considered too generic to be “useful” [13].

Table 2. Top–5 most frequent tags from Figure 2.
Rank Tag Frequency

1 field–recording 6,787
2 noise 5,650
3 loop 5,487
4 electronic 4,329
5 synth 4,307

Figure 2. A log–log plot showing the tag distribution in
Freesound.org. The curve follows a log–normal distribu-
tion, with mean of log μ = 1.15, and standard deviation of
log, σ = 1.46.

4.2 Tag categorization

In order to understand the vocabulary that the Freesound.org

community uses when tagging sounds, we mapped the 18,500
different tags to broad categories (hypernyms) in the Word-
net 1 semantic lexicon. In some cases, a given tag matches
multiple entries, so we bound the tag (noun or verb) to the
highest ranked category. The selected Wordnet categories
are: (i) artefact or object, (ii) organism, being, (iii) action or
event, (iv) location, and (v) attribute or relation. Yet, 20.3%
of the tags remain unclassified.

Most of the tags (38%) are related with objects (e.g. seat-

belt, printer, missile, guitar, snare, etc.), or about the qual-
ities and attributes of the objects (30%); such as state at-
tributes (analog, glitch, scratch), or magnitude relation char-
acteristics (bpm). Then, some tags (19%) are classified as an
action (hiss, laugh, glissando, scream, etc.), whilst 11% are
related with organisms (cat, brass band, etc.). Finally, only
a few tags (2%) were bound to locations (e.g. iraq, vietnam,
us, san francisco, avenue, pub, etc.). Therefore, we con-
clude that the tags are mostly used to describe the objects
that produce the sound, and the characteristics of the sound.
In this case, the wisdom of crowds concords with the studies
of [12] and [6]. The former study focused on the attributes
of the sound itself without referencing the source causing
it (e.g pitchiness, brightness), while the latter introduced a
taxonomy of sounds, on the assertion that they are produced
by means of interaction of materials.

1 http://wordnet.princeton.edu/
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5 EXPERIMENTS

Our goal is to evaluate the quality of the recommended tags,
for some specific sounds available in Freesound.org. By
means of content–based audio similarity, our algorithm se-
lects a set of candidate tags for a given sound (autotagging
process). Then, the evaluation process is based on human
assessment. Three subjects validated each candidate tag for
all the sounds in the test dataset.

5.1 Dataset

The sounds selected for the experiments were a subset of
the Class I (see Table 1). We selected those sounds whose
tags’ frequency was very low (i.e. rare tags, in the ranking
of ∼ 104 in Figure 2). In fact, all the sounds which were
annotated with one tag whose frequency was equal to 1 were
selected. Also, for the sounds annotated with 2 tags, we
selected those which had at least one tag with frequency 1.
The test dataset for the experiments consists of 260 sounds.
The goal here is to automatically extend the annotation of
these sounds, unsufficiently annotated with one or two very
rare tags.

5.2 Nearest–neighbor classifier

We used a nearest neighbor classifier (k–NN, k = 10) to se-
lect the tags from the most similar sounds of a given sound.
The choice of a memory–based nearest neighbor classifier
avoids the design and training of every possible tag. Another
advantage of using an NN classifier is that it does not need to
be redesigned nor trained whenever a new class of sounds is
added to the system. The NN classifier needs a database of
labeled instances and a similarity distance to compare them.
An unknown sample will borrow the metadata associated
with the most similar registered sample.

Based on the results from [2], the similarity measure used
is a normalized Manhattan distance of audio features be-
longing to three different groups: a first group gathering
spectral and temporal descriptors included in the MPEG-7
standard [10]; a second one built on Bark Bands perceptual
division of the acoustic spectrum, using the mean and vari-
ance of relative energies for each band; and, finally a third
one, composed of Mel-Frequency Cepstral Coefficients (20)
and their corresponding variances [8]. The normalized Man-
hattan distance of the above enumerated features is:

d(x, y) =
N∑

k=1

|xk − yk|
(maxk − mink)

(1)

where x and y are the vectors of audio features, N the
dimensionality of the feature space, and maxk and mink

the maximum and minimum values of the k–th feature.

5.3 Procedure

Our technique for calculating the candidate tags consists on
finding the 10–th most similar sounds from the Freesound.org

database, for a given seed sound of the test dataset. That is,
given a seed sound, we get the tags from the similar sounds.
A tag is proposed as a candidate if it appears among the
neighbors over a specific threshold. For example, a thresh-
old of 0.3, means that a tag is selected as candidate when
it appears at least in 3 sounds of the 10 nearest neighbors.
This way we select the set of candidate tags for each sound
in the test dataset.

The experiments have been computed using two thresh-
olds: 0.3 and 0.4. When using a threshold of 0.3 the number
of candidate tags is higher than for 0.4, but also there are
more “noisy” or potentially irrelevant tags, since it is using
a less constrained approach. Afterwards, all the candidate
tags will be evaluated by human assessment. The differ-
ences between both thresholds is presented in section 6.1.

5.4 Evaluation

In order to validate the candidate tags for the test sounds,
we use human assessment. The aim is to evaluate the per-
ceived quality of the candidate tags. It is worth noting that
neither Precision nor Recall measures are applicable as the
test sound contains only two or less tags, and these are very
rare in the vocabulary. We performed a listening experiment
where the subjects were asked to listen to the sounds, and
decide whether they agreed or not with the candidate tags.
For each candidate tag, they had to select one of these op-
tions: Agree (recommend candidate tag), Disagree (do not
recommend), or Don’t know. Each sound was rated by three
different subjects.

Similar to [16], to evaluate the results we group human
responses for each sound s, and score them in order to com-
pact them into a single vector per sound. The length of the
vector is the number of candidate tags of s. Each value of
the vector, ws,ti , contains the weight of the subjects’ scores
for a candidate tag ti in sound s. If a subject agrees with the
candidate tag, the score is +1, −1 if disagrees, and 0 if she
does not know. The formula for calculating the weight of
the candidate tag in s is:

ws,ti =
#(PositiveV otes) − #(NegativeV otes)

#Subjects
(2)

A candidate tag is recommended to the original sound
if ws,ti is greater than zero, otherwise, the tag is rejected
(either because it is a bad recommendation, or the subjects
cannot judge the quality of the tag). For example, given a
candidate tag ti for s, if the three subjects scored, respec-
tively, +1, −1, +1 (two of them agree, and one disagree),
the final weight is ws,ti = 1/3. Since this value is greater
than zero, ti is considered a good tag to be recommended.
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Furthermore, we use ws,ti
to compute the confidence

agreement among the subjects. First, we consider all the
sounds where the system proposed j candidate tags, Sj . We
sum, for each sound s ∈ Sj , the weights of all the candi-
date tags ti whose values were greater than zero. Then, we
divide this value with the total score that the candidate tags
would had if all the subjects would agree. The formula for
calculating the agreement of Sj sounds, Aj , is:

Aj =

∑
s∈Sj

[ws,ti > 0]

#Subjects ·
[∑

s∈Sj
length (s)

] (3)

Similarly, to compute the agreement of the bad candi-
date tags, we use the weights of candidate tags whose val-
ues were lesser than zero (ws,ti < 0), in the numerator of
the equation 3. Finally, to get the total agreement for all the
sounds in the test set, Atotal, we use the weighted mean of
all Aj , according to the number of sounds in Aj .

6 RESULTS

6.1 Perceived quality of the recommended tags

Using 10–NN and the content–based audio similarity, and
setting a threshold of 0.3, the system proposed a total of 781
candidate tags, distributed among the 260 sounds of the test
dataset. Besides that, setting a threshold of 0.4 the system
proposes 358 candidate tags, which represents almost the
half compared with a threshold of 0.3.

Table 3 shows the human assessment results. As ex-
pected, a slightly higher percentage of candidate tags were
recommended with a threshold of 0.4 (66.23%). Yet, us-
ing a threshold of 0.3, more than half of the candidate tags
(56.6%) were finally recommended to the original sounds,
with an agreement confidence of 0.74. This human agree-
ment is sufficiently high to rely on the perceived quality
of the recommended tags. The rest of the candidate tags
(43.4%) were not recommended, either because the tags rec-
ommended were not appropiated (31.59%), or the tags were
not sufficiently informative (11.41%). Even though with a
threshold of 0.3 we get less percentage of recommended
tags, the absolute number of candidate tags is more than
twice the ones with a threshold of 0.4. Therefore, we can
consider a threshold of 0.3 a good choice for this task.

6.2 Recommended tags per class

On the one hand, using a threshold of 0.4 we are able to
enhance the annotation of half of the sounds (128 sounds out
of 260). On the other hand, with a threshold of 0.3, we have
enhanced the annotation of 200 sounds, which represent the
77% of the sounds in the test dataset used. The rest of the
sounds (60) from the test set did not get any plausible tags
to extend its current annotation.

Table 3. Percentage of recommended tags, with confidence
agreement among the subjects. The table shows the results
using thresholds 0.3 and 0.4 (in parenthesis, it is shown the
total number of candidate tags).

Threshold Recommend tag % Atotal

0.3 (781)
Yes 56.60% 0.74
No 31.59% 0.62

Don’t know 11.41% —

0.4 (358)
Yes 66.23% 0.78
No 23.11% 0.58

Don’t know 10.66% —

Table 4. Number of sounds in each category, after automat-
ically extending the annotations of 200 sounds from the test
dataset.

Tags per sound Sounds
Class I 1–2 20
Class II 3–8 171
Class III > 8 9

Table 4 shows the results using a threshold of 0.3, and it
classifies the 200 autotagged sounds according to the classes
defined in Table 1. Originally, all the test sounds belonged
to Class I. We can observe now the number of sounds per
class, after extending the annotation of these 200 sounds.
Note that most of the sounds have 3 or more tags (Class II),
and some even have more than 8 tags (Class III). However,
there are 20 sounds still belonging to Class I. This happens
because before the experiment they only had one tag, and
now they have another one, the one recommended.

The results obtained so far look promising; using a sim-
ple classifier we were able to automatically extend sound
annotations that were difficult to retrieve. Furthermore, due
to the classifier method used (k–NN), there is a strong cor-
relation among the more frequently proposed tags, and their
frequency of usage (rank position in Figure 2). The ten
most proposed tags are also in the top–15 ranking of fre-
quency use. Although our approach is prone to popular tags,
once the sounds are autotagged it allows the users to get a
higher recall of those scarcely annotated sounds when doing
a keyword–based search.

7 CONCLUSIONS

This paper presents an analysis of the Freesound.org collab-
orative database, where the users share and browse sounds
by means of tags, and content–based audio similarity search.
First we studied how users annotate the sounds in the database,
and detected some well–known problems in collaborative
tagging, such as polysemy, synonymy, and the scarcity of
the existing annotations.
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Regarding the experiments, we selected a subset of the
sounds that are rarely tagged, and proposed a content–based
audio similarity to automatically extend these annotations
(autotagging). Since the sounds in the test set contained
only one or two rare tags, neither precision nor recall were
applicable, so we used human assessment to evaluate the
results. The reported results show that 77% of the test col-
lection were enhanced using the recommended tags, with a
high agreement among the subjects.

As future work, we are planning to extend the experi-
ments using more sounds. In this case, automatic evalua-
tion is needed. A possible solution is to select sounds be-
longing to similar sound categories (e.g all the percussive
sounds scarcely annotated), and follow the same procedure
of finding similar sounds from the Freesound.org database.
So, the recommended tags should also belong to the same
sound category. We are also working on a hybrid approach
that combines tag similarity and content–based similarity to
improve the recommendations of the similar sounds.
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ABSTRACT

We discuss the varieties of musical accompaniment systems

and place our past efforts in this context. We present sev-

eral new aspects of our ongoing work in this area. The basic

system is presented in terms of the tasks of score following,

modeling of musical timing, and the computational issues of

the actual implementation. We describe some improvements

in the probabilistic modeling of the audio data, as well as

some ideas for more sophisticated modeling of musical tim-

ing. We present a set of recent pieces for live player and

computer controlled pianos, written specifically for our ac-

companiment system. Our presentation will include a live

demonstration of this work.

1 APPROACHES TO MUSICAL

ACCOMPANIMENT SYSTEMS

Musical accompaniment systems are computer programs that

serve as musical partners for live musicians. The types of

possible interaction between live player and computer are

widely varied, to some extent defying classification. Some

approaches create sound by processing the live player’s au-

dio using simple analysis of the audio content itself, per-

haps distorting, echoing, harmonizing, or commenting on

the soloist’s audio in largely predefined ways, [1], [2]. Other

orientations are directed toward improvisatory music such

as jazz, in which the computer follows and perhaps even

composes a rendered musical part [3]. A third approach

models the traditional “classical” concerto setting in which

the computer’s task is to perform a precomposed musical

part in a way that follows a live soloist such as [4],[5]. There

are a number of examples that blend these scenarios, while

other approaches may be entirely outside this realm of pos-

sibilities.

Our work has focused on the latter “concerto-type” set-

ting, as in a non-improvisatory composition for soloist and

accompaniment — say a violin concerto. While the music

has already been composed in this domain, the solo player

may take great liberty with the performance, requiring the

accompanying ensemble to be both flexible and responsive.

SMC 2009, July 23-25, Porto, Portugal

Copyrights remain with the authors

The motivation for this kind of accompaniment system is

evident in the omitted for review (JSoM) at omitted for re-
view where most of our recent experiments have been per-

formed. For example, the JSoM contains about 200 student

pianists while the regular orchestras perform two piano con-

certi every year using student soloists. With this in mind,

it is clear that most of these aspiring pianists will never

perform as orchestral soloist during their studies here. We

believe this is truly unfortunate, as nearly all of these stu-

dents have the necessary technical skills and musical depth

to greatly benefit from the concerto experience. Our work

in musical accompaniment systems strives to bring this re-

warding experience to the music students, amateurs, and

many others who would like to play as orchestral soloist,

though, for whatever reason, don’t have the opportunity.

Even within the realm of classical music, there are a num-

ber of ways to cast the accompaniment problem, requiring

substantially different approaches. For instance, when ac-

companying early-stage musicians, the accompanist’s role

is not simply to follow the young soloist, but rather to en-

courage habits of accurate rhythm, steady tempo, while in-

troducing musical ideas. In a sense, this is the hardest of all

classical music accompaniment problems, since the accom-

panist must be expected to know more than the soloist, thus

dictating when the accompanist must lead and when to fol-

low. A coarse approximation to this accompanist role is to

provide a rather rigid accompaniment that is not overly re-

sponsive to the soloist’s interpretation (or errors); there are

several commercial programs that take this approach. The

notion of a pedagogical music system — one that follows

and leads as appropriate — is largely undeveloped, possibly

due to the difficulty of modeling the objectives. However,

we see this area as fertile for lasting research contributions

and hope that we, and others, will be able to contribute to

this cause.

An entirely different scenario deals with music that evolves

largely without a sense of rhythmic flow, such as in some

compositions of Penderecki, Xenakis, Boulez, Cage, and

Stockhausen, to name only a few. Such music is often no-

tated in terms of seconds, rather than beats or measures, to

emphasize the irrelevance of traditional pulse to the music’s

agenda. For works of this type involving soloist and ac-

companiment, the score indicates points of synchronicity,

or time relations, between various anchor points in the solo
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and accompaniment parts. Due to the lack of predictability

of such music, a natural accompaniment approach is sim-

ply to wait until various solo events are detected, and then

to respond to these events. This is the approach taken by

the IRCAM score follower, with considerable success in a

variety of pieces of this type [6],[7].

The third scenario, which includes our system [5],[8],

treats works for soloist and accompaniment having a con-

tinuing musical pulse, including the overwhelming majority

of “common practice” art music. This music is the primary

focus of most of our performance-oriented music students,

and is the music where our accompaniment system is most

at home. Music containing a regular, though not rigid, pulse

requires close synchronization between the solo and accom-

panying parts, as the overall result suffers greatly as this

synchrony degrades. We will argue that this music cannot

be performed effectively with the purely “responsive” ap-

proach as discussed above.

Our system is known as omitted (MPO) due to its alleged

improvement on the play-along accompaniment records from

“Music Minus One” that inspired our work. We have been

collaborating for several years with faculty and students in

the JSoM on this traditional kind of concerto setting, in an

ongoing effort to improve the performance of our system.

What follows contains a description of some of these im-

provements not discussed elsewhere, as well as a number

of illuminating examples and demonstrations. We will also

discuss strengths and weakness of our rhythm model, while

sketching possible improvements. We conclude with a pre-

sentation of our accompaniment system in new music, fo-

cusing on works by omitted for review, specifically written

for our system.

2 OVERVIEW OF MUSIC PLUS ONE

2.1 Score Following

Score following is the task of computing an ongoing align-

ment between a symbolic music score and an audio perfor-

mance of the score, as the audio data accumulates. Also

known as on-line alignment, the problem is more difficult

that its off-line cousin, since an on-line algorithm cannot

consider future audio data in determining the times of au-

dio events. Thus, one of the principal challenges of on-line

alignment is the tradeoff between accuracy —- reporting the

correct times of note events — and latency — the lag in time

between the reporting time and and estimated note event

time. As with all of the accompaniment systems discussed

above, score following plays a crucial role in MPO. [9] gives

a nice annotated bibliography of the many contributions to

score following.

Our approach to score following is based on a hidden

Markov model and is described in [10]. Perhaps one of

the main virtues of the HMM-based score follower is the

grounding it gives to navigating the accuracy-latency trade-

off. One of the worst things a score follower can do is report

events before they have occurred. In addition to the sheer

impossibility of producing accurate estimates in this case,

the musical result often involves the accompanist arriving at

a point of coincidence before the soloist does. When the ac-

companist “steps on” the soloist in this manner, the soloist

must struggle to regain control of the performance, perhaps

feeling desperate and irrelevant in the process. Since the

consequences of false positives are so great, the score fol-

lower must be reasonably certain that a note event has al-

ready occurred before reporting its location. Through the

probabilistic nature of the HMM, one can compute the prob-

ability that the currently pending note has passed. Once this

has occurred, our score follower looks backward in time to

find the most likely onset position for the note.

We will omit a detailed discussion of the innards of our

score follower here, and content ourselves with a simple, ob-

vious, and crucial observation: Before an audio event can be

detected it must have sounded for some brief period of time.

Thus any score follower must necessarily deliver its obser-

vations with latency. That is, while a note onset time may

estimated correctly, the reporting of this time must come af-

ter the event has occurred.

This observation has important consequences for the mu-

sical accompaniment system: If coordination is to be achieved

in a “responsive” way — by waiting until a solo event is de-

tected and then playing the corresponding accompaniment

note, the system will always be late. In theory, one may be

able to construct a score follower whose latency is musically

insignificant. However, this has not been possible in our ex-

perience with such latencies usually in the 60-90 ms. range.

If all coincident accompaniment notes lag this far behind,

the result is musically fatal.

Instead, we accept as a basic tenet that detection latency

will be musically significant and base our coordination of

parts on prediction rather than response. Thus, central to

our approach is the recognition that score following alone is

not enough to produce good musical accompaniment. In ad-

dition we need a means of predicting future musical events

and scheduling them accordingly. In contrast, the IRCAM

system’s approach is responsive, playing events in direct re-

sponse to observations of solo events. This system has been

quite successful in music that does not have a sense of on-

going pulse — the IRCAM system was developed with this

kind of music in mind. However, the extension of this work

to other musical styles including the overwhelming major-

ity of common practice art music and popular music, seems

problematic. In contrast, with minor adaptations our ap-

proach is equally at home in pulseless music.

A video demonstrating our score following ability can be

seen at http://www.music.informatics.indiana.
edu/papers/smc09. In this video the rather eccentric

performer ornaments wildly, makes extreme tempo changes,
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plays wrong notes, and even repeats a measure, thus demon-

strating the robustness of the system.

2.2 Modeling Musical Timing

As discussed above, our approach to accompaniment relies

on the prediction of future musical events. We present here

the model serving as the backbone for this process. We be-

gin with three important traits we believe such a model must

have.

1. Since our accompaniment must be constructed in real

time, the computational demand of our model must be

feasible in real time.

2. We anticipate training our prediction algorithm us-

ing a sequence of rehearsals in which the solo player

demonstrates her interpretation, with all its variabil-

ity. In order to benefit from these rehearsals our model

must be automatically trainable. Thus, rehearsal will

allow our system to more accurately anticipate the

way future musical timing will unfold. This is cer-

tainly one of the objectives of human rehearsal, as

well.

3. If our rehearsals are to be successful in guiding the

system toward the desired musical end, the system

must “sightread” (perform without rehearsal) reason-

ably well. Otherwise, the player will become dis-

tracted by the poor ensemble and not be able to play

her part consistently with her convictions. Thus our

model must be constructed around widely applica-

ble musical assumptions, so it can perform reasonably

well “out of the box.”

Our model is expressed in terms of two sequences, {tn}
and {sn} where tn is the time, in seconds, at which the nth

note begins and sn is the tempo, in seconds per beat, for the

nth note. The model is then

sn+1 = sn + σn (1)

tt+1 = tn + lnsn + τn (2)

where ln is the length of the nth note, in beats. With the

{σn} and {τn} variables set to 0, this model gives a lit-

eral and robotic musical performance. The introduction of

these variables allow time-varying tempo through the σ’s

and elongation or compression of note lengths with the τ ’s.

To complete the model we assume that

(
σn

τn

)
∼ N(μn, Σn)

where N(μ,Σ) denotes a joint normal distribution with mean

μ and covariance Σ. Thus the {μn} vectors represent the

tendencies of the performance — where the player tends

to speed up (σn < 0), slow down (σn > 0), and stretch

(τn > 0), while the {Σn} matrices capture the repeatability

of these tendencies.

If the actual note observations generated by our score fol-

lower, {yn} are viewed as imperfect estimates of the true

onset times,

yn = tn + εn (3)

where εn ∼ N(0, ρ2), and all of the {σn, τn, εn} variables

are modeled as independent, then the model is seen as a

straightforward example of the Kalman filter. In this con-

text, all of our desired traits are satisfied. We predict future

evolution by first computing our knowledge of the current

state given our observations, p(sn, tn|y1, . . . , yn). From this

information we can predict future note onset times by ap-

plying our basic model to our current belief, thus allowing

the system to sightread. Furthermore, using standard ideas

from the Bayesian network literature, we can perform max-

imum likelihood estimation on the {μn, Σn} parameters,

thus training our model from actual rehearsal data. Finally,

the computational burden of these calculations is modest, at

most, easily suiting the approach for real time.

Our system is concerned only with the scheduling of the

currently pending accompaniment note. Every time new in-

formation becomes available, either in the form of a played

accompaniment note or a detected solo note, we have new

information about the pending note. Thus we reestimate

the current state, predict the accompaniment location, and

reschedule the note accordingly. If we consider the common

situation involving a run of solo notes culminating in a point

of coincidence between solo and accompaniment parts, we

see that this time of coincidence will be rescheduled many

times before its scheduled time finally occurs and the note

is played. In this way, our system makes use of all informa-

tion currently available, continually modifying its view of

musical timing until it must finally act.

We have created a video to demonstrate this process, avail-

able at the aforementioned website. The video shows the

estimated solo times from our score follower appearing as

green marks on a spectrogram. Predictions of our accom-

paniment system are shown as analogous red marks. One

can see the pending accompaniment event “jiggling” as new

solo notes are estimated, until finally the time currently pre-

dicted time passes.

At this point there seems to be so much “good news” that

one is loathe to make criticisms. However, long experience

with this model in action has demonstrated a number of defi-

ciencies, mostly perceived as a kind of musical naivete. We

will discuss these and pose possible improvements in a later

section.

2.3 Computational Approach

Our program consists of about 100,000 lines of C code with

the graphical interface written in C++. The score follower
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is implemented as a thread which continually polls to see

if a new frame audio data is ready, with about 31 audio

frames per second. When a new frame is available, the

thread runs an iteration of the HMM forward algorithm. If

the forward algorithm detects that the pending solo note has

passed, the most likely onset frame is computed through the

forward-backward algorithm, using all currently-available

audio data. This most likely time is then modeled as a noisy

estimate of the true solo time, (Eqn. 3) and the pending ac-

companiment note is rescheduled using the Kalman filter

model.

Our system can create the audio output using either MIDI,

or resynthesizing the output audio from an accompaniment-

only recording. This latter method is our preferred approach

for traditional common practice art music, since it preserves

much of the tonal quality and some of the performance in-

tent of the original recording. We often use the Music Minus

One recordings for this purpose. When using a recording,

we resynthesize the audio using phase vocoding, thus al-

lowing time warping in the original recording without any

change of pitch.

A separate high-priority thread handles this audio output

— while there is no great danger in delaying the process-

ing of audio input, a delay in audio output can result in a

“drop-out” with an associated click or gap in the audio out-

put. This thread is time critical since we create the audio

at the last possible moment allowing it to be influenced by

the most current information from the audio analysis thread.

Typically we buffer about .064 seconds of outgoing audio.

This thread constructs each frame of audio according to the

current vocoding “play rate,” computed from the prediction

model as the rate needed to arrive and the pending event at

the predicted time.

While originally written for the Linux operating system,

our preferred home, in recent years we have ported the sys-

tem to Windows. Ideology aside, the target community of

this work is actual practicing “classical” musicians, more

familiar with Windows. No special-purpose hardware is

needed to run the system.

3 MODELING THE ORCHESTRA’S

CONTRIBUTION TO THE AUDIO

One of the often-touted virtues of the HMM is its trainabil-

ity. That is, an HMM can use representative data to automat-

ically improve its transition and output models, perhaps re-

sulting in better performance. Though we continue to place

faith in this trainable aspect of the HMM we have replaced

a fully trained output model with a different model that per-

forms significantly better, even without training.

This model computes the likelihood of an audio magni-

tude spectrum q = (q1, . . . , qK) given an assumption about

the note or notes sounding in the solo part. In doing so,

we construct a probability template p = p1, . . . , pK for the

note or notes that may be sounding at a particular time. For

a single note we have modeled p as a mixture of Gaussians

centered at the harmonic frequencies of the note with de-

creasing mixture weights as harmonic number increases:

pk =
H∑

h=1

whN(k; hf0, (hf0)2ρ2) (4)

where
∑

h wh = 1, f0 is the fundamental frequency of the

note, and N(k; μ, σ2) is a discrete approximation to the nor-

mal density function. With this probability model in place,

we view the actual audio magnitude spectrum as a random

sample from the probability model. That is, we regard qk

as the number of observations at frequency k — qk must be

discretized for this to make sense. Then we have

p(q|p) = c(q)
∏
k

pqk

k

where c(q) is the multinomial constant. In the event that

we are following a polyphonic instrument, we simply model

p in Eqn. 4 with an additional sum over the collection of

currently-sounding solo notes. This model has worked well

in practice in a wide variety of situations and can be ex-

tended in some interesting ways, as follows.

The model above may describe reasonably well the au-

dio signal that comes from the soloist, for purposes of note

discrimination. However, our microphone will receive both

this solo audio as well as the audio generated by our accom-

paniment system. When the accompaniment audio contains

components that are confused with the solo audio, this can

lead to the highly undesirable possibility of the accompani-

ment system following itself — in essence, chasing its own

shadow. To a certain degree, the likelihood of this outcome

can be diminished by “turning off” the score follower when

the soloist should not be playing. We do this. However,

there is still significant potential for shadow-chasing since

the pitch content of the solo and accompaniment parts is of-

ten similar.

Our solution to this difficulty is to directly model the con-

tribution of the accompaniment to the incoming audio sig-

nal we process. Since we know what the orchestra is play-

ing, we add a component of this contribution to our prob-

ability model. More explicitly, if ps is the solo template

described above, and po is the known contribution of the or-

chestra to the currently analyzed audio frame, we create a

probability model for the observed magnitude spectrum q
by p = λps + (1 − λ)po. This is the actual p we use in

evaluating the data likelihood.

This addition creates significantly better results in many

situations. The surprising difficulty in actually implement-

ing the approach, however, is that there seems to be only

weak agreement between the audio that our system plays

and the accompaniment audio the comes in from the micro-

phone. We can improve our model of po by various averag-

ing tricks, thus modeling the room acoustics to some degree.
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Doing so leads to a po estimate that seems to largely elimi-

nate the undesirable shadow-chasing.

4 BETTER MODELING OF MUSICAL TIMING

We have already discussed the strengths of the musical tim-

ing model of Eqns. 1-2, however, it would be disingenuous

to claim there are no weaknesses. Clearly our model must

allow for a range of possible musical performances, since

we know we will encounter variation in practice. Since

we do not know the nature of this variation, we have over-

parametrized the model, allowing for way too much flexibil-

ity — and perhaps not the right kind. Surely the player will

not make a change to the tempo and apply tempo-independent

note length variation on every note. However, our model al-

lows such a performance (and accommodates it reasonably

well). We propose a couple of possible variations on the

basic rhythm model here.

Our first observation concerns the {τn} variables of the

model, which represent changes in note length not natu-

rally expressed through tempo. The prime musical example

would be the agogic accent, in which one stresses a note

by lengthening it, though keeping the same basic tempo

in subsequent notes. This is a common expressive device

in playing passages of fast running fast notes, to highlight

important metric positions, harmonic changes, dissonances,

etc. While this example of note lengthening is familiar in

a variety of musical styles, we don’t believe the same holds

for shortening of note length. Of course, there are musi-

cal examples where the conceptual rhythm may differ from

that explicit notation, such as the double-dotting of a French

overture, or the swing of jazz. But these are examples where

“stolen” time is given back elsewhere, unlike the case of

τn < 0. We expect that the musical plausibility of our model

is improved by removing this possibility.

Our second observation is that tempo changes and note

length variation introduced by the player is sparse — most

notes are rendered without any such deviation, while it may

not be musically meaningful to have both agogic accent and

tempo change in the same position. Phrased in terms of our

model, most of the {σn, τn} variables are 0 and we should

not allow σn �= 0 and τn �= 0 for fixed n.

We propose the following model to capture these no-

tions. We let x1, x2, . . . be a hidden discrete process where

n continues to index the notes of the piece. We assume

xn ∈ {1, 2, 3, 4}, with the following interpretations:

xn = 1 ⇐⇒ σn = τn = 0
xn = 2 ⇐⇒ τn = 0
xn = 3 ⇐⇒ σn = 0, τn ∼ N(μ3, ρ

2
3)

xn = 4 ⇐⇒ σn = 0, τn ∼ N(μ4, ρ
2
4)

That is,

1. When xn = 1 we arrive at note n exactly in tempo.

2. When xn = 2 the tempo may change between notes

n − 1 and n, but there is no additional note length

variation.

3. When xn = 3 we have have an agogic accent and no

tempo variation. This is the case of a small agogic ac-

cent where the parameters μ3 > 0 and ρ2
3 are chosen

to ensure that a negative value is highly unlikely.

4. When xn = 4 we have have a similar situation, but

now account for the longer agogic accent. Thus μ4 >
μ3 with ρ2

4 also chosen to make negative values of τn

rare.

Of course these 4 cases are not equally likely, thus we model

the probabilities of p(xn = i) to reflect that i = 1 is, a

priori, the most likely, with reasonable choices for the other

3 cases. It may even be reasonable to model the x1, x2, . . . ,
process as a Markov chain allowing for some small degree

of memory in the choice of expressive actions.

The model is now a Switching Kalman filter [11]. For the

Switching Kalman filter, the exact computation of the fil-

tered distribution: p(xn, sn, tn|y1, . . . , yn) is not tractable

due to the large number of paths x1, . . . , xn that must be

marginalized over, in accounting for all of the ways we can

arrive at state (xn, sn, tn). However, there are numerous

ways to approximate this calculation, using various approxi-

mation schemes. In addition, such models are also amenable

to automatic training using ideas analogous to those em-

ployed with Kalman Filters and HMMs. Here we train the

p(σn, τn) parameters, as before, and additionally train the

p(xn) probabilities. Thus we learn the qualitative behavior

of the soloist through the p(xn) probabilities, which tell us

where various kinds of actions are likely to occur, as well

as the quantitative description learned through the p(σn, τn)
parameters. Experiments are currently underway with such

a model.

5 NEW MUSIC WITH ACCOMPANIMENT

SYSTEM

Our work with accompaniment systems has mostly focused

on common practice music for soloist and orchestra, how-

ever, we believe the accompaniment system is by no means

limited to this domain. There has been a long tradition of

compositions for live soloist and accompanying electronica,

with many possible techniques for coordinating parts. In

some of these, the live player is completely responsible for

synchronization, by either following a tape or playing along

with a click track. In others, a human plays the role of the

“conductor,” cueing electronic or computer parts at the ap-

propriate times. There have also been some examples in

which the computer genuinely follows the live player, but
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with some of the best results in music not relying on regu-

lar pulse, such as with IRCAM’s score follower mentioned

above. We believe that the notion of pulse is in no way

limited to common practice music, as exemplified by the

vast collection of contemporary music that employs metered

rhythm. Thus we believe our accompaniment system may

create possibilities for new music, perhaps not playable by

any other means, whose composition is of genuine interest

to living composers.

Recently we have recorded two such new works for oboe

and computer-controlled pianos written specifically for our

accompaniment system by Swiss composer name omitted
for review: Mist Covered Mountains and Winter. While

the pieces use traditional rhythmic notation and sometimes

have a highly rhythmic feel, they require a level of pianistic

virtuosity and ease with complex polyrhythms posing nearly

superhuman demands on the pianist. This is fitting, since the

piano part(s) were not intended to be played by humans.

One of the main challenges for the oboist is in under-

standing the rhythmic relationship between the parts; the

score notates all rhythm precisely, though there is an aleatoric

feel to large sections. While a good deal of score study was

necessary to accomplish this, quite a bit of rote memoriza-

tion was also necessary, accomplished through regular lis-

tening over a period of several months. Perhaps the author’s

original understanding of this music was something like the

young student’s knowledge of the “Pledge of allegiance”

— knowing the sequence of syllables, but perhaps not the

meaning of the words. However, the music began to make

sense after passing through this stage. The accompaniment

system was a significant aid in learning these pieces, since

it came to our rehearsals already understanding the complex

rhythmic relations and reinforced these through repetition

and automatic adaptation to the soloist’s errors.

The music was recorded in a studio, recording the live

oboe while listening to a MIDI performance of the pianos

through headphones, as controlled by the accompaniment

system. The MIDI piano performance was as captured and

later used to control a Bösendorfer reproducing piano. The

resulting piano audio was then mixed with the original oboe.

Recordings of sections of these pieces are available at the

web page mentioned earlier. Though the merit of these pieces

does not lie in their reliance on new technology, it seems

nearly impossible to perform these pieces with anything other

than an accompaniment system.
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ABSTRACT

This paper presents a matrix factorization based feature for
audio to score alignment. We show that in combination
with dynamic time warping it can compete with chroma vec-
tors, which are the probably most frequently used approach
within the last years. A great benefit of the factorization-
based feature is its sparseness, which can be used in order
to transform it into a symbolic representation. We will show
that music to score alignments using the symbolic version
of the feature is less accurate but on the other hand reduces
the memory required for feature representation and during
the alignment process to a fraction of the original amount.
This is of special value when dealing with very long pieces
of music where the limits of default DTW are reached.

1 INTRODUCTION

The problem of audio to midi alignment is well known and
has been of broad interest within the last years. The task
is to link information from a score representation to an au-
dio recording of a certain performance of a piece of music.
Since symbolic transcriptions of a large number of classical
as well as modern pieces are available, alignment can re-
place the much more complex task of blind audio transcrip-
tion in most scenarios where the performed piece is known
in advance.

This is the case in a number of applications like in the
field of computational musicology. Performance analysis
for example relies on the exact transcription of various per-
formances in order to describe or compare the styles of dif-
ferent artists. Other applications of audio alignment are ped-
agogical systems and special query engines as well as intel-
ligent audio editors or players.

State-of-the-art approaches like [2], [4], or [12], just to
name a few, use a combination of a local distance measure
and a specific kind of dynamic time warping (DTW) or Hid-
den Markov Models (HMM) in order to find the optimal
global alignment between the score and a corresponding au-
dio file. Although the idea of calculating such alignments
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in the symbolic domain is not new [1], modern approaches
avoid transcription of the audio data into a symbolic repre-
sentation. Instead local distances are calculated from acous-
tic features extracted from the audio signal on the one hand,
and either from a rendering or directly from the score on the
other hand.

Amongst these acoustic features chroma vectors seem to
be most frequently used. Each vector has 12 elements cor-
responding to the pitch classes (i.e. C, C#, D,. . . ). The com-
putation is based on a short time Fourier transform (STFT)
where each frequency bin is mapped to a musical note. The
notes are then folded into a single octave by calculating the
average energy of all STFT bin contributions to the same
pitch class. A more detailed description can be found in [7].
In [4] this representation was compared to others like Pitch
Histograms or MFCC based features in the context of audio
matching and alignment. It was shown that chroma vectors
perform significantly better than the other features.

Another approach is to use features composed of estima-
tions of the presence of individual pitches instead of pitch
classes. The idea of such a feature based on non-negative
matrix factorization was initially proposed in [2]. In this
work we describe a feature that also represents f0-observa-
tion probabilities for single pitches but amongst other things
differs in the optimization criterion and algorithms used in
the matrix factorization step. Whereas in [2] a qualitative
evaluation is given, we will present a quantitative evaluation
on a large data set, comparing our feature to chroma vec-
tors and show that the two features yield comparable results
when used in combination with dynamic time warping.

Although this feature is acoustic in nature it can be easily
converted into a symbolic form in order to use the advan-
tages of both representations. One could be a reduction of
computational costs since local similarities can be computed
on note events instead of the much larger number of audio
frames.

In Section 2 we will give an overview of the algorithm
used to extract the proposed feature. Section 3 then de-
scribes the global alignment using this feature in the acous-
tic domain. An evaluation and comparison with the perfor-
mance of chroma vectors is given in Section 4 before we
show and discuss an analogous alignment method in the
symbolic domain in Section 5.
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2 METHODOLOGY

2.1 Pitch decomposition

A feature based on non-negative matrix factorization (NMF)
for audio alignment was originally proposed in [2]. The ba-
sic idea is that a non-negative input V of the size m × n is
decomposed into two as well non-negative output matrices
W and H of size m × r and r × n respectively, such that

V ≈ W · H (1)

The quality of a factorization is measured by a cost func-
tion over V and W · H . Common choices for these func-
tions are the Euclidean distance or the Kullback-Leibler di-
vergence. By minimizing the cost function W and H are
learned as a fixed number r of basis vectors and the aggre-
gation of their activation patterns over time.

Applying this principle to audio processing, one can use
a spectrogram, as obtained by the short time Fourier trans-
form, in order to learn a base set W of weighted frequency
groups in an unsupervised manner. In the ideal case these
would either represent single pitches played on a certain in-
strument or pitches that are often found together like the
notes of a chord.

However in the context of audio alignment, where the
piece and its score are known in advance, we assume the in-
struments used to be known as well. So there is no absolute
need for unsupervised learning of base vectors. Instead a
dictionary W of tone models, adjusted to those instruments,
can be trained in advance. This leaves us with only H being
unknown.

As described by [11] and [8] this reduces the NMF prob-
lem to the much simpler decomposition task where each col-
umn vector of V can be processed independently, such that
equation 1 resolves to

v ≈ W · h (2)

where W is the fixed set of tone models. v and h rep-
resent the spectrogram of a single time frame and the pitch
activation respectively. This pitch activation h is the feature
vector describing one time frame. In order to find an optimal
h, again a cost function is needed. Throughout this work the
mean square criterion given as

f =
1
2
‖ Wh − v ‖2 (3)

is chosen and optimized using a standard algorithm for
solving non-negative least square problems as described in
[6]. Reassembling the activation patterns of all time frames
results in a multiple-f0 estimation over the whole piece of
music.

On the other hand extracting feature vectors describing
the score is trivial since pitch information can be directly
taken from the midi representation.

2.2 Dictionary learning

In order to process the pitch decomposition as described
above a dictionary of tone models is required. Each of these
models represent one pitch by its weighted frequency com-
ponents. As pointed out in [8] the exactly same method as
used for pitch decomposition in the performing step can be
used for model learning in the training step.

Given a database of transcribed audio training samples,
the activation patterns of single pitches are known due to
the transcription. Therefore H in equation 1 can be fixed
to these activation patterns while now W is calculated. Us-
ing monophonic training samples where only one pitch is
present can simplify the learning step even more. On the
one hand W is reduced to a vector and h becomes one scalar
at each time frame. On the other hand such training samples
can be created with minimal effort. Since the activation en-
ergy can be described by the amplitude envelope, the only
information required for each sample is the pitch as well as
the instrument that has been playing.

3 ALIGNMENT

3.1 Local Distances

Given two sequences of feature vectors a global alignment
has to be found that matches each element of one sequence
to a corresponding element within the other sequence. In
order to measure the similarity between two such elements
a local distance function is required. A common choice is
the Euclidean distance or the Kullback-Leibler divergence.
However two properties of the factorization based feature
suggest the use of another distance measure.

In the first place the feature produces a different quantity
of deletion (false negative) and insertion (false positive) er-
rors. Especially in high pitch ranges the majority of errors
is made up by spurious note detections. Therefore the two
types of errors should be treated differently.

Secondly the STFT we use here divides the spectrum into
linearly distributed frequency bins. On the contrary musical
notes follow a logarithmic frequency scale. So the deeper
a tone is, the closer in the spectrogram it is to its immedi-
ate neighbors. Additionally higher pitches also exhibit sig-
nificant energy in the lower frequency bins making it even
harder to reliably detect low notes. Therefore local distance
calculation should accommodate this fact by relatively tol-
erant penalizing of missing low notes in the audio feature.

A simple distance measure that combines these ideas and
has yielded good results during experimentation is

d(hs, hp) =
N−1∑
i=0

diff(hs
i , h

p
i ) (4)

with

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 78



diff(hs
i , h

p
i ) =

⎧⎪⎨
⎪⎩

hs
i ∗ α if hp

i = 0
hp

i ∗ β if hs
i = 0

|hs
i − hp

i | else
(5)

where hs represents a feature vector taken from the score
and hp represent one feature vector extracted from the re-
corded performance. α and β are the weights for missing
and spurious notes respectively. Throughout our work 1.2
and 2.0 have proven to yield good results.

Experiments have further shown that alignments can be
improved by ignoring missing notes lower than a threshhold
around C3 (midi pitch 48). Also taking the square root of d
turned out to be advantageous in combination with dynamic
time warping as explained in Section 3.2.

3.2 Global Optimization

Using the local distance measure a similarity matrix SM
comparing each frame of one sequence to each frame of the
other sequence can be built. Mapping corresponding frames
together is done by finding a minimal cost path through this
similarity matrix. A path through SMij is then equivalent
to the alignment of frame i of the score feature sequence to
the performance feature sequence’s frame j. Dynamic time
warping (DTW) is a well-established dynamic programming
based algorithm that finds such optimal paths. A detailed
tutorial can be found in [9].

In order to get meaningful results a path has to meet sev-
eral constraints. The constraint of continuity forces a path to
proceed through adjacent cells within the similarity matrix.
Jumps would be equal to skipping frames without consider-
ing the costs of this operation. The constraint of monotonic-
ity in both dimensions guarantees that the alignment has the
same temporal order of events as the reference sequence.
And finally the end-point constraint forces the ends of the
path to be the diagonal corners of the similarity matrix. In
doing so it assures that the alignment covers the whole se-
quences.

The determination of the optimal path according to DTW
works in two steps. The forward step starts at the point [0, 0]
with the cost SMij and recursively calculates the minimized
path cost of any partial alignment ending with frame i of the
score being aligned to frame j of the recorded performance
according to

Accu(i, j) = min

⎧⎪⎨
⎪⎩

Accu(i − 1, j − 1) + SMij ∗ wd

Accu(i − 1, j) + SMij ∗ ws

Accu(i, j − 1) + SMij ∗ ws

(6)
The three options correspond to a diagonal step, a step

upwards, and a step to the right within the similarity matrix
respectively. Accordingly wd and ws are weights for diag-
onal and straight steps. We have chosen the values 1.4 and

Figure 1. Refinement of the global alignment: The esti-
mated path leads the search area through a similarity matrix
computed using a higher time resolution.

1.0 giving diagonal steps a preference over straight ones.
In our implementation we do this calculation in place, i.e.
overwriting the values SMij by Accu(i, j) in order to save
memory space.

Additional to the accumulated path cost a second matrix
is used in order to memorize whether the last step lead-
ing to a point [i, j] was diagonal, upwards, or to the right.
As soon as all values Accu(i, j) have been calculated this
information is used to trace the complete path back from
[N − 1, M − 1] to [0, 0].

3.3 Alignment of very long sequences

This algorithm is of complexity O(n2) in time as well as in
space. For very long pieces of music it is impossible to keep
a reasonable time resolution of features and still compute a
global alignment by DTW. Several improvements have been
proposed in order to reduce the complexity, including path
pruning where only promising partial paths with costs be-
low an adaptive threshold are further expanded or Shortcut
Path where only the alignments of frames corresponding to
note on- and offsets are stored [12]. Another approach to
handle very long pieces of music is to use online algorithms
like proposed in [3] instead of processing the whole piece at
once.

Another approach reducing time and space complexity to
O(n) is multiscale DTW ([10]). Here an initial estimation
of the optimal path is calculated using a low time resolution
and then refined iteratively. Since each iteration increases
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time resolution but only considers paths near the one found
during the last step there is no guarantee that the optimal
path is really found. It may happen that low resolution fea-
tures are misleading in such a strong way that the actual
optimum is out of the search radius.

In our implementation we only use two iteration steps.
In the first one a standard DTW is computed on features ex-
tracted from a spectrogram. The window as well as the hop
size was chosen to be 4096 samples (∼93 ms). This allows
processing pieces of lengths up to more than 25 minutes.
The second step is the refinement, calculated on features
based on another spectrogram where the hop size was re-
duced to 512 samples (∼12 ms). As illustrated by Figure 1
the path estimation from the first step leads the search in
the second step so that only similarity values and path costs
within an area of radius r frames needs to be calculated.
In this way memory requirements can be kept low by just
storing similarity measures of the currently processed row
or column and path costs for the last 2r rows and columns,
leading to constant space complexity of this part of the al-
gorithm.

4 EXPERIMENTAL RESULTS

In order to evaluate the factorization based feature we test
its performance on several pieces of classical piano music.
The database used consists of 13 Mozart sonatas played by
a professional pianist on a computer monitored Bösendor-
fer SE290 grand piano, giving us a precise ground truth of
played notes in midi representation. The data set consists of
more than 100.000 notes and represents a performance time
of almost 4 hours.

The single pieces have lengths from 12 minutes up to
more than 26 minutes 1 . This is longer than test pieces used
in most other publications. On the one hand this leaves us
with issues of computational expenses, which are handled as
described in Section 3.3. On the other hand stronger devi-
ations from a strictly diagonal alignment path are expected
since the different movements of a sonata are played using
different tempi, which prohibits the use of additional align-
ment constraints like the Itakura Parallelogram [5].

The tone models used during factorization were learned
from recordings of single tones played on the same piano.
Since such a recording was only available for every fourth
midi pitch, the missing models were generated by means of
parabolic interpolation.

4.1 Feature Evaluation

In the evaluation process an alignment was calculated for
each of the test pieces using the audio recording and a midi
file containing the mechanical score without any expressive

1 Note that we align complete sonatas. That is, the pieces were not cut
into individual movements.

timing. The resulting note onset times were compared to
the ground truth data. Sections where more than 10 consec-
utive notes had been misplaced by more than 3 seconds were
classified as ’unaligned’. Throughout the test set 31 such re-
gions were found containing 2438 notes, which accounts for
2.4% of the overall number of notes. Further investigation
showed that such regions where alignment failed are likely
to be sections played very softly and with increased use of
pedal. This causes the spectrogram that is used as basis for
the feature calculation to blur and makes it very hard to dis-
tinguish partials belonging to a certain pitch.

For the remaining aligned notes we compute the absolute
displacement relative to the ground truth data. In Table 1 we
give the median difference, the third quartile and the limit
covering 95% of all displacements.

The largest value found within the test set was an error
of 8.631 seconds. Although we counted unaligned sections
separately, sporadic values of that magnitude are plausible.
Since we are dealing with whole sonatas it can happen that
the alignment places single notes played at the end of one
movement at the beginning of the next one and inversely.
Pauses of one or more seconds between movements as well
as fermatas and long sustaining of notes at the ends of move-
ments lead to such dramatic values.

In the evaluation of onset detection algorithms, an error
threshhold of 50 ms up to which a note onset is classified as
correctly detected is quite common in literature. Therefore
we also give the percentage of notes satisfying this criterion
which is about 50% on average in Table 1.

4.2 Feature Comparison

In the context of audio matching and alignment, a compar-
ison of several acoustic features is given by Hu et al. ([4]).
They show that chroma vectors perform significantly bet-
ter than the other features including variations of an MFCC
based approach and Pitch Histograms. This is relevant to
our work since Pitch Histograms as defined in [13] also rely
on a multiple f0-estimation. However they are computed by
an algorithm based on autocorrelation.

Using the same testing environment as described above
we also compare the factorization based feature against the
performance of chroma vectors. We found that chroma vec-
tors are more robust, leaving only 687 notes unaligned which
accounts for 0.7% of the overall number of notes. However
the evaluation of the precision of all aligned notes as given
in Table 1 is comparable to the results yielded by the factor-
ization feature. Also the value of the largest absolute error
being more than 9 seconds is even worse.

The evaluation criterion used in this work was different
from the one in [4]. So the results are not directly compa-
rable. In any event, we can not confirm that chroma vectors
perform significantly better than features computed by mul-
tiple f0-estimation except for robustness, where the amount
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chroma vectors factorization based
piece # notes duration

50% ≤ 75% ≤ 95% ≤ % ≤ 50ms 50% ≤ 75% ≤ 95% ≤ % ≤ 50ms
kv279 7387 16:21 35 ms 65 ms 327 ms 64.7% 32 ms 61 ms 408 ms 68.6%
kv280 6070 15:04 41 ms 75 ms 432 ms 59.7% 38 ms 69 ms 399 ms 61.6%
kv281 6395 14:37 40 ms 63 ms 193 ms 61.7% 40 ms 67 ms 169 ms 60.1%
kv282 5564 14:59 60 ms 145 ms 532 ms 41.9% 70 ms 222 ms 808 ms 38.2%
kv283 7884 17:35 38 ms 76 ms 316 ms 59.8% 40 ms 80 ms 500 ms 57.8%
kv284 12762 26:07 37 ms 65 ms 262 ms 64.1% 39 ms 65 ms 260 ms 63.2%
kv330 7589 18:36 38 ms 70 ms 262 ms 60.2% 35 ms 66 ms 358 ms 64.8%
kv331 11580 22:51 276 ms 415 ms 508 ms 9.6% 277 ms 407 ms 493 ms 10.4%
kv332 8744 18:02 51 ms 92 ms 338 ms 49.4% 52 ms 89 ms 302 ms 48.9%
kv333 8833 20:34 58 ms 89 ms 244 ms 44.1% 59 ms 93 ms 261 ms 44.0%
kv457 6915 18:22 44 ms 97 ms 525 ms 54.7% 48 ms 96 ms 919 ms 52.0%
kv475 3871 12:05 79 ms 198 ms 718 ms 32.5% 76 ms 148 ms 579 ms 32.9%
kv533 8611 22:27 46 ms 86 ms 208 ms 52.9% 47 ms 86 ms 178 ms 52.4%

all 102205 3:57:40 50 ms 106 ms 449 ms 50.0% 50 ms 104 ms 459 ms 50.2%

Table 1. Comparison between chroma vectors and the factorization based feature in combination with DTW

of aligned notes was 99.3% instead of 97.6%.

5 THE SYMBOLIC DOMAIN

Most current methods for audio to score alignment includ-
ing the approaches described above work in the acoustic do-
main, avoiding the step of explicitly transcribing the audio
data. Such a transcription would bring some benefits.

• Whereas acoustic features will result in large arrays of
data, symbolic representations are much more com-
pact, using just a small fraction of the original mem-
ory space.

• While computing alignments using DTW-like algo-
rithms the number of frames per sequence can be dra-
matically reduced from a fixed ratio of frames per
time unit to one frame each time a note onset or offset
occurs.

• Using a transcription in midi format obvious errors
of the feature extraction process can be recognized
and handled prior to the actual alignment step. Exam-
ples for such obvious errors are detected notes with
pitches never played during the current piece or de-
tected chords that are never used. This might also
eliminate incorrect notes played by the performer in
certain cases.

We have also done experiments using the same factoriza-
tion method as described above to extract an audio feature in
midi-format by just setting a note on-event each time the ac-
tivation energy hp

i of pitch i becomes greater than zero and
setting a note off-event each time hp

i falls back to zero. This

50% ≤ 75% ≤ 95% ≤ % ≤ 50ms
acoustic 32 ms 61 ms 408 ms 68.6%
symbolic 205 ms 370 ms 905 ms 18.9%

Table 2. Comparison of alignments using the factorization
based feature in its original version and pruned to a symbolic
representation

is not just exploiting the sparseness of the factorization re-
sult but also strong pruning since note velocities are set to a
default value and the actual values of the activation patterns
during the note sustain time are dropped.

Applied to the recording of Mozart’s piano sonata kv279
the resulting midi representation contains 6275 notes using
less than 150 kB of memory. This is a little more than 7.5%
of the space needed to store the chroma vectors calculated
at a time resolution of 50 frames per second. For the orig-
inal acoustic representation of the factorization result this
relation is even more drastic. The activation patterns of 58
pitches (concerning to the pitch range used in the kv279)
require 11MB of memory which is more than 70 times the
space needed for the symbolic version of the feature.

The actual alignment is again done using dynamic time
warping. In doing so from the score as well as the audio
feature slices containing unchanged numbers of notes are
extracted (i.e. splitting the piece at each note on- and offset).
The resulting number of feature vectors are comparable to
those obtained in the first estimation step of our multiscale
DTW implementation as described in section 3.3. For the
piece kv279 there were no unaligned regions for both fea-
ture representations. But as can be seen from Table 2, the
accuracy yielded by the symbolic feature can not compete
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with the original version. However, a maximum displace-
ment error of 7.95 seconds indicates that stability is not de-
creased.

A deterioration of accuracy by a factor 7 (concerning the
median displacement) may be an acceptable compromise, at
least in some applications. It has to be considered that the
compactness of feature representation was increased by a
factor of 70 and the time of computation in the costly align-
ment step was reduced to about one tenth because, because
no refinement step is needed.

6 CONCLUSIONS

In this paper we have explained a way to extract f0-estima-
tion features from spectrograms. We then used dynamic
time warping in order to align such feature sequences to
midi representations of the corresponding score. Since we
used whole piano sonatas for our experiments a multiscale
DTW approach had to be used in order to tackle complex-
ity issues. Evaluations showed that the extracted feature can
compete with other state-of-the-art features.

The actual benefit of the feature described here as well as
the one proposed by [2] is that unlike others they are very
sparse in nature. So they can easily be converted into a sym-
bolic representation. Using additional pruning the accuracy
is reduced significantly but on the other hand data reduc-
tion concerning the feature representation as well as during
the alignment process is remarkable. Since we have demon-
strated the capabilities of our original feature, the modifica-
tion can be seen as a tradeoff between accuracy and compu-
tational costs.

A median displacement error of about 200 ms is too much
for applications like performance analysis. But applications
like content query engines might profit from such compact
features. Especially in the context of huge databases fast and
memory-saving routines can be of advantage over methods
yielding the highest accuracy.
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ABSTRACT

In a stereophonic music production, music producers seek
to impart impressions of one or more virtual spaces upon
the recording with two channels of audio. Our goal is to
map spaciousness in stereophonic music to objective sig-
nal attributes. This is accomplished by building predictive
functions by exemplar-based learning. First, spaciousness
of recorded stereophonic music is parameterized by three
discrete dimensions of perception—the width of the source
ensemble, the extent of reverberation, and the extent of im-
mersion. A data set of 50 song excerpts is collected and
annotated by humans for each dimension of spaciousness.
A verbose feature set is generated on the music recordings
and correlation-based feature selection is used to reduce the
feature spaces. Exemplar-based support vector regression
maps the feature sets to perceived spaciousness. We show
that the predictive algorithms perform well on all dimen-
sions and that perceived spaciousness can be successfully
mapped to objective attributes of the audio signal.

1 INTRODUCTION

Auditory spatial impression, or the concept of type and size
of an actual or simulated space [1], helps a listener form
judgements about auditory events and where those events
occur. In natural acoustic settings, the relative positions of
sound sources to each other, the relative positions of sound
sources to a listener, the listener’s and sources’ relative po-
sitions to the surfaces of the listening environment, and the
physical composition of the structures that form and fill the
listening environment are factors that contribute to spatial
impression.

In a stereophonic music production, music producers seek
to impart impressions of one or more virtual spaces upon
the recording with two channels of audio. Spatial cues are
captured, manipulated, and added in order to provide the lis-
tener with impressions of simulated acoustic spaces, whether
intentionally natural or unnatural sounding. The artful han-
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dling of these cues by producers can affect enjoyability of
the listening experience.

Our goal is to successfully predict the spatial impression
that stereophonic recorded music imparts. A robust predic-
tive system can empower music producers, listeners, and
consumers with perceptually meaningful ways to evaluate,
manipulate, and manage their music. Top-down controls for
spaciousness may help music makers sculpt their sound. Ca-
sual listeners may customize their experience by using “spa-
ciousness” controls similar to the EQ controls ubiquitous in
consumer reproduction systems. By giving humans such re-
sources, the music making and listening experience will be-
come more flexible and interactive.

We set about our task by parameterizing the concept of
spaciousness with three dimensions. A data set of stereo-
phonic music recordings is collected and subsequently an-
notated for each dimension of spaciousness. We then use
exemplar-based learning to build functions that map objec-
tive measurements of digital audio to the annotated music
recordings.

We have structured this paper as follows: Section 2 gives
some background as to how others have dealt with spacious-
ness and describes our approach to predicting spatial im-
pression. In Section 3, we detail the processes of music
selection and annotation. Section 4 describes the learning
algorithms that are used and their parameterizations. The
algorithms are tested and subsequent results are discussed
in Section 5. We end with concluding remarks and sugges-
tions for future work in Section 6.

2 BACKGROUND AND APPROACH

Our approach is summarized in Figure 1. We begin with a
set of musical recordings and end with three spatial dimen-
sions, or “target concepts”—the width of the source ensem-
ble, the extent of reverberation, and the extent of immersion
(defined in Table 1). Prediction is accomplished by map-
ping subjective ratings to objective measurements by ma-
chine learning.

In this paper, we focus on three relations between lis-
tener and music—the source relation (width of ensemble),
the environment relation (reverberation), and the global re-
lation (immersion). They have been selected from an amal-

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 83



Figure 1. Framework for predicting perceived spaciousness
of music recordings.

gamation of perceived attributes found in literature on nat-
ural acoustics and sound capture/reproduction. For both of
these areas, there is an implicit need to rate the spatial qual-
ity of such systems. To do so, researchers must know the
dimensions of spaciousness that are most salient to human
listeners and to have a means of evaluating spatial quality
along these dimensions.

In natural acoustics, spatial impression is divided into
two primary dimensions, Apparent Source Width (ASW)
and Listener Envelopment (LEV) [2, 3]. In sound capture
and reproduction, the dimensionality of spaciousness is fur-
ther demarcated. For example, [4] groups spatial attributes
into descriptions that are related to sources, groups of sources,
environments, and global scene parameters. We borrow from
the literature of both fields for identifying salient spatial di-
mensions. ASW is defined as “the apparent auditory width
of the sound field created by a performing entity” in [5] and
“ensemble width” is the “overall width of a defined group
of sources” in [4]. Both of these definitions connote one at-
tribute that entails the width of the source ensemble. The ex-
tent of reverberation is directly linked to LEV in [5]. How-
ever, we use “immersion” to describe an attribute that en-
capsulates several kinds of envelopment, as is done in [4],
and we treat immersion and reverberation independently, as
is done in [6].

Once we have defined the spatial dimensions, or target
concepts, we need a means of quantitatively evaluating them.
In natural acoustics, objective measurements have been sug-
gested numerous times, for example in [5] and [7]. Such
measures quantify acoustic properties of physical space and
relate these to perceived spaciousness. As recorded music
only represents physical space virtually, measurements like

• The “width of the source ensemble” of a sound is
how widely spread the ensemble of sound sources
appears to be.

• The “extent of reverberation” of a sound is the
overall impression of how apparent the reverber-
ant field is.

• The “extent of immersion” is how much the sound
appears to surround one’s head.

Table 1. Definitions of learning concepts.

these do not serve our goals. To the best of our knowledge,
the perception of spatial attributes has been addressed qual-
itatively, but not quantitatively, in sound capture and repro-
duction.

It is therefor necessary for us to newly construct a set
of annotated music recordings and determine a quantitative
relation. The target concepts cannot be divided into a se-
mantically meaningful finite number of categories, so we
impose a bounded arbitrary continuum and build a regres-
sion model for each concept. With the exception of listener
experience, perceived attributes discussed in the literature
are consistently related to sound sources or their environ-
ment, rather than personal properties like gender. These are
universal in nature and therefor support a model which maps
spaciousness to objective measurements of the recorded sig-
nal.

3 MUSIC SELECTION AND ANNOTATION

3.1 Music Selection and Segmentation

Fifty songs were selected from an online music database [8].
The songs were equally distributed across seven genre
groups: “Alt/Punk,” “Classical,” “Electronic-Dance,” “Hip-
Hop,” “R&B/Soul,” and “Rock/Pop.” An equal propagation
of chorus, verse, and bridge segments were spread across
the pool. A seven second segment was excerpted from each
of the songs. The duration was chosen, by informal eval-
uation, to be long enough to develop concrete impressions
of spaciousness, yet short enough to prevent much tempo-
ral variation in spaciousness within the excerpt. None of
the recordings were from commercially available songs; it
is therefore unlikely that songs would be recognizable and
induce bias during human annotation.

3.2 Labeling

Human subject studies were conducted online and in a lab-
oratory. In each, subjects were required to use headphones.
First, basic demographic data was collected. Participants
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were mostly experienced music listeners, but varied in coun-
try of residence, age, gender, profession, and other attributes
of demography. Subjects were given explicit explanations
and definitions of the dimensions that they were to evalu-
ate. For each of the terms, participants were asked to listen
to a non-musical mixture of sources (a room of applause).
This training phase was designed to give participants time
to familiarize themselves with the concepts and focus their
listening on a simple stimulus. The nonmusical recordings
exhibited the spatial dimensions but, to avoid pre-biasing
their judgments of spaciousness, participants were not told
how spacious the recordings were to be perceived.

Subjects were asked to rate, on a bipolar 5-ordered Lik-
ert scale from “Less” to “Neutral” to “More,” each of the
dimensions for each song. There were a total of 98 par-
ticipants providing 2,523 total ratings. Ratings were trans-
formed from a Likert space to a numerical space by assign-
ing the 5-ordered response categories integer values. For
each song and dimension, all responses that were at least 3
standard deviations from the mean were removed as outliers.
Any participant who had more than two outliers for a di-
mension was removed from that dimension. The responses
for each dimension were standardized to zero mean and unit
variance, and the mean for each dimension and song was
calculated. The pairwise correlation coefficient R was cal-
culated between ratings for the learning concepts. Width–
immersion R was 0.87 and reverberation–immersion R was
0.57. Concepts width–reverberation were the least corre-
lated, with a coefficient of 0.32, suggesting that subjects
perceived differences between these dimensions unambigu-
ously.

4 MACHINE LEARNING

A block diagram for building our objective-to-subjective map-
ping function is shown in Figure 2. At the beginning, we
have a large feature space that objectively describes the mu-
sic recordings. At the end, we have a support vector machine
that needs optimization to accurately predict subjective rat-
ings. In between, a correlation-based feature selection and
subset voting scheme are used to narrow down the feature
space. Then a grid search for the best parameterization of
the support vector regression function is conducted. Each
stage is described in detail below.

4.1 Feature Generation

A verbose set of attributes was batch-generated on the Left-
Right difference signal of the data set using the MIR Tool-
box [9] and two additional features. The batch-generated
features include many that are widely used, like MFCCs,
Spectral Centroid, and Spectral Flatness. The two addi-
tional features, which we have reported in [10], are non-
standard but describe spatial characteristics of a signal.

Category Feature
Dynamics RMS energy
Rhythm Fluctuation Peak Position*, Fluctuation Peak

Magnitude*, Fluctuation Spectral Centroid*, Tempo,
Tempo Envelope Autocorrelation Peak Position,
Tempo Envelope Autocorrelation Peak Magnitude,
Attack Time, Attack Time Onset Curve Peak Position*,
Attack Time Onset Peak Magnitude*, Attack Slope,
Attack Slope Onset Curve Peak Position*, Attack Slope
Onset Curve Peak Magnitude*

Timbre Zero-Cross Rate, Spectral Centroid, Brightness, Spec-
tral Spread, Spectral Skewness, Spectral Kurtosis, Roll-
Off (95% threshold), Roll-Off (85% threshold), Spec-
tral Entropy, Spectral Flatness, Roughness, Roughness
Spectrum Peak Position, Roughness Spectrum Peak
Magnitude, Spectral Irregularity, Irregularity Spectrum
Peak Position, Irregularity Peak Magnitude, Inhar-
monicity, MFCCs, Δ MFCCs, ΔΔ MFCCs, Low
Energy*, Low Energy RMS, Spectral Flux

Pitch Salient Pitch, Chromagram Peak Position, Chromagram
Peak Magnitude, Chromagram Centroid, Key Clarity,
Mode, Harmonic Change Detection

Spatial Wideness Estimation*, Reverberation Estimation*

Summary
Functions

Mean, Standard Deviation, Slope, Period Frequency,
Period Amplitude, Period Entropy

Table 2. List of audio features, their categories, and sum-
mary functions. Features with an asterisk (*) only had their
mean calculated.

The first blindly estimates, through magnitude cancellation
techniques, how widely a mixture of sources is distributed
within the stereo field. The second uses the residual of a
linear predictor as an indicator of how much reverberation a
signal contains.

For most features, the recording was frame-decomposed
and feature extraction was performed on each frame. Some
features, such as Fluctuation, were calculated on the en-
tire segment. The frame-level features were summarized by
their mean and standard deviation. Additionally, their pe-
riodicity was estimated by autocorrelation, and period fre-
quency, amplitude, and entropy was calculated. The size
of the final feature space extracted from the recordings was
430 dimensions. The entire set of features, which can be
sub-divided into categories of Dynamics, Rhythm, Timbre,
Pitch, and Spatial, is listed in Table 2.

4.2 Pre-Processing

The feature space was normalized to the range [0, 1] and
transformed into a principal components space. The non-
principal components that accounted for the 5% least vari-
ance in the data set were discarded, and the data set was
transformed back to its original symbolic attribute space.
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Figure 2. Block diagram for building and optimizing the mapping function.

4.3 Feature Selection

For each target concept, Correlation-Based Feature Selec-
tion (CFS) was performed with a greedy step-wise forward
search heuristic. CFS chooses attributes that are well corre-
lated to the learning target, yet exhibit low intercorrelation
with each other. It has been shown to be good for filtering
out irrelevant and redundant features [11].

However, supervised attribute selection can over-fit at-
tributes to their learning concept when the same data set is
used for training and testing [12]. To minimize subset se-
lection bias, a percentile-based voting scheme with 10 ×
10-fold cross-validated attribute subset selection was per-
formed. Multiple cross-validation (CV) is a robust way of
estimating the predictive power of a machine when only a
small data set is available. As each fold generated a differ-
ent feature set, some features were selected more often than
others. For each run, features were placed in a percentile bin
based upon how many times that feature had been selected.
Up to 11 new data sets with monotonically increasing fea-
ture spaces were generated in this way.

Each feature space was then used to learn a non-optimized
support vector regression algorithm for each dimension. The
subset that performed the best for each learning concept was
voted as the final subset for further system optimization and
training.

4.4 Regression

For each concept, a support vector regression model was im-
plemented with the Sequential Minimal Optimization (SMO)
algorithm [13]. Support vector machines have shown to
generalize well to a number of classification and regression
tasks. Our support vector models employed a polynomial
kernel, K(x, y) = (< x, y > +1)p, chosen as the best in an
informal kernel search. Support vector machines perform,
to some extent, similarly well independent of kernel type if
the kernel’s parameters are well-chosen [14]. An exhaus-
tive grid search for the optimal values of the support vec-

tor machine complexity (C) and its kernel exponent (p) was
conducted after the optimal feature space had been selected.

5 EXPERIMENTS AND RESULTS

For each dimension of spaciousness, the best feature space
was found by using Multiple CV. Then we systematically
searched for the support vector parameterization that yielded
the lowest error for each concept. Success was evaluated by
relative absolute error (RAE), which is insensitive to scale.
RAE is the sum of all the errors normalized by the sum of
the errors of a baseline prediction function, Zero-R. Zero-R
picks the mean value of the test fold for every instance. An
error of 0% would denote perfect prediction.

Figure 3 shows the results of testing for the best feature
space percentile. All predictors show two local minima:
Width at the 20th and 50th percentiles; reverberation at the
10th and 40th percentiles; and immersion at the 20th and
70th percentiles. This indicates that there might have been
more than one optimal feature subset percentile to use. We
have chosen the percentile that yielded the lowest RAE for
the algorithm, without testing all local minima. The steep-
ness of the error curves between the 0 and 10th percentiles
shows that simply using the entire feature set without any
feature selection would greatly inhibit the performance of
the support vector algorithm.

The final test results are depicted in Table 3. The mean
absolute error (MAE), which is dependent on scale, was no
more than 0.11 for any of the predictors. The average MAE
for the Zero-R predictor is shown for comparison at the bot-
tom of the table. The predictive capability of each of the ma-
chines was well above chance, as indicated by the RAE. All
predictors had a correlation coefficient R of 0.73 or higher.
An R value of 0.0 would denote a complete lack of correla-
tion between the predicted and actual values. The predictor
for wideness of source ensemble performed the poorest, but
still well above chance. By all measurements of accuracy,
the predictor for extent of reverberation performed the best.
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Figure 3. Performance of non-optimized machine on mono-
tonically decreasing feature spaces.

Its coefficient of determination (R2) indicates that the func-
tion accounted for 62% of the variance in the test set.

A summary of the final feature subset percentile used for
learning each concept is shown in Table 4. While most fea-
tures are probably not individually useful, the correct com-
bination of features is. Features that were selected for more
than one learning concept are shown in boldface. The width
and immersion dimensions shared the most features in com-
mon; this is understandable, as these dimensions shared the
highest correlation among annotations. Selected features for
all three concepts were largely from the Timbre category.
We find it interesting that the reverberation predictor picked
three features from the Pitch category. We also note that the
spatial estimators for wideness and reverberation were auto-
matically chosen for the tasks of predicting source ensemble
wideness and extent of immersion.

The error surfaces for parameterizations of each of the
machines is shown in Figure 4. These surfaces show the
RAE for each value in our grid search for optimal C and p
values. It can be seen that the surfaces are not flat and that
a globally optimal parameterization can be found for each.
Yet they depict few local minima and are relatively smooth,
suggesting that other parameter choices in between the grid

Width Rev. Imm.
RAE(%) 62.63 67.20 64.36
MAE 0.11 0.10 0.11
R 0.73 0.79 0.76
R2 0.53 0.62 0.58
MAE (Zero-R) 0.19 0.17 0.18

Table 3. The final mean absolute error (MAE), relative ab-
solute error (RAE), correlation coefficient (R), and coeffi-
cient of determination (R2) of the learning machines are
given. The MAE for a baseline regression function, Zero-
R, is given for comparison. All results are averaged from
Multiple CV.

Concept Features
(%-tile)
Width
(50 %)

Tempo Envelope Autocorrelation Peak Magnitude
Period Frequency, Spectral Flatness Period Ampli-
tude, Wideness Estimation Mean, Reverb Estimation
Mean, Δ MFCC Slope 5, ΔΔ MFCC Mean 11

Reverb.
(40 %)

MFCC Mean 3, MFCC Period Entropy 3, MFCC Slope
3, ΔΔ MFCC Period Amplitude 13, Key Clarity Slope,
Chromagram Peak Magnitude Period Frequency, Har-
monic Change Detection Function Period Amplitude,
Spectral Flux Period Amplitude, Pitch Period Ampli-
tude, Δ MFCC Slope 10, Δ MFCC Period Frequency
10, Δ MFCC Slope 13

Imm.
(20 %)

MFCC Period Entropy 6, Spectral Centroid Period En-
tropy, Tempo Envelope Autocorrelation Peak Magni-
tude Period Frequency, Spectral Flatness Period Am-
plitude, Spectral Kurtosis Standard Deviation, Wide-
ness Estimation Mean, Reverb Estimation Mean,
Mode Period Entropy, Pitch Period Frequency, Δ MFCC
Slope 7, Δ MFCC Slope 5, Δ MFCC Slope 11, Δ
MFCC Mean 11, ΔΔMFCC Mean 11

Table 4. Selected feature spaces after running on non-
optimized machine. Features in boldface were picked for
more than one learning concept.

marks would not have significantly improved results. It is
worth noting that the flattest error surface, that for extent of
reverberation, is also the one that performed the best, indi-
cating robustness against parameter choices.

6 CONCLUSIONS AND FUTURE WORK

We have presented a model for the automatic prediction of
spaciousness in stereophonic music. We first parameterized
the concept of “spaciousness” with the dimensions of source
ensemble width, extent of reverberation, and extent of im-
mersion. A verbose feature space of objective measure-
ments was generated on a data set of human-annoted mu-
sic recordings. Feature subset selection by percentile vot-
ing was used to narrow the feature space. The three target
concepts were effectively learned by support vector regres-
sion with a polynomial basis function, achieving a direct
mapping between signal attribute and subjective perception.
Prediction for the extent of reverberation performed the best,
while predictions for the wideness of the ensemble source
and the extent of immersion performed slightly poorer rela-
tive to reverberation. All concept predictions exhibited RAE
much better than chance.

This work is based on an assumption of independence
between the learning concepts. Future work will include
deeper examination of dimensional interdependency, explo-
ration of other regressors, kernels, and feature selection al-
gorithms, and increasing the size of our database.

The accuracies of the models suggest that objective mea-
surements of digital audio can be successfully mapped to
new dimensions of music perception. Such mappings may
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Figure 4. Relative absolute error surface for machine pa-
rameter grid search of kernel exponent p and machine com-
plexity C.

allow music producers to have more control over their do-
main, including feature-driven audio synthesis and percep-
tually meaningful sound-sculpting. In addition, this work
examines signal properties and perceptual attributes that can
be tied directly to studio production of recorded music. Spa-
ciousness is manipulated by the music engineer by applying
a number of recording and signal processing techniques. By
directly mapping signal attributes to the perceptual domain,
music producers may gain new resources for their trade. We
believe that the perceptual components of music listening
that are affected by processes that occur in the production
studio are a rich, yet under-exploited information stream to
harvest.
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ABSTRACT

Music is often related to mathematics. Since Pythagoras,

the focus is mainly on the relational and structural aspects

of pitches described by arithmetic or geometric theories,

and on the sound production and propagation described by

differential equation, Fourier analysis and computer algo-

rithms. However, music is not only score or sound; it con-

veys emotional and affective content. The aim of this pa-

per is to explore a possible association between musical ex-

pressiveness and basic physical phenomena described by

integro-differential operators.

1 INTRODUCTION

Intuitive awareness of the relationship between music and

mathematics exists as early as Pythagoras, who made an at-

tempt to investigate and to determine this relation through

acoustics. Pythagoreans founded the quadrivium, the four-

fold way of knowledge. They divided mathematical science

in two parts: how many (i.e., discrete, quantity) and how

much (i.e., continuous, magnitude). Each of these parts is

further subdivided into either absolute (stable) or relative

(in motion). Thus, the quadrivium consisted of arithmetic

(discrete quantity which subsist in itself), music (discrete

quantity which is related to another), geometry (continued

magnitude immovable) and astronomy (continuous magni-

tude of self-motive nature). Since then, the link between

music and mathematics has been very fruitful in defining

harmony and consonance, scales and temperament (i.e., re-

lation among pitches), or in describing the musical struc-

tures as symmetries, transpositions, etc. (i.e., a geometrical–

spatial metaphor of melodic structure).

During the late sixteenth and early seventeenth centuries,

music began to be recognised more as an art and to be treated

as a language and analysed in expressive terms. During the

same period, science was moving from theoretical to exper-

imental. Attention to physical phenomena lead to the de-
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velopment of new mathematical theories to explain change,

such as calculus and differential equations. Science started

to investigate in mathematical terms the physical nature of

music (i.e., sound production and acoustics). In the sec-

ond half of the ninetieth century Helmholtz set the basis of

scientific investigation of sound perception (i.e., psychoa-

coustics). If we look at the content of books on Music and

Mathematics (e.g., [1]), we notice that the content includes

mainly the relational and structural aspects of pitches, de-

scribed using arithmetic or geometric theories, and sound

production and propagation, described by differential equa-

tion, Fourier analysis and computer algorithms. Moreover

recently music performance, which acts as mediation be-

tween composer and listener, is increasingly being studied

in scientific terms, and mathematical models are being de-

veloped. The pioneering model [7] of musical expressive-

ness in music performance, based on kinematics, is particu-

larly relevent for the aims of this paper. ,

However music is not only score or sound; it can convey

also sensorial and/or affective contents. A piece of music

can suggest a light or a heavy sensation, an happy or a sad

emotion. Obviously, the fact that a listeners judges a piece

of music as light does not mean that this is the content of

that music. In fact, sensorial or affective adjectives can be

considered as metaphors, by means of which a listener trans-

lates his physical and cognitive experience of music [4]. The

aim of this paper is to start to explore if and how the aspects

of musical expressiveness related to sensorial or affective

experiences can be associated to basic physical phenomena

described by integro-differential operators.

2 MATHEMATICS AND MUSIC EXPRESSIVENESS

In mathematics, an operator is a function which operates on

(or modifies) another function. Often, an operator is a func-

tion acting on functions to produce other functions. Given a

function f(t), the simplest operators in mathematical analy-

sis are the differential operator D, which defines the deriva-

tive of a function,

Df(t) =
d

dt
f(t), (1)
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Figure 1. Analogy between time evolution of emotion and

a ringing bell. Top: The pattern of strikes and intensity ap-

plied to a bell. Bottom: Intensity of the sound produced by

the bell.

the integral operator I0, which defines the integral of a func-

tion with initial point t = 0

I0f(t) =
∫ t

0

f(τ)dτ , (2)

and the proportional operator, which scales the function by

a constant k

Kf(t) = kf(t). (3)

In the field of affective computing, Picard [6] outlines

a signal representation for emotions and moods (emotional

states lasting more than a couple of minutes) by a linear sys-

tem preceded by a non-linearity. Picard uses the analogy of

a ringing bell to illustrate the time course of emotion: both

the bell sound and the emotional response, when triggered,

have a fast rise time followed by a more gradual decay. The

response sums if re-triggering occurs before the signal has

completely decayed away. The intensity of the bell sound

– and by analogy the intensity that a person might assign to

their felt emotion – are shown in Fig. 1, when triggered by

a single or repeated excitations. The influence of the per-

son temperament is taken into account by the parameters of

the linear model. Saturation and threshold effects are mod-

elled by a smooth (sigmoid) non linear function applied to

the inputs of the emotional system. The parameters of the

function can be set according to the personality, mood, cog-

nitive expectation, activation and arousal level of a person.

This analogy between time evolution of sound intensity

and of emotion intensity suggested us to look for a possi-

ble generalization, in order to derive an analogy between

integro-differential operators and musical expressiveness. In

fact, the idea of using linear systems to model affective be-

haviour can be further developed. The basic building blocks

of linear systems are the proportional, integral and deriva-

tive transformations, and they are described respectively by

Figure 2. Functional transformation produced by propor-

tional, integral and differential operators to a smoothed and

large pulse x(t) as input function.

the following equations:

yP (t) = Kx(t) = kP x(t) (4)

yI(t) = kII0x(t) = kI

∫ t

0

x(τ)dτ + yI(0) (5)

yD(t) = kDDx(t) = kD
d

dt
x(t) (6)

where x(t) is the input and yP (t), yI(t), yD(t) are the out-

puts of the basic blocks. Fig. 2 shows the behaviour of the

proportional, integral and differential operators to a smoothed

and large pulse x(t) as input function.

3 EXPERIMENT

In order to verify if a metaphor based on KID operators

can appropriately describe some expressive characteristics

of music content, we conducted an experiment which in-

vestigates subject’s associations between two sets of mu-

sical stimuli and three haptic attractors, that we assumed

to be representatives of the three components of the KID
metaphor.

3.1 Experiment design

Procedure. Participants were asked to listen to each musical

excerpt and to associate it to one of the three attractors. Par-

ticipants were allowed to listen to the excerpts and to test

the attractors as many time as wished, and to change their

responses until they were satisfied by their choices. The

attractors induced the listeners to organize the musical ex-

cerpts on the basis of similarity criteria which depend on

the characteristics of the attractors. Therefore, we can ex-

pect that different set of attractors will induce a different

mental organization of musical excerpts. On the other hand,

the features of the set of music excerpts can influence the

results as well.

Materials. Two sets of musical stimuli were used in the

experiment setup. The first set of musical excerpts com-

prise a subset of the performances of professional instru-

ment players used in [5]: the theme from Händel’s Sonata

HWV 379 in E Minor Op. 1 No. 1 (Adagio) and the tradi-

tional song Twinkle Twinkle Little Star were played by flute

and violin (Fig. 3). Each melody were played more times,
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Figure 3. Simple musical stimuli belonging to different

clusters: The first six notes of Twinkle Twinkle Little Star

played by violin with respectively Heavy, Soft and Happy

expressive intention.

with different expressive nuances, in order to convey ex-

pressive intentions Happy, Sad, Angry and Calm (affective

space), Light, Heavy, Soft and Hard (sensorial space [3])

plus a Neutral performance. In total we took into account

2 (instruments) x 2 (pieces) x 9 (adjectives) = 36 examples

with an average duration of 30s. These excerpts have a plain

musical structure constituted by a tonal melody played by a

single instrument, so we will refer to them as simple musi-

cal stimuli. They are oriented to study expressive aspects

related to performance and they have already been analyzed

by an acoustic point of view [5]. Moreover, the labels cho-

sen to characterize the different performances allow a com-

parison between affective and sensorial space.

The second set is constituted by the data used in [2] to

study the emotion communication in music: 27 musical stim-

uli extracted by recordings belonging to the Western music

repertoire of the classic-romantic period. As these excerpts

have a polyphonic structure with two or more instruments

playing together, we will refer to them as complex musi-

cal stimuli. By means of a perceptual test Bigand and co-

workers [2] found that these musical stimuli are organized

along two dimensions, which were interpreted as associ-

ated to the emotional properties of valence and arousal, and

are arranged in four groups, characterized by different lev-

els of valence and arousal: a cluster with high arousal and

high valence (HAHV); a cluster with high arousal and low

valence (HALV); a cluster with low arousal and high va-

lence (LAHV); a cluster with low arousal and low valence

(LALV). These clusters roughly correspond to Happy, An-

gry, Calm and Sad adjectives respectively.

The set of attractors is composed by three haptic stimuli

synthesized by means of a Phantom Omni haptic device
1

,

which simulates the basic effect of a mechanical mass–spring–

damper system.

All the force feedback are omni-directional: the device

1
http://www.sensable.com/haptic-phantom-omni.htm

reacts to the user’s input in every points of the haptic sphere.

Regarding the stimulus E (elasticity), the device generates a

force feedback with intensity

fE(t) = −Kel · ||s(t) − s0|| (7)

where s0 is the center of the haptic sphere, s(t) is the po-

sition of the stylus at the instant t and Kel is the elasticity

constant of the system. The stimulus F (friction) is charac-

terized by a force feedback proportional to the velocity of

the user’s movement:

fF (t) = −ηv · v(t) (8)

where v(t) is the velocity of the stylus and ηv is the viscosity

constant of the system. Finally, the stimulus I (inertia) sim-

ulates the interaction with an inertial mass m, moving in a

field free of other (gravitas or magnetic) forces. The mass m
is coupled to the stick, that we assume to have a negligible

inertial mass. The intensity of the force follow the equation:

fI(t) = −m · a(t) (9)

where a(t) is the stylus acceleration. After several tests, we

set m = 0.5 Kg, Kel = 510 N/m, and ηv = 31.9 Ns/m.

When using the dynamic analogy, force f(t) is often sub-

jectively considered as the cause and movement (velocity

v(t)) as the effect. Thus, we are induced to associate Elastic

attractor to D operator, Friction to K and Inertia to I0. This

association constitutes the basis of our dynamic analogy.

A preliminary experiment was carried out with the aim of

testing if the three haptic stimuli were perceived as different

by the subjects. We presented in a random order nine stim-

uli, three equal stimuli for each type of feedback. Subjects

were asked to group the stimuli according to their similar-

ity. All the 20 subjects correctly grouped the stimuli in three

categories, each one comprehending the three equal stimuli.

Apparatus. The sound files were represented on the com-

puter screen by a visual interface implemented using the

real-time sound synthesis environment PD (Pure Data). The

interface consists on 3 buttons displayed on the top, associ-

ated to the 3 attractors, and on a set of buttons listed in col-

umn associated to the musical stimuli which are presented

(in random order) to the participants, who were allowed to

listen to the excerpts and to the attractors as many time as

wished just by pressing the related button. Each of the but-

tons was also associated to a radio button where the partici-

pants could select one attractor only, by employing a three-

alternative forced-choice (3AFC) method.

Participants. A total of 39 subjects participated to the

experiment. Of these, 18 subjects (13 male, 5 female) were

presented to the simple musical stimuli: 4 subjects had a

professional musical training for 5 years at least and were

referred as musicians (M); 4 subjects play an instrument and

they are referred as amateurs (A); 10 subjects did not have

any musical training and were referred as non-musicians
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stimuli Friction Elasticity Inertia resulting

clusters

Angry 41 25 6

Hard 40 17 15 A

Heavy 31 9 32

Happy 10 60 2 B

Light 15 47 10

Calm 13 5 54

Sad 11 3 58 C

Soft 21 18 33

Neutral 28 18 26

Table 1. Contingency table of the subjects’ responses in

the experiment with the simple musical stimuli and resulting

clusters.

(N). Participants were aged from 23 to 34 years (26 years

average). The duration of the test was about 15 minutes.

The other 21 subjects (7 male, 14 female) were presented to

the complex musical stimuli: 3 subjects had a professional

musical training for 5 years at least and were referred as

musicians (M); 7 subjects play an instrument and they are

referred as amateurs (A); 11 subjects did not have any mu-

sical training and were referred as non-musicians (N). Par-

ticipants were aged from 22 to 53 years (30 years average).

The duration of the test was about 20 minutes.

4 RESULTS

Simple musical stimuli. Subjects’ responses were summa-

rized into a two-way contingency table containing 9 rows

(expressive intentions) and 3 columns (attractors Friction,

Elasticity, and Inertia). Each cell of the table recorded the

number of times (observed frequency) that each expressive

intention was associated to an attractor (Tab. 1). Pearson’s

χ2
test was used to compare observed frequencies with ex-

pected frequencies under the null hypothesis of indepen-

dence, yielding a total value of χ2
= 305.96 (df = 16,

p < 0.001), denoting strong evidence of a relation between

expressive intentions and attractors. The analysis of each

row, taken individually, shows that the association among

expressive intentions and attractors is confirmed by Angry,

Hard, Happy, Light, Sad, Calm (χ2 > 21.9, df = 1, p <
0.001), and weakly confirmed by Heavy (χ2 = 5.0, df = 1,

p < 0.05). On the contrary, no significant relation among

expressive intention and attractors has been found for Neu-

tral and Soft.

We conducted two analysis to investigate the associa-

tion between expressive intentions and attractors: a Simple

Correspondence Analysis and a K-means clustering. The

contingency table was submitted to Simple Correspondence

Analysis in order to graphically represent the degree of as-

sociation between expressive intentions and attractors ac-

cording to their χ2
distances. Since Simple Correspondence

Analysis is applied on a 3-columns table (i.e., represented

First Dimension
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n
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e
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s
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Figure 4. Bi-plot of the correspondence analysis on the ex-

periment with simple musical stimuli.

by two degrees of freedom), we can derive two dimensions

only (Fig. 4) with eigenvalues covering the total variance

(first eigenvalue explains the 75.52% of the total inertia).

The Neutral expression was considered as supplementary

row (not used to perform the previous analysis) and its pro-

jection into the correspondence plot resulted close to the ori-

gin of the axis. We can see in Fig. 4 that the expressive in-

tentions Angry-Hard-Heavy, Happy-Light, Calm-Sad-Soft

are depicted close to attractors Friction, Elasticity and In-

ertia respectively. Then, we applied the K-means cluster-

ing (number of groups = 3) to the coordinates of the points

in the Correspondence Plot in order to identify the stable

groups. We did not take into account the Neutral intention.

Three stable groups (see dashed lines in Fig. 4) were identi-

fied corresponding to the clusters: (A) Angry-Hard-Heavy,

(B) Happy-Light and (C) Calm-Sad-Soft (see last column of

Tab. 1). By grouping these expressive intentions according

their cluster membership we found strong relation among

clusters and attractors (χ2 = 253.0, df = 4, p < 0.001).

Moreover, significant relation has been found between A

cluster and F attractor, B cluster and E attractor and C clus-

ter and I attractor (χ2 > 65.5, df = 1, p < 0.001).

It can be noticed that these clusters are consistent with

the results of [5], where the same groups were obtained by

clustering the same musical excerpts on the basis of their

significant musical/acoustic features. It was found that clus-

ter A is mainly related to Sound Pressure Level and some

spectral cues, cluster B to Note Per Second and C to Attack

time. These associations are confirmed by the canonical cor-

respondence analysis on the data of our experiment.

Complex musical stimuli. Table 2 shows the subjects’

responses with rows representing the 27 musical excerpts

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 92



clusters [2] stimuli Friction Elasticity Inertia

HALV B12 7 13 1

B16 9 8 4

B17 4 15 2

B18 9 8 4

B25 9 5 7

B26 12 5 4

B27 5 8 8

HAHV B10 9 9 3

B11 12 3 6

B13 9 12 0

B14 7 12 2

B15 6 14 1

B22 7 11 3

B23 7 11 3

B24 6 13 2

LALV B3 3 3 15

B7 3 3 15

B8 3 2 16

B9 3 5 13

LAHV B1 3 3 15

B2 8 8 5

B4 9 1 11

B5 8 1 12

B6 4 1 16

B19 10 4 7

B20 9 3 9

B21 7 3 11

Table 2. Contingency table of the subjects’ responses in the

experiment with the complex musical stimuli.

and columns representing the 3 haptic attractors. The Pear-

son’s χ2
test denotes a strong relation between musical ex-

cerpts and attractors (χ2 = 205.2, df = 52, p < 0.001) and

confirmed that subjects are able to distinguish the different

haptic attractors and to use them to classify the musical ex-

cerpts.

The contingency table was submitted to Simple Corre-

spondence Analysis in order to graphically represent the de-

gree of association between musical stimuli and attractors

(see Fig. 5). Then, we proceeded with a K-means analysis

in order to identify clusters of stimuli. After several trials,

we set the number of groups both to 3 and to 5 (respectively

continuous and dashed lines in Fig. 5). Three of the five

clusters include those stimuli which were associated to one

of the haptic attractors. The other two clusters are composed

by stimuli that subjects associated equally to two attractors:

Elasticity - Friction and Inertia - Friction.

5 DISCUSSION

The results of the experiment with simple musical stimuli

support a strong relation between the cluster Hard-Heavy-

Angry and the Friction attractor, between the cluster Light-

Happy and the Elasticity attractor, and between the cluster

Sad-Calm-Soft and the Inertia attractor. Although from a

semantic point of view these associations are not surprising

(when I am angry I feel friction with someone; when I am

Figure 5. Correspondence analysis on experiment with

complex musical stimuli.

happy I jump of the joy; when I am calm I move slow as

an object with an high inertia), what is interesting is that

the subjects were able to make this associations without any

explicit semantic mediation, directly associating a musical

stimulus to a haptic one.

In general, the subjects were able to consistently recog-

nize common characteristics between musical stimuli and

haptic attractors. Concerning the single expressive inten-

tions, Neutral intention was not recognized as related to one

single attractor, but the contingency table (Tab. 1) shows a

balanced contribution of all the three attractors, as we could

expect due to its meaning. It is interesting to note that,

in some cases, the scores in the contingency table (Tab. 1)

suggest the idea the three attractors Friction, Elasticity, and

Inertia constitute a sort of basic components; the various

expressive nuances can be represented as a combination of

these components. E.g., Heavy performance was perceived

as related not only to Friction, but also to Inertia, as we could

expect. Moreover we can notice that the emotional response

to a stimulus, as shown in Fig. 1, has a low pass character-

istics: i.e. it can be modelled by a combination of K and I0

operators. This fact is in agreement with the projection of

the Neutral expression in Fig. 4, which tends to be located

between Friction and Inertia attractors.

The results of the experiment with the complex musi-

cal stimuli support a relation between the HAHV (Happy)

cluster and the Elasticity attractor (confirmed by all the ex-

cerpts except for B10 and B11), and between the LALV

(Sad) cluster and the Inertia attractor. On other cases, sub-

jects responses are divided between two attractors: e.g., ex-

cerpts B4, B5, B20, and B21 are associated both to Inertia

and Friction. This observation is coherent with the Fig. 5,

where two clusters are composed by stimuli that subjects

associated to two attractors: Elasticity-Friction and Inertia-

Friction.
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Figure 6. Comparison of sound envelope of expressive

performances (Heavy, Soft and Happy) of Fig. 3 with the

integro-differential operators K, I0, D of Fig. 2.

With reference to our dynamic KID analogy, the cause-

effect relation is represented by the mechanical admittance

Y which mathematically describes the dynamic mapping

and the qualitative behaviour from force f(t) to velocity

v(t) by a linear combination of K, I0, D operators or, physi-

cally, by a combination of friction, inertia and elasticity. We

can distinguish resistive admittance which dissipates energy,

from reactive impedance which stores energy. Ideal friction

(operator K) is a pure resistive admittance, while ideal in-

ertia and elasticity (operators I0 and D) are pure reactive

admittances: in particular inertia stores kinematics energy

and it opposes changes in movement, while elasticity stores

potential energy and opposes changes in force.

In Fig. 6 we compare the sound intensity envelopes of 3

stimuli, belonging to the different clusters, with the velocity

v(t) resulting by applying the operator to a smoothed large

force pulse f(t) (see first graph in Fig. 2), or equivalently

with the effect of using the force pulse as input to the cor-

responding haptic attractor. It can be seen that friction acts

as a scaling factor of the input force and does not modify

the shape of the input. The inertia (mass) tends to remain

at its initial velocity (which is zero in the present example),

then it grows progressively and remains constant when the

input stops; the mass progressively augments its kinetics en-

ergy. The elasticity (spring) instead reacts immediately to

the input variations; it stores potential energy which is used

to oppose to force changes. From this qualitative descrip-

tion of the dynamic behaviour of the three basic elements

we are induced to confirm the association of operator K to

the cluster Hard/Heavy/Angry, I0 to cluster Sad/Calm/Soft,

and D to cluster Light/Happy. Friction, elasticity and in-

ertia are the basic properties of ideal mechanical systems

and the dynamic behaviour of each real system depends by

a weighted combination of friction and elasticity or of fric-

tion and inertia, where friction represents the quantitative

aspect of the dynamical behaviour and elasticity/inertia rep-

resent the qualitative aspect of dynamical behaviour. The

quantitative aspect can be associated to the vertical axis of

Fig. 4 and 5, while the qualitative aspect can be associate to

the horizontal axis.

Comparing these results we can notice that, although sub-

jects are able to recognize the different haptic feedback, the

KID metaphor seems to be more suitable for represent-

ing expressive cues in simple musical excerpts (where the

expressive content is mainly related to performance cues)

than in complex musical stimuli (where musical structure

is more relevant). This result can be explained by the fact

that music performance is more related to action–based as-

pects, whereas musical structure can involve aspects related

to cognitive and/or cultural factors. Moreover, “real” music

pieces usually are not characterized by a single expressive

intention, but rather by a mixture of expressive nuances.

6 CONCLUSIONS

We proposed a dynamic analogy based on proportional op-

erator K, integral operator I0 and differential operator D,

and we carried out an experiment with the aim of investigat-

ing the relation between the KID metaphor and expressive

music contents. The results let us hypothesize that relevant

expressive characteristics of music can be associated to a

weighted combination of quantitative and qualitative basic

components described respectively by the K operator and

by the opposition of I0 vs. D operators.
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ABSTRACT

Even though bidirectional, high-quality and low-latency au-

dio systems for network performance are available, the com-

plexity involved in setting up remote sessions needs better

tools and methods to asses and tune network parameters. We

present an implementation of a system to intuitively evalu-

ate the Quality of Service (QoS) on best effort networks.

In our implementation, musicians are able to connect to a

multi-client server and tune the parameters of a connection

using direct “auditory displays.” The server can scale up to

hundreds of users by taking advantage of modern multi-core

machines and multi-threaded programing techniques. It also

serves as a central “mixing hub” when network performance

involves several participants.

1 INTRODUCTION

Systems for real-time, high-quality and low-latency audio

over the Internet that take advantage of high-speed networks

are available and have been used in the last several years

for distributed concerts and other musical applications [12].

The difficulty of setting up one of these distributed sessions

is, however, still very high. Most musicians have experi-

enced the disheartening amount of time that can be lost in

rehearsal, where most of the time is spent adjusting the con-

nection rather than playing music.

Keeping delay to a minimum is one of the main goals

when tuning network parameters. Delay is known to be dis-

ruptive in musical performance [4], so a sensible goal is to

minimize it as much as possible. Often, there is a trade-

off with audio quality. The longer the latency, the better

the audio (i.e., less dropouts) if facing problematic network

conditions. For most users that are not familiar with TCP/IP

network protocols
1

and delivery, understanding the mean-

ing of these parameters can be daunting.

We present here a server-based application that can be

of use to intuitively tune these parameters using “auditory

displays” [5]. With it, musicians tune their network connec-

tion much like they do their instruments, using their ears.

The implementation is part of the JackTrip application [3],

1
In particular, we use the User Datagram Protocol (UDP) which is part

of the TCP/IP protocol suite.

a software for low-latency, high quality and multi-channel

audio streaming over TCP/IP Wide Area Networks (WAN).

The design and architecture is first geared towards imple-

mentation of this QoS evaluation method. The architecture

has also been extended to provides other types of service.

In particular, a central “mixing hub” to control audio in a

concert where multiple locations are involved.

2 QoS EVALUATION METRICS

Cromer gives a good definition of QoS:

“The term Quality of Service (QoS) refers to

statistical performance guarantees that a net-

work system can make regarding loss, delay,

throughput, and jitter.” [7, p. 510]

Most of the networks available today are best effort delivery,

i.e., don’t provide any specific level of QoS. As such, this in-

frastructure can be problematic since sound is unforgiving in

regard to packet loss and jitter; any lost data is immediately

audible. In evaluating a particular connection, we want to

know “instantaneous” QoS, i.e., assessing its quality at any

given moment. Users should be able to adjust their settings

to achieve the optimal quality given the current bandwidth

and congestion conditions. This should be convenient and a

conscious part of setting up, it should also be monitored with

regard to longer-term changes: a connection that is perfectly

clean at 1:00 a.m. can become congested at 9:00 a.m. A bad

connection today can be a surprisingly good one a year from

now when intermediate network upgrades are put in place,

or when the user asks that their service be enhanced.

A connection is presently either tuned by trial and er-

ror, or is set automatically by an adaptive mechanism that

changes the data rate depending on bandwidth availability

[11]. Adaptive methods are typically found in unidirec-

tional streaming and have a disadvantage for bidirectional

high-quality audio. Latency is a parameter we want to keep

constant. To accommodate changing amounts of jitter, adap-

tive methods can arbitrarily increase and decrease the local

buffering, affecting total latency in a way that is very dis-

ruptive for musical performance.

We describe an implementation of a tool that let musi-

cians tune a connection completely by ear. Parameters like
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buffer size, sampling rate, packet size, and packet redun-

dancy among others, can be adjusted using this “auditory

display” mechanism.

2.1 Pinging the network, acoustically

The advantages of evaluating very fine-grained jitter and

packet loss using these “auditory displays” have been pre-

viously discussed in the literature [5]. The method consists

of listening to a pitched sound in order to assess delay, jitter,

and loss. The procedure produces a tone by recirculating

audio in the network path and thus allows for fine-grained

listening of the packet flow
2

. The acronym, SoundWIRE,

describes the technique used in this project, sound waves

on the Internet from real-time echoes. In principle, it uses

the Karplus-Strong plucked string synthesis algorithm [9]

and simply replaces string delay lines running in local host

memory with network memory.

This technique can be extended to incorporate different-

sounding auditory pings using other physical models [6], but

the underlying approach is the same. In the case of, e.g., a

string physical model, musicians want to tune their connec-

tion to get a sounding instrument that has the highest pos-

sible pitch (low delay) without vibrato (jitter). Users also

want to minimize extraneous impulses coming from packet

loss.

In the next section (Sec. 3), we present an architecture of

a server that clients can use to evaluate and tune their con-

nection solely based on auditory feedback, much like guitar

players tune their instruments.

3 MULTI-CLIENT CONCURRENT SEVER

We extended the JackTrip platform to include a system for

QoS evaluation. The new architecture provides a multi-

client concurrent server that can be used to provide QoS

evaluation service, or a central network/mixer hub, among

other uses. Taking advantage of multi-core computers, it

is possible to run concurrently hundreds of clients with un-

compressed real-time audio and processing plugins.

3.1 Server architecture

The User Datagram Protocol (UDP) is a connection-less

protocol and consequently identification of a new client’s IP

number has to be done on a packet-per-packet basis. Several

techniques to deal with multiple clients connecting are dis-

cussed in the literature [13], but no standard exists as in the

case of Transmission Control Protocol (TCP) servers (see

[7] or [10] for a good description of the differences between

TCP and UDP protocols.)

2
The granularity is determined by the sampling rate and the packet size.

e.g., at 48kHz and 64 samples/packet, the granularity is 1.3 milliseconds.

Two different but related techniques are implemented.

The first relies on a “smart” client which can change to a

new server port number after being assigned one for exclu-

sive communication. The second uses Linux’s iptables rules

to route clients into local sockets. The former technique has

the advantage of being portable (works currently on both

Linux and OS X, and should be easily portable to Windows),

is lightweight and doesn’t require root privileges. In turn, it

expects its clients to change connection ports. The latter

technique (Linux only) requires iptables privileges but pro-

vides a mechanism whereby “dumb” clients (e.g., embedded

systems) can connect to a unique IP/Port pair without any

change to their behavior. It is also computationally more

expensive because the kernel has to perform a port redirect

by source IP number for every packet.
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Figure 1. Multi-client concurrent server algorithm

Figure 1 describes the architecture of the system. The

server listens on a well-known port for client connection re-

quests. For every new request, the server has to check if

the originating address/port pair is new. If it is, it registers

it in an array of active address/port pairs and blocks the re-

quests of new clients while this one is being processed. It

then allocates a new port to communicate exclusively with

this client, and informs it of the new port. The client then
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stops sending packets to the well- known port and starts to

send them to its own assigned one. From then on, the whole

JackTrip process is sent to a thread pool and runs indepen-

dently, in its own thread. The server is freed to wait for new

client requests. The thread runs until the client stops send-

ing packets (or the server doesn’t receive them) for a certain

amount of time. At that point a signal is emitted and the

server deletes the client IP/port pair from the active clients

registry and removes the process from the thread pool. The

implementation is written in C++ using the Qt libraries [1]

for networking and multithreading.

The architecture that uses Linux’s iptables is similar, ex-

cept that all port determination work is on the server side,

and packets are redirected to a local IP/Port pair assigned

exclusively to the client. It doesn’t need to be notified of a

new port.

4 SERVER APPLICATIONS

4.1 Quality of Service (QoS) evaluation

Each connection between the client and the server recircu-

lates audio and implements a Karplus-Strong string model

[9]. This configuration has been discussed in detailed pre-

viously [6]. Figure 2 shows a basic implementation of the

algorithm. The ipsi-lateral host (which in our system corre-

sponds to the server) generates excitations (plucks or noise

bursts) that are “echoed” back from the contra-lateral host

(the client) recirculating in a loop that includes a low-pass

filter (LPF).
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Figure 2. Karplus-Strong algorithm implemented in the net-

work path recirculating audio.

To test a connection, a client connects against a known

server IP number (e.g., CCRMA at Stanford). The path is

sonified with this string model. As the network delay in-

creases, the pitch of the sting will be lower. Variances in

the latency will be perceived as vibrato of the string model.

Packet losses are translated into impulsive types of sounds

(for the case when the receive plays zeros when it doesn’t

receive a packet) or into wavetable type of sound (for the

mode when the system keeps looping through the last re-

ceiving packet)
3

.

Providing this service for intuitive and quick evaluation

of connection QoS is the original intended application of

3
More details on these two modes can be found in [3].

this technology. By connecting to the server and “listening”

to the path, users can tune their connection to its optimal

settings. As mentioned above, there’s a trade-off between

latency and sound quality. In the presence of jitter/vibrato,

the local buffering has to be increased to avoid late packets,

but at the same time we don’t want to increase it too much

(to avoid unnecessary latency). Doing this by trial and error

requires experience and can be frustrating for new users. If,

in turn, musicians can listen and tune the connection in the

same way they tune an instrument, the setup is much faster

and intuitive. Again the goal for the musician, is that they

want to tune their pitch to be as high as possible (lower la-

tency) with the smallest possible vibrato (jitter).

4.2 Star topology connection/mixing hub

Mixing and managing a remote connection when more than

two sites are involved can be very complicated. Engineers

have to deal with audio channels coming from different

places (sometimes on confusingly different channels), all

with different levels. They also need to make sure local

audio is sent to the peer with proper gains. A solution to

centrally manage these types of situations designates a mas-

ter location which can mix and/or relay all the channels and

send them back to the respective connected peers.
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Figure 3. Multi-client server as a hub

The present sever implementation allows a server to

dynamically connect and disconnect audio from different

clients. Each client can have a different number of chan-

nels and different network tuning parameters.
4

In this case

4
JackTrip presently uses Jack [2] as its audio host. This has the limita-

tion that sampling rate and buffer are fixed at Jack start-time and cannot be

tuned after the server has started.
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the server will act as a “hub” between several locations.

Figure 3 illustrates this for an example with three clients.

The server can mix and re-route all the audio channels be-

tween the clients, hence allowing a multi-site performance

with one site acting as a master relay service and/or mixer.

5 CONCLUSIONS AND FUTURE WORK

The first decade of the 21st century evidenced a dramatic

increase in the speed and reliability of high-speed networks.

This increase is expected to continue. We have provided a

system for musicians to tune and optimize their connections

against a reference server in a way that lets them adapt to

their given network situation. The server can also be used

to interconnect multiple sites with arbitrary number of chan-

nels, and be a “mixing hub” that distributes audio to all the

locations from a central place.

Scalability in network performance is a big issue that still

needs to be solved. Learning how to connect hundreds or

even thousands of remote locations for a global-jam ses-

sion is a pending goal. Multicast at the network layer would

provide a solution for a fully connected peer-to-peer mesh.

Clients would select from a list of peers they want to con-

nect with, and then send just one packet via multicast (us-

ing its underlying network layer implementation). Network

routers and switches determine when a copy needs to be

made. AccesGrid implements this [8] for a fixed number of

audio channels, however this infrastructure is not yet ubiqui-

tous. Furthermore, when the number of audio channels and

other settings differ among the clients, a new and consistent

solution is required so that they can inter-operate.

Scaling up and distributing physical models embedded

in the network path can also serve to perform “global string

network symphonies”, where the global network becomes

the instrument itself, an instrument distributed throughout

the world.
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ABSTRACT

Faust 0.9.9.6 introduces new compilation options to automatically
parallelize audio applications. This paper explains how the auto-
matic parallelization is done and presents some benchmarks.

1 INTRODUCTION

Faust is a programming language for real-time signal pro-
cessing and synthesis designed from scratch to be a com-
piled language. Being efficiently compiled allows Faust to
be complementary to existing audio languages and to pro-
vide a viable high-level alternative to C/C++ to develop
high-performance signal processing applications, libraries
or audio plug-ins.

Until recently the computation code generated by the com-
piler was organized quite traditionally as a single sample
processing loop. This scheme works very well but it doesn’t
take advantages from multicore architectures. Moreover it
can generate code that exceeds the autovectorization capa-
bilities of current C++ compilers.

We have recently extended the compiler with two new
schemes : the vector and the parallel schemes. The vec-

tor scheme simplifies the autovectorization work of the C++
compiler by splitting the sample processing loop into sev-
eral simpler loops. The parallel scheme analyzes the depen-
dencies between these loops and adds OpenMP pragmas to
indicate those that can be computed in parallel.

These new schemes can produce interesting performance
improvements. The goal of this paper is to present these
new compilation schemes and to provide some benchmarks
comparing their performances. The paper is organized as
follows : next section will give a brief overview of Faust lan-
guage, The third section will present the three code genera-
tion schemes and the last section will introduce the bench-
marks used and the results obtained.

SMC 2009, July 23-25, Porto, Portugal

Copyrights remain with the authors

2 FAUST OVERVIEW

In this section we give a brief overview of Faust with some
examples of code.

A Faust program describes a signal processor, something
that transforms some input signals and produces some out-
put signals. The programming model used combines a func-

tional programming approach with a block-diagram syn-

tax. The functional programming approach provides a nat-
ural framework for signal processing. Digital signals are
modeled as discrete functions of time, and signal processors
as second order functions that operate on them. Moreover
Faust’s block-diagram composition operators, used to com-
bine signal processors together, fit in the same picture as
third order functions.

The Faust compiler translates Faust programs into equiva-
lent C++ programs. It uses several optimization techniques
in order to generate the most efficient code. The resulting
code can usually compete with, and sometimes outperform,
DSP code directly written in C/C++. It is also self-contained
and doesn’t depend on any DSP runtime library.

Thanks to specific architecture files, a single Faust program
can be used to produce code for a variety of platforms and
plug-in formats. These architecture files act as wrappers
and describe the interactions with the host audio and GUI
system. Currently more than 10 architectures are supported
(see Table 1) and new ones can be easily added.

alsa-gtk.cpp ALSA application + GTK
alsa-qt.cpp ALSA application + QT4
jack-gtk.cpp JACK application + GTK
jack-qt.cpp JACK application + QT4
ca-qt.cpp CoreAudio application + QT4
ladspa.cpp LADSPA plug-in
max-msp.cpp Max MSP plug-in
supercollider.cpp Supercollider plug-in
vst.cpp VST plug-in
q.cpp Q language plug-in

Table 1. Some architecture files available for Faust

In the following subsections we are giving a short and in-
formal introduction to the language through the example of
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a simple noise generator. Interested readers can refer to [1]
for a more complete description.

2.1 A simple noise generator

A Faust program describes a signal processor by
combining primitive operations on signals (like
+,−, ∗, /,√, sin, cos, . . .) using an algebra of high
level composition operators [2] (see Table 2). You can
think of these composition operators as a generalization of
mathematical function composition f ◦ g.

f ∼ g recursive composition
f , g parallel composition
f : g sequential composition
f <: g split composition
f :> g merge composition

Table 2. The five high level block-diagram composition op-

erators used in Faust

A Faust program is organized as a set of definitions with at
least one for the keyword process (the equivalent of main
in C).

Our noise generator example noise.dsp only involves
three very simple definitions. But it also shows some spe-
cific aspects of the language:

random = +(12345) ~ *(1103515245);
noise = random/2147483647.0;
process = noise * vslider("noise", 0, 0,

100, 0.1)/100;

The first definition describes a (pseudo) random number
generator. Each new random number is computed by multi-
plying the previous one by 1103515245 and by adding to the
result 12345.

The expression +(12345) denotes the operation of adding
12345 to a signal. It is an example of a common technique
in functional programming called partial application: the
binary operation + is here provided with only one of its ar-
guments. In the same way *(1103515245) denotes the mul-
tiplication of a signal by 1103515245.

The two resulting operations are recursively composed

using the ∼ operator. This operator connects in a
feedback loop the output of +(12345) to the input
of *(1103515245) (with an implicit 1-sample delay)
and the output of *(1103515245) to the input of
+(12345).

The second definition transforms the random signal into a
noise signal by scaling it between -1.0 and +1.0.

Finally, the definition of process adds a simple user interface
to control the production of the sound. The noise signal is
multiplied by the value delivered by a slider to control its
volume.

2.2 Invoking the compiler

The role of the compiler is to translate Faust programs into
equivalent C++ programs. The key idea to generate efficient
code is not to compile the block diagram itself, but what it

computes.

Driven by the semantic rules of the language the compiler
starts by propagating symbolic signals into the block dia-
gram, in order to discover how each output signal can be
expressed as a function of the input signals.

These resulting signal expressions are then simplified and
normalized, and common subexpressions are factorized. Fi-
nally these expressions are translated into a self contained
C++ class that implements all the required computation.

To compile our noise generator example we use the follow-
ing command :

$ faust noise.dsp

This command generates the following C++ code on the
standard output :

class mydsp : public dsp {
private:
int iRec0[2];
float fslider0;
public:
static void metadata(Meta* m) {
}

virtual int getNumInputs() { return 0; }
virtual int getNumOutputs() { return 1; }
static void classInit(int samplingFreq) {
}
virtual void instanceInit(int samplingFreq)
{

fSamplingFreq = samplingFreq;
for (int i=0; i<2; i++) iRec0[i] = 0;
fslider0 = 0.0f;

}
virtual void init(int samplingFreq)
{

classInit(samplingFreq);
instanceInit(samplingFreq);

}
virtual void buildUserInterface(UI* interface)
{

interface->openVerticalBox("noise");
interface->declare(&fslider0, "style"

, "knob");
interface->addVerticalSlider("noise",

&fslider0, 0.0f, 0.0f, 100.0f, 0.1f);
interface->closeBox();

}
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virtual void compute (int count,
float** input,
float** output)

{
float fSlow0 = (4.656613e-12f * fslider0);
float* output0 = output[0];
for (int i=0; i<count; i++) {

iRec0[0] = 12345+1103515245*iRec0[1];
output0[i] = fSlow0*iRec0[0];
// post processing
iRec0[1] = iRec0[0];

}
}

};

The generated class contains seven methods. Among these
methods getNumInputs() and getNumOutputs()
return the number of input and output signals required by
our signal processor. init() initializes the internal state
of the signal processor. buildUserInterface() can
be seen as a list of high level commands, independent
of any toolkit, to build the user interface. The method
compute() does the actual signal processing. It takes 3 ar-
guments: the number of frames to compute, the addresses of
the input buffers and the addresses of the output buffers, and
computes the output samples according to the input samples.

2.3 Generating a full application

The faust command accepts several options to control the
generated code. Two of them are widely used. The option
-o outputfile specifies the output file to be used instead of
the standard output. The option -a architecturefile defines
the architecture file used to wrap the generate C++ class.

For example the command faust -a jack-qt.cpp
-o noise.cpp noise.dsp generates a full jack appli-
cation using QT4.4 as a graphic toolkit. The figure 1 is a
screenshot of our noise application running.

Figure 1. Screenshot of the noise example generated with
the jack-qt.cpp architecture

2.4 Generating a block-diagram

Another interesting option is -svg that generates one or
more SVG graphic files that represent the block-diagram of
the program as in Figure 2.

Figure 2. Graphic block-diagram of the noise generator pro-
duced with the -svg option

It is interesting to note the difference between the block di-
agram and the generated C++ code. The block diagram in-
volves one addition, two multiplications and two divisions.
The generated C++ program only involves one addition and
two multiplications per sample. The compiler has been able
to optimize the code by factorizing and reorganizing the op-
erations.

As already said, the key idea here is not to compile the block
diagram itself, but what it computes.

3 CODE GENERATION

In this section we describe how the Faust compiler generates
its code. We will first introduce the so called scalar gener-
ation of code which was the only one until version 0.9.9.5.
Then, we will present the vector generation of code where
the code is organized into several loops that operates on vec-
tors, and finally the parallel generation of code where these
vector loops are parallelized using OpenMP directives.

3.1 Preliminary steps

Before reaching the stage of the C++ code generation, the
Faust compiler have to carry on several steps that we de-
scribe briefly here.

3.1.1 Parsing source files

The first one is to recursively parse all the source files in-
volved. Each source file contains a set of definitions and
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possibly some import directives for other source files. The
result of this phase is a list of definitions: [(name1 =
definition1), (name2 = definition2), . . .]. This list is
actually a set, as redefinitions of symbols are not allowed.

3.1.2 Evaluating block-diagrams

Among the names defined there must be process, the analog
of main in C/C++. This definition has to be evaluated as
Faust allows algorithmic block-diagram definitions.

For example the algorithmic definition:

foo(n) = *(10+n);
process = par(i,3, foo(i));

Listing 1. example of algorithmic definition

will be translated in a flat block-diagram description that
contains only primitive blocks:

process = (_,10:*),(_,11:*),(_,12:*);

This description is said to be in normal form.

3.1.3 Discovering the mathematical equations

Faust doesn’t compile a block-diagram directly. It uses a
phase of symbolic propagation to first discover its mathe-
matical semantic (what it computes). The principle is to
propagate symbolic signals through the inputs of the block-
diagram in order to get, at the other end, the mathematical
equation of each output signal.

These equations are then normalized so that different block-
diagrams, but computing mathematically equivalent signals,
result in the same output equations.

Here is a very simple example where the input signal is di-
vided by 2 and then delayed by 10 samples:

process = /(2) : @(10);

This is equivalent to having the input signal first multiplied
by 2, then delayed by 7 samples, then divided by 4 and then
delayed by 3 samples.

process = *(2) : @(7) : /(4): @(3);

Both lead to the following signal equation:

Y (t) = 0.5 ∗ X(t − 10)

Faust applies several rules to simplify and normalize output
signal equations. For example one of theses rules says that it

is better to multiply a signal by a constant after a delay than
before. It gives the compiler more opportunities to share
and reuse the same delay line. Another rule says that two
consecutive delays can be combined into a single one.

3.1.4 Typing the mathematical equations

The next phase is to assign types to the resulting signal equa-
tions. This will not only help the compiler to detect errors
but also to generate the most efficient code. Several aspects
are considered:

1. the nature of the signal: integer of float.

2. interval of values of the signal: the minimum and
maximum values that a signal can take

3. the computation time of the signal: the signal can be
computed at compilation time, at initialization time or
at execution time.

4. the speed of the signal: constant signals are computed
only once, low speed user interface signals are com-
puted once for every block of samples, high speed au-
dio signals are computed every samples.

5. parallelism of the signal: true if the samples of the
signal can be computed in parallel, false when the sig-
nal has recursive dependencies requiring its samples
to be computed sequentially.

3.1.5 Occurrence analysis

The role of this last preparation phase is to analyze in
which context each subexpression is used and to discover
common subexpressions. If an expensive common subex-
pression is discovered, an assignment to a cache variable

float fTemp = <common subexpression code>; is gener-
ated, and the cache variable fTemp is used in its enclosing
expressions. Otherwise the subexpression code is used in-
lined.

The occurrence analysis proceeds by a top-down visit of the
signal expression. The first time a subexpression is visited,
it is annotated with a counter. Next time, the counter will be
increased and its visit skipped.

Subexpressions with several occurrences are candidates to
be cached in variables. However in some circumstances ex-
pressions with a single occurrence also need to be cached
if they occur in a faster context. For example, a constant
expression occurring in a low speed user interface expres-
sion or a user interface expression occurring in a high speed
audio expression will generally require to be cached.
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Only after this phase can the generation of the C++ code
start.

3.2 Scalar Code generation

The generation of the C++ code is made by populating a
klass object (representing a C++ class), with strings repre-
senting C++ declarations and lines of code. In scalar mode
these lines of code are organized in a single sample compu-
tation loop, while they can be splitted in several loops with
the new vector and parallel schemes.

The code generation basically relies on two functions: a
translation function [[ ]] that translates a signal expression
into a string of C++ code, and a cache function C() that
checks if a variable is needed.

We don’t have enough room to go in too much details but
here is the translation rule for the addition of two signal ex-
pressions:

[[E1]] → S1
[[E2]] → S2

[[E1 + E2]] → C(′′(S1 + S2)′′)

It says that to compile the addition of two signals we com-
pile each of these signals and concat the resulting strings
with a + sign in between. The string obtained is passed to
the cache function that will check if the expression is shared
or not.

Let’s say that the string passed to the cache func-
tion C() is (input0[i] + input1[i]). If the ex-
pression is shared, the cache function will allocate
a fresh variable name fTemp0, add the line of code
float fTemp0 = (input0[i] + input1[i]); to the klass

object and return fTemp0 as a string to be used when com-
piling enclosing expressions. If the expression is not shared
it will simply return the string (input0[i] + input1[i])

unmodified.

To illustrate this, let’s take two simple examples. The first
one converts a stereo signal into a mono signal by adding
the two input signals:

process = +;

In this case (input0[i] + input1[i]) is not shared and the
generated C++ code is the following:

virtual void compute (int count,
float** input,
float** output)

{
float* input0 = input[0];
float* input1 = input[1];
float* output0 = output[0];
for (int i=0; i<count; i++) {

output0[i] = (input0[i] + input1[i]);
}

}

But when the sum of the two input signals is duplicated on
two output signals as in:
process = + <: _,_;

then (input0[i] + input1[i]) will be cached in a tempo-
rary variable:
virtual void compute (int count,

float** input,
float** output)

{
float* input0 = input[0];
float* input1 = input[1];
float* output0 = output[0];
float* output1 = output[1];
for (int i=0; i<count; i++) {

float fTemp0 = (input0[i] + input1[i]);
output0[i] = fTemp0;
output1[i] = fTemp0;

}
}

3.3 Vector Code generation

Modern C++ compilers are able to do autovectorization, that
is to use SIMD instructions to speedup the code. These in-
structions can typically operate in parallel on short vectors
of 4 simple precision floating point numbers thus leading
to a theoretical speedup of x4. Autovectorization of C/C+
programs is a difficult task. Current compilers are very sen-
sitive to the way the code is arranged. In particular too com-
plex loops can prevent autovectorization. The goal of the
new vector code generation is to rearrange the C++ code
in a way that facilitates the autovectorization job of the C++
compiler. Instead of generating a single sample computation
loop, it splits the computation into several simpler loops that
communicates by vectors.

The vector code generation is activated by passing the
--vectorize (or -vec) option to the Faust compiler. Two
additional options are available: --vec-size <n> con-
trols the size of the vector (by default 32 samples) and
--loop-variant 0/1 gives some additional control on the
loops.

To illustrate the difference between scalar code and vector
code, let’s take the computation of the RMS (Root Mean
Square) value of a signal. Here is the Faust code that com-
putes the Root Mean Square of a sliding window of 1000
samples:
// Root Mean Square of n consecutive samples
RMS(n) = square : mean(n) : sqrt ;
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// Square of a signal
square(x) = x * x ;

// Mean of n consecutive samples of a signal
// (uses fixpoint to avoid the accumulation of
// rounding errors)
mean(n) = float2fix : integrate(n) :

fix2float : /(n);

// Sliding sum of n consecutive samples
integrate(n,x) = x - x@n : +~_ ;

// Convertion between float and fix point
float2fix(x) = int(x*(1<<20));
fix2float(x) = float(x)/(1<<20);

// Root Mean Square of 1000 consecutive samples
process = RMS(1000) ;

The compute() method generated in scalar mode is the fol-
lowing:

virtual void compute (int count,
float** input,
float** output)

{
float* input0 = input[0];
float* output0 = output[0];
for (int i=0; i<count; i++) {

float fTemp0 = input0[i];
int iTemp1 = int(1048576*fTemp0*fTemp0);
iVec0[IOTA&1023] = iTemp1;
iRec0[0] = ((iVec0[IOTA&1023] + iRec0[1])

- iVec0[(IOTA-1000)&1023]);
output0[i] = sqrtf(9.536744e-10f *

float(iRec0[0]));
// post processing
iRec0[1] = iRec0[0];
IOTA = IOTA+1;

}
}

The -vec option leads to the following reorganization of the
code:

virtual void compute (int fullcount,
float** input,
float** output)

{
int iRec0_tmp[32+4];
int* iRec0 = &iRec0_tmp[4];
for (int index=0; index<fullcount; index+=32)
{

int count = min (32, fullcount-index);
float* input0 = &input[0][index];
float* output0 = &output[0][index];
for (int i=0; i<4; i++)

iRec0_tmp[i]=iRec0_perm[i];
// SECTION : 1
for (int i=0; i<count; i++) {

iYec0[(iYec0_idx+i)&2047] =
int(1048576*input0[i]*input0[i]);

}
// SECTION : 2
for (int i=0; i<count; i++) {

iRec0[i] = ((iYec0[i] + iRec0[i-1]) -
iYec0[(iYec0_idx+i-1000)&2047]);

}
// SECTION : 3
for (int i=0; i<count; i++) {

output0[i] = sqrtf((9.536744e-10f *
float(iRec0[i])));

}
// SECTION : 4
iYec0_idx = (iYec0_idx+count)&2047;
for (int i=0; i<4; i++)

iRec0_perm[i]=iRec0_tmp[count+i];
}

}

While the second version of the code is more complex,
it turns out to be much easier to vectorize efficiently
by the C++ compiler. Using Intel icc 11.0, with the
exact same compilation options: -O3 -xHost -ftz
-fno-alias -fp-model fast=2, the scalar version
leads to a throughput performance of 129.144 MB/s, while
the vector version achieves 359.548 MB/s, a speedup of x2.8
!
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Figure 3. Faust’s stack of code generators

The vector code generation is built on top of the scalar code
generation (see figure 3). Every time an expression needs to
be compiled, the compiler checks to see if it needs to be in
a separate loop or not. It applies some simple rules for that.
Expressions that are shared (and are complex enough) are
good candidates to be compiled in a separate loop, as well
as recursive expressions and expressions used in delay lines.

The result is a directed graph in which each node is a com-
putation loop (see Figure 4). This graph is stored in the klass
object and a topological sort is applied to it before printing
the code.
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Figure 4. The result of the -vec option is a directed acyclic
graph (DAG) of small computation loops

3.4 Parallel Code generation

The parallel code generation is activated by passing the
--openMP (or -omp) option to the Faust compiler. It implies
the -vec options as the parallel code generation is built on
top of the vector code generation by inserting appropriate
OpenMP directives in the C++ code.

3.4.1 The OpenMP API

OpenMP (http://wwww.openmp.org) is a well established
API that is used to explicitly define direct multi-threaded,
shared memory parallelism. It is based on a fork-join model
of parallelism (see figure 5). Parallel regions are delimited
by using the #pragma omp parallel construct. At the en-
trance of a parallel region a team of parallel threads is acti-
vated. The code within a parallel region is executed by each
thread of the parallel team until the end of the region.

#pragma omp parallel
{

// the code here is executed simultaneously by
// every thread of the parallel team
...

}

In order not to have every thread doing redundantly the exact
same work, OpemMP provides specific work-sharing direc-
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Figure 5. OpenMP is based on a fork-join model

tives. For example #pragma omp sections allows to break
the work into separate, discrete sections. Each section being
executed by one thread:

#pragma omp parallel
{
#pragma omp sections
{

#pragma omp section
{

// job 1
}
#pragma omp section
{

// job 2
}
...

}

...
}

3.4.2 Adding OpenMP directives

As said before the parallel code generation is built on top
of the vector code generation. The graph of loops produced
by the vector code generator is topologically sorted in order
to detect the loops that can be computed in parallel. The
first set S0 (loops L1, L2 and L3 in the DAG of Figure 4)
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contains the loops that don’t depend on any other loops, the
set S1 contains the loops that only depend on loops of S0,
(that is loops L4 and L5), etc..

As all the loops of a given set Sn can be computed in paral-
lel, the compiler will generate a sections construct with a
section for each loop.

#pragma omp sections
{

#pragma omp section
for (...) {

// Loop 1
}
#pragma omp section
for (...) {

// Loop 2
}
...

}

If a given set constains only one loop, then the compiler
checks to see if the loop can be parallelized (no recursive
dependencies) or not. If it can be parallelized, it generates:

#pragma omp for
for (...) {
// Loop code

}

otherwise it generates a single construct so that only one
thread will execute the loop:

#pragma omp single
for (...) {
// Loop code

}

3.4.3 Example of parallel code

To illustrate how Faust uses the OpenMP directives, here is a
very simple example, two 1-pole filters in parallel connected
to an adder (see figure 6 the corresponding block-diagram):

filter(c) = *(1-c) : + ~ *(c);
process = filter(0.9), filter(0.9) : +;

The corresponding compute() method obtained using the -
omp option is the following:

virtual void compute (int fullcount,
float** input,
float** output)

{
float fRec0_tmp[32+4];
float fRec1_tmp[32+4];
float* fRec0 = &fRec0_tmp[4];
float* fRec1 = &fRec1_tmp[4];
#pragma omp parallel firstprivate(fRec0,fRec1)
{

for (int index = 0; index < fullcount;

Figure 6. two filters in parallel connected to an adder

index += 32)
{

int count = min (32, fullcount-index);
float* input0 = &input[0][index];
float* input1 = &input[1][index];
float* output0 = &output[0][index];
#pragma omp single
{

for (int i=0; i<4; i++)
fRec0_tmp[i]=fRec0_perm[i];

for (int i=0; i<4; i++)
fRec1_tmp[i]=fRec1_perm[i];

}
// SECTION : 1
#pragma omp sections
{

#pragma omp section
for (int i=0; i<count; i++) {

fRec0[i] = ((0.1f * input1[i])
+ (0.9f * fRec0[i-1]));

}
#pragma omp section
for (int i=0; i<count; i++) {

fRec1[i] = ((0.1f * input0[i])
+ (0.9f * fRec1[i-1]));

}
}
// SECTION : 2
#pragma omp for
for (int i=0; i<count; i++) {

output0[i] = (fRec1[i] + fRec0[i]);
}
// SECTION : 3
#pragma omp single
{

for (int i=0; i<4; i++)
fRec0_perm[i]=fRec0_tmp[count+i];

for (int i=0; i<4; i++)
fRec1_perm[i]=fRec1_tmp[count+i];

}
}

}
}
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This code appeals for some comments:

1. The parallel construct #pragma omp parallel is the
fundamental construct that starts parallel execution.
The number of parallel threads is generally the num-
ber of CPU cores but it can be controlled in several
ways.

2. Variables external to the parallel region are shared by
default. The firstprivate(fRec0,fRec1) clause in-
dicates that each thread should have its private copy of
fRec0 and fRec1. The reason is that accessing shared
variables requires an indirection and is quite ineffi-
cient compared to private copies.

3. The top level loop for (int index = 0;...)... is
executed by all threads simultaneously. The sub-
sequent work-sharing directives inside the loop will
indicate how the work must be shared between the
threads.

4. Please note that an implied barrier exists at the end
of each work-sharing region. All threads must have
executed the barrier before any of them can continue.

5. The work-sharing directive #pragma omp single in-
dicates that this first section will be executed by only
one thread (any of them).

6. The work-sharing directive #pragma omp sections

indicates that each corresponding
#pragma omp section, here our two filters, will
be executed in parallel.

7. The loop construct #pragma omp for specifies that
the iterations of the associated loop will be executed
in parallel. The iterations of the loop are distributed
across the parallel threads. For example, if we have
two threads, the first one can compute indices be-
tween 0 and count/2 and the other between count/2
and count.

8. Finally #pragma omp single in section 3 indicates
that this last section will be executed by only one
thread (any of them).

4 BENCHMARKS

To compare the performances of these three types of code
generation in a realistic situation we have implemented a
special alsa-gtk-bench.cpp architecture file that measures
the duration of the compute() method. Here is a fragment
of this architecture file:

while(running) {
audio.read();
STARTMESURE
DSP.compute(audio.buffering(),

audio.inputSoftChannels(),
audio.outputSoftChannels()

);
STOPMESURE
audio.write();
running = mesure <= (KMESURE + KSKIP);

}

The methodology is the following. The duration of the com-
pute method is measured by reading the TSC (Time Stamp
Counter) register. A total of 128+2048 measures are made
by run. The first 128 measures are considered a warm-up
period and are skipped. The median value of the following
2048 measures is computed. This median value, expressed
in processors cycles, is first converted into a duration, and
then into number of bytes produced per second considering
the audio buffer size (in our test 2048) and the number of
output channels.

This throughput performance is a good indicator. The mem-
ory bandwidth is a strong limiting factor for today’s pro-
cessors, and it has to be shared among the processors. In
other words, on a SMP machine a realtime audio program
can never go faster than the memory bandwidth. And if a
sequential program already uses all the available memory
bandwidth, there is no room for improvement. In this case a
parallel version can only perform worth.

4.1 Machines and compilers used

In order to compare the scalar code generation with the new
vector and parallel code generation, we have compiled with
Faust 0.9.9.5b2 a series of tests in three different versions.
The following commands were used :

- scal : faust -a alsa-gtk-bench.cpp
test.dsp -o test.cpp

- vec : faust -a alsa-gtk-bench.cpp -vec
-vs 3968 test.dsp -o test.cpp

- par : faust -a alsa-gtk-bench.cpp
-omp -vs 3968 test.dsp -o test.cpp

We have also used two different C++ compilers, GNU GCC
and Intel ICC :

- GCC version 4.3.2 with options : -O3
-march=native -mfpmath=sse
-msse -msse2 -msse3 -ffast-math
-ftree-vectorize. ( -fopenmp added for
OpenMP).
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- ICC version 11.0.074 with options : -O3 -xHost
-ftz -fno-alias -fp-model fast=2.
(-openmp is added for OpenMP).

All the tests were run on three different machines :

- vaio : a Sony Vaio SZ3VP laptop, with an Intel T7400
dual core processor at 2167 MHz, 2GB of Ram, run-
ning an Ubuntu 7.10 distribution with a 2.6.22-15-
generic kernel.

- xps : a Dell XPS machine with an Intel Q9300 quad
core processor at 2500 MHz, 4GB of Ram, running
an Ubuntu 8.10 distribution with a 2.6.22-15-generic
kernel.

- macpro : an Apple Macpro with two Intel Xeon
X5365 quad core processors at 3000 MHz, 2GB of
Ram, running an Ubuntu 8.10 distribution with a
2.6.27-12-generic kernel

4.2 Benchmark: copy1.dsp

The goal of this first test is to measure the memory band-
width. We use a very simple Faust program copy1.dsp that
simply copies the input signal to the output signal:
process = _;

The results we have obtained are summarized figure 7. The
horizontal axe corresponds to the three faust compilation
schemes : scalar , vector and parallel, combined with the
two C++ compilers : gcc and icc. The vertical axe is the
throughput : how many bytes of samples each tested pro-
gram is able to produce per second (higher values are the
better).

It is interesting to note how catastrophic the performances
of the parallel versions are. The scalar and vector versions
are quite similar with a little advantage to the scalar version.
The code generated by icc performs better. The memory
bandwidth of the Macpro is disappointing especially con-
sidering that it has to be shared by 8 cores.

How stable are these measures ? Figure 8 compares the per-
formances of copy1 (compiled with icc) on the Macpro on
5 different runs. As we can see the stability is reasonably
good.

4.3 Benchmark: freeverb.dsp

The second test is freeverb.dsp, a Faust implementation of
the Freeverb (the source can be found in the Faust distribu-
tion).
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Figure 7. Copy1.dsp benchmark

The results are given figure 9. Here gcc gives very good
results in scalar code and outperforms icc in 2 of the 3 cases.
But the performances of gcc are still very poor on vector and
parallel code.

Despite the fact that freeverb has a limited amount of paral-
lelism, icc gives quite convincing results with a reasonable
speedup on vector and parallel code on the Vaio and the XPS
machines. It is also interesting to note that on parallel ver-
sion the 8 3GHz cores of the macpro were slower than 4
2.5Ghz cores of the XPS !

4.4 Benchmark: karplus32.dsp

Karplus32.dsp is a generalized version of Karplus-Strong
algorithm with 32 slightly detuned strings in parallel (the
source can be found in the Faust distribution). Figure 10
gives the results. Again we can see excellent performances
of gcc in scalar mode, good progression of the performances
in vector mode as well as in parallel mode for icc.

4.5 Benchmark: mixer.dsp

This is the implementation of a simple 8 channels mixer.
Each channel has a mute button, a volume control in dB,
a vumeter and a stereo pan control. The mixer has also a
volume control of the stereo output.

import("music.lib");

smooth(c) = *(1-c) : +~*(c);
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Figure 8. Stability of measures (copy1 on macpro, icc ver-
sion)

vol = *( vslider("fader", 0, -60, 4, 0.1)
: db2linear : smooth(0.99) );

mute = *(1 - checkbox("mute"));

vumeter(x) = attach(x, env(x) :
vbargraph("",0,1))

with {
env = abs:min(0.99):max ~ -(1.0/SR);
};

pan = _ <: *(sqrt(1-c)), *(sqrt(c))
with {

c = ( nentry("pan",0,-8,8,1)-8)/-16 :
smooth(0.99 );

};

voice(v) = vgroup("voice %v",
mute :
hgroup("", vol : vumeter) :
pan );

stereo = hgroup("stereo out", vol, vol);

process = hgroup("mixer",
par(i,8,voice(i)) :> stereo);

The results of figure 11 show a real benefit for the vector-
ized version with a speedup exceeding x2 on the 3 machines.
There is also a positive impact of the parallelization even if
more limited. As usual gcc delivers good scalar code but
poor results on vectorized and OpenMP code.
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Figure 9. Freeverb.dsp benchmark

4.6 Benchmark: fdelay8.dsp

This test implements an 8-channels fractional delay. Each
channel has a volume control in dB as well as a delay control
in fractions of samples. The interpolation is based on a fifth-
order Lagrange interpolation from Julius Smith’s Faust filter
library.

import("filter.lib");

line(i) = vgroup("line %i",fdelay5(128,d):*(g))
with{ g = vslider("gain (dB)",-60,-60,4,0.1)

: db2linear : smooth(0.995);
d = nentry("delay (samp)",10,10,128,0.1)

: smooth(0.995);
};

process = hgroup("", par(i, 8, line(i)) );

The results are presented figure 12. The Macpro exhibits a
good speedup of x2.5 for its parallel version. The parallel
speedup for the XPS machine is more limited and there is
no speedup at all on the Vaio.

4.7 Benchmark: rms.dsp

The Faust source of rms.dsp was presented section 3.3. It
is a purely sequential algorithm therefore the performances
of the parallel versions are very bad. But, as figure 13 in-
dicates, the vectorization gives a real boost to the perfor-
mances, particularly on the vaio.
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Figure 10. Karplus32.dsp benchmark

4.8 Benchmark: rms8.dsp

This test computes the RMS value on 8 channels in parallel.
The Faust code is :

process = par(i,8,component("rms.dsp")) ;

We obviously have a good amount of parallelism here that
icc is able to exploit as indicated by the results figure 14.
Compared to the scalar performances, the parallel version
exhibits a speedup of nearly x3 on the Mac, while the
speedup for the XPS exceed x2.5. But the record is for the
Vaio with a speedup of x2.2 !

5 CONCLUSION

We have presented two new compilation schemes recently
introduced in the Faust compiler. The vector scheme sim-
plifies the autovectorization work of the C++ compiler by
splitting the sample processing loop into several simpler
loops. The parallel scheme analyzes the dependencies be-
tween these loops and add OpenMP pragmas to indicate
those that can be computed in parallel.

Figure 15 shows the speedup obtained with the vectorized
code. With a good autovectorizing C++ compiler like In-
tel icc 11.0 we can obtain very significant improvements
in many cases. On the contrary gcc 4.3.2 was not able to
generate SIMD instructions, leading to a degradation of the
performances. We therefore highly recommend icc to com-
pile vectorized code, that is a pity considering the excellent
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Figure 11. mixer.dsp benchmark

results of gcc on scalar code.

Following the so called Amdahl’s law, the speedup obtained
with the parallelized code is highly dependent on the quan-
tity of parallelism available (see figure 16. On purely par-
allel programs like fdelay8 and rms8 a speedup exceeding
x2.5 was observed on the mac. This is a little bit disappoint-
ing for a 8-cores machine, but in phase with its relatively
limited memory bandwidth. Here too, we recommend icc to
compile OpenMP applications.

All these results are dependent on many choices and set-
tings, in particular on compiler’s options. The options we
have retained were the best we could find, but the parame-
ters space is huge and we have only explored a small part of
it. It may be the case that the gcc results could be improved
by changing the settings. This would be good news and the
authors are interested by any suggestions on that point.

There is also a lot of possible improvements in the code gen-
erated by Faust. While it is easy to discover the whole po-
tential parallelism of a Faust program 1 , generating efficient
OpenMP programs is much more difficult due to the over-
heads introduced and the additional pressure on the shared
memory.

The trade-off between parallelism and overhead + memory
pressure is something that we will have to improve in future
versions. The fixed scheduling of the parallel tasks is also
probably far from optimal in many cases. It will be also

1 parallel programming is probably the chance of functional program-
ming languages compared to imperative languages

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 110



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.pa

Tr
ou

gh
pu

t M
B

/s

Compilation option

VAIO
XPS
MAC

Figure 12. fdelay8.dsp benchmark

interesting to explore the possibilities of GPGPU and their
high-level programming languages as an alternative to C++
and OpenMP.

Resources

1. http://openmp.org/

2. http://faust.grame.fr

3. http://www.intel.com/cd/software/products/asmo-
na/eng/277618.htm
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ABSTRACT

Although musical interpretation of L-Systems has not been
explored as extensively as the graphical interpretation, there
are many ways of creating interesting musical scores from
strings generated by L-Systems. In this article we present
some thoughts on this subject and propose the use of genetic
operators with L-System to increase variability.

1 INTRODUCTION

L-systems are powerful tools for creating models of plants
and other structures that have some degree of self-similarity.
Typically, an L-system consists of a set of symbols and a set
of rewritting rules which can be applied in a parallel basis.
Figure 1 shows an L-system for the famous dragon curve

using the syntax adopted by [1].

#level 11
#delta 90
#axiom FX

X -> X+YF+;
Y -> -FX-Y;
-----------------------------------

Resulting string
0 FX
1 FX+YF+
2 FX+YF++-FX-YF+
3 FX+YF++-FX-YF++-FX+YF+--FX-YF+

Figure 1: L-system grammar for the dragon curve.

The usual way of extracting something interesting from
strings generated by L-Systems, is to interpret each symbol
as a command to a imaginary turtle, in a LOGO-like manner.
For such approaches, “F” means draw a segment with length
d, “+” means turn the turtle +δ degrees, “-” means turn the
turtle -δ degrees. “X” and “Y” are just auxiliary symbols
and do not have a graphical interpretation. After a few ite-
rations, 11 to be precise, we derive from the L-System in
Figure 1 the picture shown in Figure 2. Description of more
complex graphical structures and a complete overview of
different types of L-Systems can be found in [1].

Figure 2: The dragon curve after 11 iterations on the
L-system shown in Figure 1.

Of course, the graphical interpretation is not the only
way to interpret the strings. Although most extensions to
L-Systems focus only on the graphical interpretation, seve-
ral authors described techniques to extract musical scores
from strings produced by L-Systems [2], [3], [4], [5], [6].
Music has a certain fractal property [7], so it fits nicely in
the context of parallel rewriting that the L-Systems provide.
However, it’s not a perfect fit. If the L-Systems or the ren-
dering techniques are too simplistic, the resulting score will
probably be equally simplistic, with the same theme or mo-
tif going over and over again, but starting at different points
of the chosen musical scale.

In our research, we observed that the authors usually try
to cope with this problem in two different ways: using more
sophisticated L-Systems (stochastic or context-sensitive, for
example) or using a more refined method for score gene-
ration in order to introduce variability. Keeping this idea
in mind and borrowing a few operators from genetic algo-
rithms, we have developed a method to increase variability
by changing the set of rules after each iteration.

Each method of score generation has properties that make
it more suitable to a certain type of L-System, but it’s inte-
resting to observe how the same L-System “behaves” under
different renderings, so we have developed a program that
implements three types of rendering: spatial [2], sequential
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Figure 3: Score generated by projecting the graphical inter-
pretation on a pentatonic scale

[3] and schenkerian [3].
Section 2 presents an overview of existing musical rende-

ring. Section 3 introduces the notion of Genetic L-Systems.
Section 4 describes a program written in the Python pro-
gramming language that implements some musical rende-
rings and our approach for Genetic L-Systems. Section 5
summarizes this work and suggests future directions.

2 MUSIC FROM L-SYSTEMS?

Arguably, one of the firsts articles on the subject of score
generation and L-Systems was Prusinkiewicz’s Score gene-

ration with L-systems [2], where he described a technique
to extract music from the graphical interpretation of a string
produced by an L-System. Each horizontal segment of the
picture is interpreted as a note with a length proportional to
the length of the segment. The pitch of a note is the y-th note
of the chosen musical scale, where y is y-coordinate of the
the segment. Figure 2 shows the first four bars of the score
associated with the 9th iteration of the L-System in Figure
1.

Altough it is possible to generate interesting melodies
with this spatial rendering, the musical rendering is still tied
to the graphical rendering. So it’s natural that other authors
have sought to separate them. The sequential and schen-
kerian rendering described in [3] are examples of musical
renderings that are completely independent of the graphi-
cal rendering. Both are well-suited to L-Systems that re-
present trees and other branched structures. The author also
remarked that “there seems to be enough information in a

typical L-System to create only a short melody and still be

interesting”. To cope with this problem, Worth and Step-
ney suggested the use of context-sensitive and stochastic L-
Systems, but some of the L-Systems built specially for the
musical rendering did not have an interesting graphical in-
terpretation, thus suggesting that it’s very hard to conciliate,
with aesthetic results, both the musical and the graphical in-
terpretation.

Also worth mentioning is the LMUSe [8] program that
uses map files to describe how to derive pitch, timbre and
velocity from the turtle state. It has an interesting feature: a
“mutate” button that randomly modifies the production rules
before the first derivation step.

All the four musical renderings discussed so far are ty-

pically used with L-Systems that have sets of symbols that
were originally designed for the graphical interpretation. A
departure from this is the work of Jon Mccormack [4] [9],
where he describes L-Systems that use notes (A,B,C..,G)
instead of LOGO style commands (F,+,-).

As we have stated earlier, there is a problem with repe-
tition and this article we try to address this issue. Even if
we use stochastic rules, the set of rules is fixed, so we are
still prone to hear the same fragments over and over again.
The use of context-sensitive rules is a potential solution but
it adds complexity to the process of building an L-System
that makes sense melodically. So we want a mechanism that
is simple while adding variability.

3 GENETIC L-SYSTEMS

Many authors have described techniques to “breed” L-Sys-
tems with genetic algorithms as a way of partially solving
the so called inference problem 1 and, as a consequence,
finding an L-System that produces a certain graphical struc-
ture. These approaches typically use genetic operators such
as mutation and crossover to create new individuals (sets of
production rules) and fitness functions to check if the popu-
lation has a particular feature and to select the fittest indivi-
duals.

Jacob [10] described a technique to select L-Systems that
produce plants with a certain branching pattern. Ashlock
[11] bred populations of L-Systems to generate graphical
renderings of landscapes. Mccormack [12] described an
aesthetical evolution, where the user is asked interatively
to inform the fitness of a graphical interpretation associated
with a certain L-System at each step of the algorithm.

Most applications of L-Systems and evolutionary techni-
ques are targeted to the graphical rendering. This is a sur-
prising fact, since evolutionary techniques have been largely
applied to computer music with interesting results. In [13]
there is an overview of modern techniques for applying evo-
lutionary concepts to sound synthesis and algorithmic com-
position. While we do not claim that we are filling the gap
between the use of L-Systems and evolutionary techniques
to create music, we believe that, at least, we are providing
some inital steps.

There are many different techniques to mutate and to do
the crossover of productions rules, which are not the hardest
parts of combining genetic algorithms with L-Systems. Ar-
guably, it’s how to define the fitness function that causes the
difficulties. We have taken a different aproach and decided
not to use a fitness function at all. Instead, we designed an
extension that allow mutations and crossover between su-
cessive iterations of an L-System. Consider the L-System
shown on Figure 4.

1 The inference problem asks for an axiom and set of production rules
that capture a certain growth process.
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#axiom FX

X -> X+YF+
Y -> -FX-Y,crossover(0,1)
--------------------------------------

Resulting string
0 FX
1 FX+YF+
2 FX+YF++-FX-YF+
3 FXF++-+YFX-YF++-FX+--F+YFX-YF+

Figure 4: Genetic dragon curve

Figure 5: Spatial Rendering and a “genetic” dragon curve.

It is an extreme example, where crossover between the
rules 0 and 1 is done each time the symbol Y is rewritten.
But as odd as it may seem, comparing the score generated
by spatial rendering with the original dragon curve shows a
vast improvement, see Figures 3 and 5.

With parametric rules it’s possible to mutate or crossover
an L-System when certain conditions are met, thus allowing
greater control, as shown in Figure 6.

After a rule is matched, we substitute the sucessor and
then we proceed to evaluate the operators, if any. We take
a simplistic view on the genetic operators as we are consi-
dering that they can only change the sucessor of the rules.
More sophisticated descriptions of mutation and crossover
between L-System rules can be found on [9], [10], [14],
[15]. Our focus here is on the genetic operators, which are
now intrinsic to the L-Systems, and that they can be para-
meters of the model and not just external agents. Now that’s
clear how we intend to use the genetic operators, we can dis-
cuss exactly how to mutate and/or do the crossover between
rules.

3.1 Mutation of rules

The mutation can be thought as a function or a procedure
that has two parameters: the number of the rule that will
be mutated and the probability of mutation. The mutation
operator scans each symbol of the sucessor of the chosen
rule and then generates a random number between 0 and
1. If the generated number is less than the probability of
mutation, it chooses randomly between the symbols in the

#axiom -XA(0)B(0)
#mutation_pool F + -
#mutation_ignore ( ) [ ]

X -> -YF+XFX+FY-
Y -> +XF-YFY-FX+
A(t) -> A(t+1),(t%2)==0:crossover(0,1)
A(t) -> A(t+1),(t%2)!=0:
B(t) -> B(t+1),t==3:mutation(0,0.5)
B(t) -> B(t+1),t!=3:
--------------------------------------

Resulting string
0 -XA(0)B(0)
1 --YF+XFX+FY-A(1)B(1)
2 --+XF-YFY-F+XFX+F+-YFX+FY-F-YFX+FY-+F+
XF-YFY-F+XFX+-A(2)B(2)

Figure 6: Genetic Hilbert Curve

#axiom -X

X -> -YF+XFX+FY-:
Y -> +XF-YFY-FX+:
-------------------------------------

Resulting string
0 -X
1 --YF+XFX+FY-
2 --+XF-YFY-FX+F+-YF+XFX+FY-F-YF+XFX+FY-
+F+XF-YFY-FX+-

Figure 7: Canonical Hilbert Curve

mutation pool and mutate the symbol in the sucessor. For
example, mutation(0,0.5) in Figure 6 refers to a mutation in
rule 0 with probability of 0.5 for each symbol.

There are certain symbols that should not be mutated be-
cause they would affect the consistency of the rules. The-
refore we have to keep a list of ignored symbols, that must
be skipped when we are scanning through the successor of
a certain rule. In bracketed L-Systems, for example, the ’[’
pushes the turtle state on a stack and ’]’ pops the turtle state.
As we usually have the same number of ’[’ and ’]’, we can
not allow disruptions in this balance.

3.2 Crossover between rules

The crossover operator introduces variability by recombi-
ning two rules. Usually, we generate a random integer and
then we split and combine both rules at that point. But since
the sucessor of the rules can have different sizes, we have
adopted the two-point-crossover. We generate two pseudo-
random numbers for each rule, and then we swap the cha-
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racters whose indexes are between these two numbers. Sup-
pose we have generated the numbers 2,3 and 0,2 and that we
have the following two rules:

X -> X+YF+
Y -> -FX-Y

The substring, in rule 0, delimited by the indexes 2 and 3 is
YF, and the substring, in rule 1, delimited by the indexes 0
and 2 is -FX, so we swap them to get new rules:

X -> X+-FX+
Y -> YF-Y

If we allow bracketed or parametric rules, extra care must
be taken to avoid creating unbalanced or syntatic incorrect
rules. So before doing the crossover, we break the rule in
tokens. Consider these two rules:

X -> F-[[X]+X]+F[+FX]-X
F -> FF+FF

We break the the first rule in F, -, [[X]+X], +, F, [+FX],
- and X. The second rules gives us F,F,+,F,F. Suppose we
have generated the numbers 1, 5, and 1,3. This would give
us the following rules:

X -> FF+F-X
F -> F-[[X]+X]+F[+FX]F

3.3 Further Remarks

We do not describe our technique as an application of gene-
tic algorithms because we do not have a fitness function nor
a population. We pick up instead a single L-System, and
we introduce the hability of mutating and to do crossover
between successive iterations. Since we do not use a fitness
function, the only way of evaluating the “fitness” of the mu-
sical interpretation of a certain L-System is by listening to
the resulting score. In chapter 2 of Evolutionary Computer

Music [13], John Biles argues that the most difficult part of
composing music with genetic algorithms is how to specify
the fitness functions, since the notion of what is right and
wrong is highly subjective when we are dealing with music.
Without fitness functions we open the possibility of gene-
rating scores with non-conventional musical structures, but
we do not have an objective way of evaluating if the chan-
ges made by the genetic operators were positive or negative.
Since our main purpose is to introduce variability, we do not
impose any constraints on the operators and let the user de-
cide himself whether a certain music piece is fit or not for
his purposes.

We propose two ways of modifying an existing L-System:

• Adding a mutation or crossover operator at the end of
an existing rule. The dragon curve that was discussed
previously is an example of this technique.

(a) Canonical

(b) Genetic

Figure 8: Spatial rendering of the Hilbert curve

• Adding symbols to control the genetic operators. Fi-
gure 6 shows an example of this technique and Figure
7 shows the canonical Hilbert curve. Also, compare
the scores produced by both L-Systems on Figure 8.

In our experiments we found out that the first techni-
que gave the most dramatic results, since the same operator
could be applied many times at each iteration thus drasti-
cally changing the set of productions rules. The second te-
chnique could be used to introduce slight deviations in the
set of production rules, thus generating a score that has some
traces of the original L-System.

An interesting possibility is the use of L-Systems in a
similar fashion to what Mason and Saffle described on [7].
They used the spatial rendering described by Prusinkiewicz
and different graphical rotations of the same L-System to
build a longer musical piece while creating the feeling of
counterpoint. Instead of using different rotations, we could
use several realizations of the same L-System, since each
realization produces a different score due to the probabilities
associated with the genetic operators.

4 LSCORE

We wrote a program in Python that implements our ideas of
genetic L-Systems. It is an ongoing research where we are
able to generate MIDI files using different musical rende-
rings. It’s also a parser for DOL, 2L, stochastic, bracketed
and parametric L-Systems. The data flow is described on
Figure 9 . It uses Python’s reflection mechanism to parse
and execute the rules as Python code, allowing the user to
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Figure 9: Data Flow in LScore

call his own routines from the production rules. The format
of the rules file is shown below:

<Python Code>
axiom = "xy..z"
rules:
rule 1
rule 2
...
rule n

Each rule must use the following syntax:
predecessor:cond:prob:sucessor:code

As an example, consider the rule: B(t):t==3:
1:B(t+1):mutation(0) The predecessor is B(t),
which is the symbol that will be replaced. The condition
is t==3, the symbol will be replaced only if the condition
is true. The probability is 1, and therefore this is a determi-
nistic rule. The sucessor is B(t+1) and this the string that
will replace the symbol B(t). The code is mutation(0)
and it is the procedure that will be executed after the symbol
is replaced.

Figures 10 and 11, shows respectively the Genetic Hil-
bert and the Dragon curve written using LScore’s syntax.

4.1 L-System evaluation and score generation

It is actually pretty simple to implement and evaluate L-
Systems if we are dealing with non-parametric rules, since
we only need to concatenate strings, check for context and
generate pseudo-random numbers. But when we have para-
metric rules, an L-System becomes almost like a computer
program of its own. Consider the following L-System:

axiom = "A(1)"
rules:
A(t):t==1:1:A(t*2):

The parametric rule A(t):1:1:A(t*2) matches the
module A(1) because the letter in the production rule and
in the module are the same, the number of formal parame-
ters are also the same, and the condition (t==1) evaluates
to true. After the rule is matched, the parameters are evalua-
ted, the module is substituted, and we find the string A(2).
While it is not hard to write a parser to evaluate the arithme-
tic expressions that appear on parametric rules and to check
if the conditions are true, a much simpler implementation is
possible if we can execute statements and evaluate expressi-
ons at runtime, thus delegating the issue of expression par-
sing and execution to the underlying language interpreter.
For that specific example, we would have two statements:
exec("t=1") and eval("t==1") Since after the first
statament, t is indeed equal to 1, the last statement returns
True and then we can evaluate the sucessor of the rule:
eval("t*2"), which returns 2. Both exec and eval are
built-in statements in Python.

The genetic operators are coded in a similar way. As we
stated earlier, each rule has a code part, which can be empty.
We coded the genetic operators crossover and mutation as
Python functions that change the production rules. After a
symbol is replaced, we do exec(code) and the Python
interpreter executes the code part of the rule.

After sucessive iterations, we can interpret the resulting
string as a score. In our implementation, we generate a
standard MIDI file with the score. The user has the option
of choosing the instrument, the key, the musical scale, the
method of rendering (sequential, schenkerian or spatial), the
initial octave and a few other small tweaks.

The implementation of the rendering methods is straight-
forward, since we just have to scan the resulting string and
interpret each symbol correctly according to the chosen
method. At this moment, the MIDI capabilities of LScore
are at best rudimentary, since we record the score in a sin-
gle track and do not allow instrument changes during the
rendering process. Nevertheless, it is possible to render in-
teresting melodies and scores.

axiom = "-XA(0)B(0)"
rules:
X:1:1:-YF+XFX+FY-:
Y:1:1:+XF-YFY-FX+:
A(t): (t%2)==0:1:A(t+1):crossover(0,1)
A(t): (t%2)!=0:1:A(t+1):
B(t): t==3 :1:B(t+1):mutation(0)
B(t): t!=3:1:B(t+1):

Figure 10: Genetic Hilbert Curve with LScore’s syntax.
The mutation pool and mutation ignore are implicitely de-
fined.
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axiom = "FX"
rules:
X:1:1:X+YF+:
Y:1:1:-FX-Y:crossover(0,1)

Figure 11: Genetic Dragon Curve with LScore’s syntax

5 CONCLUSION

In this article we presented a brief overview of existing
methods for extracting musical scores from L-Systems and
introduced a few ideas of our own. More specifically, we
also presented the concept of Genetic L-Systems, where the
set of productions rules can be changed between sucessive
iterations. These changes are made by two genetic opera-
tors: crossover and mutation. We have also briefly described
a program written in Python that implements our approach
for Genetic L-Systems and generates MIDI files.

We believe we have succeeded in introducing variabi-
lity in the musical interpretation of L-Systems, but certainly
there is room for more experimentation. As we stated ear-
lier, the genetic operators we are using are very simple in the
sense that they only modify the sucessor of the production
rules. A more sophisticated mutation process, for example,
could further enhance the resulting musical score.

Also, the LScore program lacks some features, such as
better MIDI support. So we have the intention of addressing
these issues in the future.
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ABSTRACT

Multiagent system technology is a promising new venue for
interactive musical performance. In recent works, this tech-
nology has been tailored to solve specific, limited scope mu-
sical problems, such as pulse detection, instrument simula-
tion or automatic accompaniment. In this paper, we present
a taxonomy of such musical multiagent systems, and an im-
plementation of a computational framework that subsumes
previous works and addresses general-interest low-level
problems such as real-time synchronization, sound commu-
nication and spatial agent mobility. By using it, a user may
develop a musical multiagent system focusing primarily in
his/her musical needs, while leaving most of the technical
problems to the framework. To validate this framework,
we implemented and discussed two cases studies that ex-
plored several aspects of musical multiagent systems, such
as MIDI and audio communication, spatial trajectories and
acoustical simulation, and artificial life constructs like ge-
netic codes and reproduction, thus indicating the usefulness
of this framework in a variety of musical applications.

1 INTRODUCTION

Agent technology is particularly suited for musical applica-
tions due to the possibility of associating a computational
agent with the role of a singer or instrumentalist. With these
associations one can map features such as performance, per-
ception, adaptation and improvisation on one side, and arti-
ficial processes on the other. Moreover, it is possible to de-
fine forms of social interrelationship between agents, which
brings this technology even closer to collaborative musical
performance. By focusing the discussion on multiagent sys-
tems we purposely leave aside any aesthetic issues specific
to the choice of compositional algorithms for each agent,
and concentrate on the study of communication and inter-
action (i.e., sociology) of musical agents in the collective
musical production context [1, 2].

Most of the previous work involving computer music and
multiagent systems is generally very limited in its scope,
dealing with problems such as generation and evaluation of

SMC 2009, July 23-25, Porto, Portugal
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melodies [3], pulse detection [4], simulation of specific in-
struments [5] or automatic accompaniment and collective
performance in a tonal context [6, 7]. A more ellaborate
example may be found in Living Melodies [8], in which
the authors build an artificial world of music players with
a well-defined spatial structure (including sound propaga-
tion), as well as rules for walking, interacting and music-
making. Works that aim at more general settings are the
MAMA architecture [9], where agents communicate using
a symbolic representation of the piece being performed, and
the Andante project [10], that allows agents to migrate be-
tween machines in a distributed computer environment.

This work aims at both a definition and an implementa-
tion of a general framework for musical multiagent systems,
as well as a study of their inherent problems. We extend on
[9] by allowing synchronous and asynchronous communica-
tion of various sorts (audio signals, symbolic music streams,
video signals and other forms), artificial life concepts (life,
death and reproduction of agents) and physical simulation
(sound propagation and motion of agents). Our musical
agents can also benefit from the migrating abilities of An-
dante’s agents [10], since both systems are written in Java.

A central issue in this project is the treatment of space,
a musical attribute of utmost importance in contemporary
musical composition, which has been superficially explored
in the context of multiagent systems in previous works [8].
Thus, one of the main goals of our framework is to allow the
simulation of sound propagation in a virtual environment,
automatically adjusting the sound information received by
each agent, depending on its position and listening condi-
tions.

Through the observation of common elements among ex-
isting musical multiagent systems and by proposing new
features and tools, we intend to put forward both a con-
ceptual and a computational framework that eases the task
of implementing a musical multiagent system that best fits
a given musical application. On one hand, simulation of
existing musical multiagent applications should be straight-
forward by using the framework with its basic components;
on the other hand, extending the framework by adding new
features such as compositional algorithms, music and sound
analysers and synthesisers, or rules for handling artificial
life aspects of the virtual musical agent society, should be
made easy by freeing the user from low-level implemen-
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tation details such as synchronization and communication
protocols, and allowing him/her to concentrate on the con-
ceptual level of the musical project.

2 A TAXONOMY FOR MUSICAL AGENTS
SYSTEMS

This section presents a preliminary taxonomy of musical
multiagent systems that has been generalized from previous
musical multiagent works [8, 9, 10, 5, 6, 11, 7, 4], as well as
other works that deal with related issues [3, 12].

The higher level categories considered in a musical mul-
tiagent system are the musical agent, the virtual environ-
ment, and interactions (both among musical agents and be-
tween musical agent and virtual environment). Figure 1
summarizes these categories and their components.

2.1 Virtual Environment

An environment in the context of a musical multiagent sys-
tem can be defined as a virtual space in which computational
agents are immersed and interact with it by means of sensors
and actuators.

Physical Representation. An environment’s physical
representation includes the definition of a virtual world to-
gether with every physical information that is relevant to the
musical application. These may include space representa-
tion (dimensionality, connectedness), sound representation
(MIDI, audio) and propagation (including acoustical effects
such as air absorption, reflection, diffraction or Doppler ef-
fect), and mechanical laws (gravity, inertia, attraction and
collisions).

Ecological Representation. Systems inspired in Artifi-
cial Life [8, 3] often use some representation for energy to
control a few aspects in an agent’s life, such as eating, walk-
ing, growing old, among others. Energy may be defined and
used to control which actions (requiring some amount of
energy) an agent may perform, if it needs refueling (through
food consumption, for instance) or rest, or if it is able to
reproduce.

2.2 Musical Agent

The musical agent is a computational agent specialized in
processing sound and musical information. Typically, this
agent is capable of analysing incoming sound, performing
some sort of musical reasoning, and creating a response by
means of sound processing and synthesis. Figure 2 shows
a musical agent and its components, described below, im-
mersed in a virtual environment.

Knowledge Base. The knowledge base is a storage area
where the agent keeps everything related to its know-how
in music-making as well as its memory of past events. This

includes algorithms for composition, music theories, non-
musical facts about the environment and other agents, tech-
niques for music or sound encoding and processing, linguis-
tics, ontology, among others.

Reasoning. We denote by Reasoning the set of mecha-
nisms an agent uses to decide its future actions, musical or
otherwise. An agent’s output may combine several compo-
sitional strategies, such as playback of recorded fragments,
context-based reactions to musical input, or analysis and
synthesis tools within a structural plan to achieve a com-
positional goal.

Sensors and Actuators. Sensors capture information
from the environment and forward it to the cognitive center
(Knowledge Base + Reasoning) of the agent. They are usu-
ally specialized in receiveing a particular type of sensorial
information, for instance auditory sensors, visual sensors or
tactile sensors. An agent may have several similar sensors
(e.g. two ears, two eyes) to aid its cognitive capabilites (e.g.
to perceive direction or distance of a sound source).

Actuators are the active counterparts to sensors, and are
responsible for affecting the environment, driven by the
agent’s reasoning. They produce sound, perform movement,
and generate events that may change the way the world is
perceived by other agents.

Analysis and Synthesis. In addition to any kind of anal-
ysis automatically done by an agent’s sensors, higher level
analysis may be requested by the agent’s reasoning in order
to achieve its musical goals. These may include contextual
analysis (comparing instantaneous inputs to previous data)
and planning of future events (comparing possible outputs
to expected outputs by other agents), and may include a
number of specific techniques of signal processing such as
temporal and spectral analysis, analysis of psychoacoustical
phenomena (such as pitch detection or perceived loudness)
and musical analyses of all sorts (rhythmic, melodic and har-
monic analysis, or analysis of genre, style and expression).

Synthesis may be regarded as the most fundamental part
of a musical agent, since through it an agent partakes mu-
sically in a collective performance. It includes symbolic
synthesis of high-level events (as in MIDI or MusicXML),
sound synthesis and signal processing techniques, but also
non-musical information such as spatial trajectories or graph-
ical output (to communicate visually with other agents or as
a visual counterpart to the musical performance).

2.3 Interactions in the Environment

In a collaborative musical performance there are many kinds
of interaction that may be simulated in a musical multiagent
system. Besides the obvious exchange of sound informa-
tion during performance (through hearing and playing to-
gether), other information may be exchanged, such as ges-
tures for guiding the performance (for instance in slowing
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Figure 1. Taxonomy of Musical Multiagent Systems

the tempo down), or may be agreed upon before the actual
performance starts (such as a musical score or a general plan
for the composition).

When the simulation includes physical or biological el-
ements, other interactions may be observed, among agents
or between agent and environment, that affect their states.
These include mobility of agents through external forces or
free-will, feeding and reproduction, to name a few.

3 FRAMEWORK’S ARCHITECTURE AND
IMPLEMENTATION

The present architecture was designed with plugability in
mind, that is, it should be possible for a user to develop new
components which are easily added to the original frame-
work, and also connect component instances to an agent in
execution time. For instance, a running system might con-
sist of simple agents with one sensor for receiving sound
and one actuator for emitting sound; later on, the user might
want to change those into anthropomorphic musical agents,
by plugging another sound sensor at a different position in
the agent’s body, and creating a component that analyses
incoming sounds received by both sensors and infer sound
source positions.

The framework presuposes the utilization of a multiagent
system middleware that provides the required infrastructure
for maintaining agent execution and controlling messages
exchanged among agents. The current implementation uses
JADE 3.6 1 with the Java 6 programming language.

1 available at http://jade.tilab.com/. 13 april 2009.

3.1 Framework’s Actors

Relying on the taxonomy described in the last section, a
musical agent is modeled as an aggregate of linked com-
ponents, such as reasoning, knowledge base, sensors, actua-
tors, analysers and synthesisers. In order to create a musical
agent, one defines its components either by reusing existing
ones, or by extending basic classes to create new compo-
nents.

The virtual environment is represented by a unique agent
called environment agent. This agent is composed by a phys-
ical representation of the virtual world in which the agents
live, and by event server components. Interactions are rep-
resented by events that flow between musical agents and the
environment agent, where each event type represents a par-
ticular kind of interaction, such as sound exchange, verbal
messages, gestures, and so on.

An external agent is a human or an outside system that
interacts with the framework in runtime. It is embodied in
the virtual world by a regular musical agent, so that it in-
teracts with the environment and other musical agents using
the default mechanisms. For instance, a compositional algo-
rithm implemented in Pure Data 2 might communicate with
the framework using sockets, by sending a stream of notes
to be played through the agent’s actuator.

3.2 Virtual Time

Time in the virtual environment is controlled by a virtual
clock that allows agents to obtain the current time and sched-
ule tasks. This virtual clock may be managed in two differ-
ent ways: by the internal clock, which means that the virtual
clock is tied to the computer’s internal clock and so to the

2 available at http://crca.ucsd.edu/˜msp/software.
html. 13 april 2009.
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external flow of time; and by the user, which means that
the user, usually through the environment agent, updates the
clock, giving rise to non-homogeneous time measurements.

3.3 Communications

Communication in the multiagent middleware serves two
different purposes: to enable the operation and control of
the framework, and to implement the aforementioned inter-
actions in the virtual world. The first purpose is addressed
by commands, while the latter correspond to communica-
tion via events.

Commands. A command is a message passed between
agents that controls the framework’s internal functioning.
Every agent has a dedicated asynchronous communication
channel that is able to send and receive commands, and is
used to pass control messages such as registering an agent,
informing a change of turn (see 3.4), or updating a public
fact in its knowledge base.

Events. Interactions between musical agents and the en-
vironment is done by means of exchange of events, which is
always controlled by the environment’s event servers. Events
are used to model all sorts of interactions in the virtual world,
such as exchange of audio chunks, an agent’s collision with
an obstacle, non-musical messages between agents, among
others.

There are two exchange modes for events: sporadic events,
such as gestures or verbal messages, can be sent at any rate
and instant; and periodic events, such as audio chunks, which
must obey a frequency of exchange that is previously agreed
upon by all components that use that event type.

The periodic exchange mode is a synchronous commu-
nication process involving a set of sensors, actuators and an
event server. In this case, virtual time is divided in frames
of the same period as the periodic event, and processing is
always done ahead of time, i.e. while an event is happening
in the environment, reasonings and actuators are working

Deadline Description
t0 frameTime Frame start time.
t1 needAction In this instant, the actuator automatically

warns its registered reasonings that an action
must be taken to produce the next frame.

t2 agentDeadline Deadline for actuators to send frames to the
event server.

t3 receiveDeadline Deadline for events sent by actuators to ar-
rive at the event server; after this time, arriv-
ing events are discarded.

t4 sendDeadline Deadline for the event server to send events
back to registered sensors.

t5 period End of current frame, and simultaneous start
of the next one.

Table 1. Deadlines for periodic exchange mode

to send the event corresponding to the next frame. Actua-
tors and event servers have state machines that tell them to
work or to wait for some response from other agents, and
their internal states are affected by scheduled tasks which
are triggered at user-defined times. The deadlines for agents
and event server is detailed in table 1.

The communication interface, present in every sensor,
actuator and event server, is responsible for sending and re-
ceiving events by means of the callback methods send() and
receive(), respectively. Two interfaces were implemented
and compared: communication by messages, that uses the
message passing system native to JADE, based on FIPA-
ACL messages; it works by encapsulating an event inside a
message and relaying its delivery to JADE; this kind of com-
munication can be used in networked systems, but it may
be slow and therefore not suited to time-sensitive events;
and communication by direct calls, implemented as a single
JADE service instance that can be accessed by every agent;
a component must register its access point in this service,
which will be used by the service to deliver the event by
a direct call to the interface’s sense() method; this imple-
mentation has the advantage of being much faster than the
traditional message passing method, but on the other hand it
blocks the service process while sense() does not return, so
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it must be carefully and thoughtfully used.

3.4 Execution Mode

There are two possible execution modes: Batch mode, where
time is discrete and divided in turns, and is updated by the
environment agent only after every agent responds with what-
ever it is supposed to produce in that turn, with no time con-
straints whatsoever. It can be used when there is a need to
control the sequence of actions, or it can be used in computa-
tionally intense non-interative processes to create a musical
output for later appreciation; and Real-Time mode, where
time is controlled by the internal clock, and every agent is
responsible for producing their outputs ahead of time, or
else they will be silent, i.e. the environment agent does not
wait every agent to complete its action, and only forwards
events that arrived up to each deadline. Agents may rely on
some fallback strategy that sends previously computed out-
puts whenever a certain real-time deadline cannot be met.

4 CASE STUDY

To validate the current stage of the framework development,
two different systems were implemented, to test the frame-
work for user programmability, robustness and computa-
tional performance. These two systems were chosen in or-
der to explore the use of both symbolic and audio commu-
nication streams, both batch mode and real-time execution
modes, and artificial life concepts.

4.1 Living Melodies

The Living Melodies [8] system is a complex example of
musical multiagent system having various kinds of sensors
and actuators that deal with sound, energy, life cycle, move-
ment, and contact. Agents sing, walk, reproduce and die,
and their physiology includes not only hearing and singing
devices, but also tactile sensors, genetic codes, preference
rules for reproduction and energy management. The sys-
tem uses a symbolic codification of sound as musical events,
which are propagated through a bidimensional discrete space
in a manner similar to wave fronts.

The simulation of the Living Melodies system was based
on an article [8] and a software 3 . Although not explicitly
said by the authors, it seems to use a monolithic non-real-
time architecture, in which the processing of agents’ actions
is made in a round-robin fashion by a single thread. The
mapping to the framework required the use of the batch ex-
ecution mode.

The re-implementation of this system within our frame-
work allows the user to fine-tune many parameters of the

3 available at http://www.ituniv.se/˜palle/projects/
living-melodies/. 13 april 2009.

simulation, including the number of agents, genetical mate-
rial, agent’s age limits, sound absorption by the air, world
size, among many others. It also features a graphical user
interface that shows the spatial distribution of the agents in
the world, as well as wavefronts of sound propagation.

4.2 Audio Exchange and Acoustical Simulation

A simple audio system was conceived to test the framework
capabilites in dealing with real-time audio exchange. Musi-
cal agents are positioned in a virtual two-dimensional space,
and produce audio streams that are constantly broadcasted to
other agents. Each agent receive a mixture of the sound in
the environment, considering the effects of delay and atten-
uation of every other signal according to relative distances
between agents. The user may be immersed in the virtual
environment, disguised as a special musical agent, who cap-
tures all sound received at its virtual position, and renders
it through an audio interface. As an example of applica-
tion, this system might be used for placing several human
musicians in a virtual environment, and letting them play
together in real-time, hearing each other as they would in
the virtual acoustic space.

In real-time terminology, this kind of audio exchange is
classified as soft real-time since the loss of a deadline is not
catastrophic for the system. Such a loss simply implies that
an agent will be mute during a time frame. On the other
hand, the loss of a deadline by the event server is more seri-
ous because it will cause all agents to be mute for a frame.
To test for robustness and performance of the system, we
measured the number of successful fragments delivered to
the event server, as a function of both the number of agents
and the size of the audio chunks. Table 2 shows the results
over 25 seconds of digital audio delivered by each agent 4 .

Samples Period # Musical Agents
(ms) 1 5 10 25 50 100

44100 1000 100 100 100 100 100 100
22050 500 100 100 100 100 98 77
11025 250 100 100 100 97 75 *
4096 90 100 100 100 86 * *
1024 23 100 100 93 * * *
512 11 100 100 67 * * *
256 5 100 90 * * * *

Table 2. Percentage of fragments received by the Event
Server. Stars represent simulations that could not keep a
constant audio exchange rate.

As expected, there is a tradeoff between the number of
agents and the size of audio chunks, in order to keep full
functionality. When the number of agents increases past
a certain point, the system performance lowers due to the
increased number of threads and, consequently, of process
time and memory. Also, very small chunks increase the

4 Using a Intel Core 2 Quad 2.40 GHz, 4 GB of and Windows Vista.
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rate of loss because there is less processing time available
to agents within each time frame. Since this implementa-
tion uses a temporal resolution to schedule tasks of the or-
der of miliseconds, and the deadlines are too close to each
other, this lack of precision can sometimes desynchronize
the agents’ state machines.

5 DISCUSSION AND FUTURE WORK

The implementation of two systems (Living Melodies and
Audio Exchange and Acoustical Simulation) has shown that
the current state of framework development is capable of
covering systems that have different demands, such as real-
time digital audio and exchange of symbolic sound infor-
mation. Features made available by the framework allow
the user to concentrate in solving his/her specific musical
problem without worrying about lower level problems, such
as communication between agents and synchronization.

As for the exchange of periodic events, tests have shown
that it is possible to accomplish real-time audio exchange
between agents, keeping a constant audio rate, by carefully
choosing the size of the audio chunks as a function of the
number of agents needed. However, since audio chunk size
determines the overall latency in agents’ perception of each
other’s performance, it is desirable to improve the communi-
cation mechanism in order to allow for smaller audio chunks
with larger number of agents.

Apart from refinements in the current implementation of
the framework that might lead to a better performance, an-
other more structural approach to this problem is to use the
Real-Time Java Specification 5 , which provides a high reso-
lution time clock (in nanoseconds), and the possibility to do
real-time scheduling with this resolution. Although using a
real-time operating system and a real-time Java infrastruc-
ture to execute the application should produce better results,
we intend to keep both implementations available, so as not
to impose complicate system requirements on the common
user.

From the user interface point-of-view, we intend to pro-
vide access for users of various levels of expertise. Users
with no programming experience or who only need existing
components can define a musical multiagent system simply
by writing a text description, which is interpreted and exe-
cuted by the framework. This script only points out which
components (names, quantity and parameters) belong to
each kind of musical agent and environment agent, and the
global parameters of the simulation. This might also be done
through a graphic interface, where one manipulates existing
components, their interconnections and parameters. During
the execution of the system, it would be possible to visualize
a representation of the virtual environment with its agents,
and to plug-in new components in runtime. Advanced users

5 available at http://java.sun.com/javase/
technologies/realtime/index.jsp. 13 april 2009.

with programming skills may extend the framework by pro-
gramming new components with special features using Java,
either adapting existing codes to their needs or writing out
new components and maybe new features for the architec-
ture.
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ABSTRACT 

We are interested in educational software tools that can 

generate novel jazz solos in a style representative of a 

body of performed work, such as solos by a specific artist. 

Our approach is to provide automated learning of a 

grammar from a corpus of performances. Use of a 

grammar is robust, in that it can provide generation of 

solos over novel chord changes, as well as ones used in 

the learning process. Automation is desired because 

manual creation of a grammar in a particular playing style 

is a labor-intensive, trial-and-error, process. 

Our approach is based on unsupervised learning of a 

grammar from a corpus of one or more performances, 

using a combination of clustering and Markov chains. We 

first define the basic building blocks for contours of 

typical jazz solos, which we call “slopes”, then show how 

these slopes may be incorporated into a grammar wherein 

the notes are chosen according to tonal categories relevant 

to jazz playing. We show that melodic contours can be 

accurately portrayed using slopes learned from a corpus. 

By reducing turn-around time for grammar creation, our 

method provides new flexibility for experimentation with 

improvisational styles. Initial experimental results are 

reported. 

1. INTRODUCTION 

Jazz improvisation is a form of composition done 

concurrently with the performance of the music itself. 

Although the ideal would have no premeditation about 

what will be performed, it is known that jazz musicians do 

work out and practice vocabulary ideas prior to the actual 

performance. We are interested in tools that facilitate the 

construction and recording of such ideas, for purposes of 

education as well as performance. The present 

contribution demonstrates that grammars for generating 

jazz melodies can be learned from performances, in a 

manner that captures stylistic aspects of the performer. 

The ability to generate melodies in a given style is 

expected to have significant tutorial value. 

2. RELATED WORK 

Use of grammars for creating musical structures has been 

investigated by Cope [6], Bel [4], Pachet [18], and others. 

We base our approach on the grammatical representation 

of Keller and Morrison [14], which seems to provide an 

adequate basis for generating jazz melodies.  

Methods for algorithmic composition have been 

surveyed extensively by McCormack [17] and by 

Papadopoulos and Wiggins [19]. Our work combines and 

extends some of the ideas they discussed, including the 

combined use of grammars and machine learning. 

Dubnov, Assayag, Lartillot, and Bejerano [8] used 

probabilistic and statistical machine learning methods for 

musical style recognition. Eck and Lapamle [9] 

investigated automatic composition and improvisation 

with neural networks, and Cruz-Alcazar and Vidal-Ruiz 

[1] developed a method for learning grammars to model 

musical style.  

The idea of melodic contour for abstraction has been 

used for analysis purposes. Kim, Chai, Garcia and Vercoe 

[15] used contours for musical classification and querying, 

and Chang and Jiau [5] investigated musical contour with 

applications to extracting repeating figures and themes 

from music. In addition, De Roure and Blackburn [7] 

proposed melodic pitch contours for content-based 

navigation of music. We incorporate the melodic 

abstraction of contours and slopes by utilizing them as the 

building blocks of a grammar for compositional purposes. 

Kang, Ku, and Kim [13] used a graphical clustering 

algorithm for extraction of melodic themes. The clustering 

portion of our model serves a similar function. Verbeurgt, 

Dinolfo, and Fayer [20], among others, used Markov 

models as a means for composition by learning transition 

probabilities between patterns. Ames [2] dealt with 

different-sized Markov chains of notes. Our approach 

utilizes Markov chains to determine transition 

probabilities between clusters of different types of 

melodic themes. We believe this is helpful in providing 

additional flexibility and fluidity needed to generate jazz 

melodies. 
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3. ABSTRACT MELODIES 

Although a given jazz performer might not be aware of 

how he or she does improvise, it seems reasonable to say 

that ideas of what one is able and willing to play can be 

captured in some form of grammar.  At the very least, if a 

student has memorized a finite set of “licks” (melodic 

fragments), it is obvious that that set could be described 

by an ad hoc grammar.  A grammar that is too ad hoc, 

however, would tend to generate only very predictable, 

and thus eventually uninteresting, melodies. It is important 

then that melodic ideas be abstracted so as to enable the 

replacement of certain elements with others to continually 

produce novel output. If the abstraction is too coarse-

grain, though, the melody may lose coherence. 

Our grammatical approach for jazz melodies attempts 

to strike a balance between novelty and coherence by 

augmenting the five note categories of [14] that 

correspond to concepts in jazz playing. These categories 

are instantiated probabilistically and also in observance of 

other constraints, such as range considerations, at 

generation time. Each category, as given in Table 1, has a 

corresponding terminal symbol in the grammar and four 

of them show as different note head colors on the staff, for 

explication purposes. 

 

Symbol Color Meaning 

C black Chord tones of the current Chord 

L green Color tones, complementary tones 

sonorous with the current chord  

A blue Tones that chromatically 

approach one of the above 

––– red Neither C, L, nor A 

S ––– Tones in a scale that corresponds 

to the chord 

X ––– Arbitrary tone 

R ––– Rest 

Table 1. Note categories used in grammar terminals 

 

A terminal symbol of the grammar is formed by 

following a category symbol by a numeric duration. For 

example, A8 represents an approach tone of duration one 

eighth-note, C4 a chord tone of duration one quarter-note, 

L4/3 a color tone of a quarter-note triplet, S4. a dotted 

quarter-note, R2 a half-note rest, etc. We think of a 

sequence of terminal symbols in the grammar as being an 

abstract melody, in the sense that multiple melodies will 

fit the sequence when the categories are instantiated to 

corresponding tones. Another advantage of such melodic 

abstractions is that they can be instantiated over any chord 

progression, even for chords of different quality, such as 

major vs. minor. 

We extend these individual note categories with 

“macro” concepts dealing with sequences of notes in 

certain patterns. Although more general macros are 

possible, our current work focuses on a single macro 

concept, called a slope. Each slope has two numeric 

parameters, indicating the minimum and maximum 

interval between notes in the sequence going in the 

ascending direction. Negative numbers indicate the 

descending direction. S-expressions [16] are used to 

provide grouping of notes in a sequence, and for 

hierarchy, when necessary. For brevity, we will represent 

“slope” by � in this paper. For example, (� 1 2 S8 S8 S8) 

would indicate an ascending group of three eighth notes 

that are scale tones, with each at least 1 semitone and at 

most 2 semitones pitch separation. Similarly, (� -3 -4 C4 

L4 C4) indicates a descending series of a chord, color, and 

chord tone, with a minimum separation of 3 and a 

maximum separation of 4 semitones. More generally, it is 

not always possible to obey the constraints of both the 

slope and the note category, so sometimes we must relax 

one or the other, as described later. 

Slopes may be concatenated to provide contours.  Each 

note symbol in a slope indicates a direction and a range of 

possibilities for the interval from the previous note.  We 

break melodic lines into strictly ascending, descending, or 

stationary segments and define the slope of a segment by 

the minimum and maximum intervals between notes in the 

segment.  Such a definition of slope allows us to represent 

many common jazz idioms.  For example, consider the 

bebop idiom of an enclosure [3], wherein a chord tone is 

approached by notes above and below.  

 

Figure 1. Example of an enclosure 

 

Using slopes, we represent an abstraction of the melody 

in Figure 1 as the S-expression: 

(R4 R8 L8 (� -3 -4 S8) (� 1 2 C8) R4). 

Following two rests, we have an eighth note color tone 

followed by a scale tone three to four half steps down, a 

chord tone one to two steps up, and finally a quarter note 

rest. Note that we abstract only pitches, while rhythms are 

captured exactly. 

Our notation for chords follows jazz lead sheet 

abbreviations, as given in Table 2. 

Symbol Meaning 

M major 

m minor 

7 dominant seventh, if by itself 

6 added sixth 

 

Table 2. Jazz chord symbols used above the staff 

 

In addition to short idioms, we can capture larger 

selections such as the line in Figure 2 from Red Garland’s 
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solo on “Bye Bye Blackbird” [10]. We represent an 

abstraction of the melody in Figure 2 with another S-

expression:  

(R8 C8  (� -9 -9 A16) 

 (� 1 3 C16 C16 C16 C8) 

 (� -12 -12 C8) 

 (� 1 4 C8 A8) 

 (� -4 -1 L8 C8 C8 A8 C8) 

 (� 12 12 C8) 

 (� -12 -2 C8 C8)) 

 

Figure 2. A melody line and its slope representation 

 

Notes such as the G# in the first measure begin an 

ascending segment and so have only one interval from 

which to choose a minimum and maximum slope.  In such 

cases, we found that relaxing the bounds by a half step in 

each direction yielded better results.  Consequently, we 

relax (� -9 -9 A16) to (� -8 -10 A16) before instantiating 

to a melody. Since chord tones play the most significant 

role in shaping the melody, we weight chord tones higher 

than slope bounds, but for note categories other than chord 

tones, we do not. 

Figure 3 demonstrates several new licks generated from 

our representation of Red Garland’s melody. 

 

(a) Original melody 

 

(b) Generation using only contours 

 

(c) Generation using only note categories 

 

(d) Two generations using both contour and categories 

 

Figure 3. Original melody vs. melody generation methods 

4. GRAMMATICAL INFERENCE 

 Grammatical inference (GI) algorithms attempt to 

define the rules of a grammar for an unknown language 

through analysis of a training dataset.  The data can 

contain both positive sample sets (strings in the language) 

and negative sample sets (strings that should not be 

accepted), though we use only positive sample sets, e.g. 

performances from an artist that we want to imitate. 

 The idea of grammatical inference is to determine a set 

of rules that will produce strings similar to those in the 

training data.  The grammar, then, should generate a set of 

strings containing everything in the training data and 

nothing that differs greatly from the data.  

 Cruz-Alcazar and Vidal-Ruiz [1] applied three GI 

algorithms to automatic composition of melodies in 

Gregorian, Bach, and Joplin styles, achieving the best 

results with the Gregorian melodies, in which they 

classified twenty percent of composed melodies as very 

good, which they define as able to be “taken as an original 

piece from the current style without being a copy or 

containing evident fragments from samples.” We strove 

toward the same definition of very good solos. 

 We experimented with several methods for extracting 

grammar rules from training data, including extraction by 

phrases, with a phrase defined as a section of a solo 

starting after a rest and ending with a rest. Given the 

variable length of phrases and the difficulty of 

recombining phrases into a solo of a specified size, we 

settled on breaking melodies into time windows of a 

predefined length.  After choosing two parameters, the 

number of beats per window and the number of beats by 

which to slide the window, we collect all melodic 

fragments of a certain length in a corpus and associate one 

grammar terminal for each abstract melody of the given 

length.  We found that, among fragments of between 1 

and 8 beats, 4 beat fragments achieved the best balance 

between originality and continuity.  All songs in our 

training data are in 4/4 time, so we are effectively 

collecting abstractions for each measure in the training 

data. 

5. MARKOV CHAINS 

 Once we have gathered the abstract melodies that will 

make up our generated solos, we combine them into full 

solos by implementing the equivalent of a Markov chain 

into the grammar.  Markov chains represent a system with 

a sequence of states, using conditional probabilities to 

model the transitions between successive states.  An n-

gram Markov chain uses probabilities conditioned on the 

previous n-1 states.  In our work, sets of abstract melodies 

serve as the states in the Markov chain; given a starting 

melody, we add the next phrase based on a list of 

transition probabilities from the first measure.  
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6. CLUSTERING 

To construct a Markov chain with meaningful 

transition probabilities, we need a reasonable number of 

data points for each state.  Before building the transition 

matrix, we group similar abstract measures together using 

the k-means clustering algorithm [11].  We then collect 

statistics on which clusters follow other clusters in the 

corpus and build our table of probabilities accordingly, 

using clusters as states of the Markov chain.  To compose 

new solos, we first generate a sequence of clusters from 

the grammar and then randomly select representatives 

from clusters. 

Clustering algorithms represent data as points in an n-

dimensional plane and group points together through some 

distance metric. We base our cluster analysis as a 

Euclidean distance measure on 7 parameters:  

1) Number of notes 

2) Location of the first note struck within the window 

3) Total duration of rests 

4) Average maximum slope of ascending or 

descending groups of notes 

5) Whether the window starts on or off the beat 

6) Order of the contour (how many times it changes 

direction) 

7) Consonance 

We assign a “consonance” value to a measure based on 

the note categories.  For each note, we add to the 

consonance value a coefficient for the note category 

multiplied by the length of the note.  For example, typical 

coefficients are 0.8 for a chord note, 0.6 for an approach 

note, 0.4 for a color note, and 0.1 for other notes. 

Given a parameter k for the number of clusters, we use 

the k-means algorithm, which selects k points as cluster 

centers and then begins an iterative process given by the 

following two steps: 

1) Assign each data point to the nearest cluster center. 

2) Re-compute the new cluster centers. 

These steps are repeated for some number of iterations 

or until few enough data points switch clusters between 

iterations.  Figure 4 shows three representative 1-measure 

melodies that the algorithm clustered together in a corpus 

of Charlie Parker solos.   

 

Figure 4. Three representatives from the same cluster 

 

The top line of Figure 5 shows a 2-measure melody and 

the result of choosing two measures, one from the cluster 

for the first measure, and one for the cluster for the second. 

 

Figure 5. A 2-measure melody (top) and a melody 

synthesized from clusters corresponding to each of the 

measures (bottom) 

7. IMPLEMENTATION 

Our ideas and methods were implemented as a learning 

extension of the solo generation functionality of the open-

source software tool Impro-Visor [12], implemented in 

Java. Both the executable and source code for the results 

presented here will be made available publicly.  

Table 3 shows a simple grammar with 3 clusters 

inferred from a corpus of Charlie Parker solos. Each non-

terminal symbol has an integer argument indicating the 

number of measures to be filled. Non-terminals C0, C1, 

and C2 represent the states of the Markov chain. Due to 

space limitations, we have only included one of the rules 

for each of Q0, Q1, and Q2. We have transcribed our 

implementation’s notation from S-expressions to more 

conventional grammar rules for readability.  

 

Production Rule ��  

P(0) � () 1 

P(Y) � Start(32) P(Y-32) 1 

Start(Z)� C0(Z) 0.23 

Start(Z) � C1(Z) 0.25 

Start(Z) � C2(Z) 0.52 

C0(0) � () 1 

C1(0) � () 1 

C2(0) � () 1 

C0(Z) � Q0 C0(Z-1) 0.24 

C0(Z) � Q0 C1(Z-1) 0.24 

C0(Z) � Q0 C2(Z-1) 0.52 

C1(Z) � Q1 C0(Z-1) 0.18 

C1(Z) � Q1 C1(Z-1) 0.28 

C1(Z) � Q1 C2(Z-1) 0.54 

C2(Z) � Q2 C0(Z-1) 0.25 

C2(Z) � Q2 C1(Z-1) 0.24 

C2(Z) � Q2 C2(Z-1) 0.51 

Q0�((� 0 0 R2 R4 R8 C16/3)(�1 1 A16/3 L16/3) 0.33 

Q1�((� 0 0 C8)(� -9 -9 C8)(� 2 3 C8 G4+8 R4)) 0.33 

Q2�((� 0 0 C4/3)(� 1 2 L4/3 A4/3)(�-7 -1 C4/3 G4 C8/3)) 0.33 

 

Table 3. Probabilistic grammar embedding a Markov 

chain, with �  being the probability of using the rule, given 

the left-hand side 
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For brevity, the rules for expanding the individual clusters 

are not shown. These expand into sequences of slope 

specifications of the sort that were described in section 3. 

This grammar generates 32-measure abstract melodies, 

but we can specify any number of measures to generate, 

and the grammar will adjust accordingly.  Once we have 

an abstract melody, we then generate a real melody by 

randomly selecting an initial note of the specified note 

category and then filling in the rest from slope and note 

category constraints. Figures 7 and 8 show two solos 

created by our approach, intended to be in the style of 

John Coltrane and Charlie Parker respectively. Each is 

based on a grammar learned from a corpus of solos from 

the respective artists. 

 

 

Figure 7. Generated Coltrane-style solo for “Giant Steps” 

 

 

Figure 8. Generated Parker-style solo for “Now’s the 

Time” 

8. QUALITATIVE RESULTS 

 

For short solos, we found that our algorithm’s 

compositions usually sound like a capable jazz soloist and 

occasionally like a convincing imitation of an artist.  For 

short solos of 4 to 8 bars, results were regularly very good 

and could be easily mistaken for the original artist, but 

longer solos tended to lack a sense of direction.  Four-gram 

Markov chains produced longer coherent passages than 

bigram and trigram models and were able to generate very 

good 12 or 16 measure solos about 25 percent of the time.  

Given our lack of a large data set (our largest set was about 

400 measures of Charlie Parker solos), higher order n-

grams gave no more information than the 4-gram model.  

We hypothesize that with a much larger dataset, higher n-

gram models would yield more coherent solos of longer 

duration. 

9. EXPERIMENTAL RESULTS 

To measure our method’s effectiveness at style 

emulation, we set up an experiment to determine whether 

or not test subjects could match the styles of three 

prominent jazz trumpet players with solos composed in 

the style of each player. We inferred grammars for 

Clifford Brown, Miles Davis, and Freddie Hubbard from 

72 bars of solos from each.  We then played for the 

subjects one clip from each artist and one clip generated 

from each grammar, with each computer solo generated 

over the same tune (“Bye Bye Blackbird”). Without 

revealing the names of the artists, we asked the subjects to 

match the artists from the computer-composed solos with 

the human players.  We also asked subjects to 

qualitatively indicate how close the resemblance was by 

“Not close,” “Somewhat close,” “Quite close,” or 

“Remarkably close.” 

Out of 20 test subjects, 95 percent correctly identified 

Clifford Brown, 90 percent identified Miles Davis, and 85 

percent identified Freddie Hubbard. Of the same subjects, 

85 percent correctly matched all 3 solos. All subjects 

characterized the resemblance to the original artists as 

either “Somewhat close” or “Quite close,” with 9 votes to 

“Somewhat close,” 10 to “Quite close” and 1 unable to 

decide.  On a scale of 1 to 10, 50 percent ranked their own 

musical knowledge between 2 and 5, and 50 percent 

between 6 and 9. 

 

10. FUTURE WORK 

A more convincing test of our method would be an 

experiment to determine whether listeners, particularly 

jazz musicians, can tell the difference between a solo 

generated by a learned grammar and a human composed 

solo.  Improvements to both our musical representation 

and our algorithm could be made to achieve good results 

in such a test.   

In terms of musical representation, we currently 

determine appropriate scales (and note categories) only by 

one chord.  Some chords fit into several keys though, so 

we could make better scale choices by looking at adjacent 

chords.  Also, examining more specific information about 

notes in conjunction with the note categories, such as 

interval from the root of a chord, could prove to be 

beneficial. 
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 The greatest weakness of our generated long solos is 

their lack of global structure.  A more conclusive 

evaluation of the effectiveness of n-grams for global 

structure could be done given a sufficiently large data set.  

Another approach that could be explored is to infer the 

high level structure of a generated solo on a particular solo 

from the training set.  We could represent an outline for a 

solo with a sequence of clusters and create new solos 

based on the outline by choosing different cluster 

representatives than were in the original. 

11. CONCLUSIONS 

The ability of our method to generate solos that sound 

similar to the artist from the training data, yet distinct 

from any particular solo, shows that our method of data 

abstraction is effective. The combination of contours and 

note categories seems to balance similarity and novelty 

sufficiently well to be characterized as jazz.  In addition, 

clustering appears to be a workable algorithm for 

grouping fragments of melodies.  Markov chains were 

effective in structuring solos, however, additional global 

structure is desirable for providing intra-solo coherence. 
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ABSTRACT

This paper describes a novel system that combines machine
listening with evolutionary algorithms. The focus is on free
improvisation, wherein the interaction between player, sound
recognition and the evolutionary process provides an over-
all framework that guides the improvisation. The project is
also distinguished by the close attention paid to the nature
of the sound features, and the influence of their dynamics
on the resultant sound output. The particular features for
sound analysis were chosen in order to focus on timbral and
textural sound elements, while the notion of “sonic gesture”
is used as a framework for the note-level recognition of per-
former’s sound output, using a Hidden Markov Model based
approach. The paper discusses the design of the system, the
underlying musical philosophy that led to its construction
as well as the boundary between system and composition,
citing a recent composition as an example application.

1 INTRODUCTION

In the context of free improvisation, the language that per-
formers speak to one another and to the audience is devel-
oped throughout the course of a performance as well as re-
hearsal, listening to all facets of the sound that each player
produces. Timbral and textural sound features become strong
indicators of the musical form, and further it is the shape and
direction of these qualities through which performer’s speak
to one another, expressing their intention for the future as
much as their creation of the present moment or reaction to
the past.

With this in mind, we have developed an interactive sys-
tem for musical improvisation that analyzes the sonic con-
tent of performers, recognizes the nature of the sonic con-
tours being produced in real time, and uses this informa-
tion to drive a genetic algorithm. The output of this algo-
rithm may be mapped to sonic or visual processes, creating
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a feedback loop and interplay between performer, machine
recognition and a directed evolutionary process.

This particular choice of system design has arisen from
our personal experience as improvisers performing together
and with various other musicians, and observations made on
this mode of musical creation in general. In terms of design
constraints or what one might call “demands” of the system,
we built around the following features

1. A focus on timbral as well as textural information.
The former is clearly a strong building block for improvisers
defining their own performance language in concert. The
latter is more separable in time than timbre, and in more
sound-focused musics such as free improvisation becomes
a strong structural element that interplays with larger sonic
contours.
2. Sonic gestural undestanding.
We define note-to-phrase level sonic shapes as “sonic ges-
tures”, and feel that these convey the fundamental sense of
musical intention and direction in improvised music. In this
way, the refinement of the system focuses on the interplay
between the system’s response to this “immediate” informa-
tion and the nature of the output, rather than building recog-
nition of large-scale structural information that is less im-
portant in this context. In other words, the focus is shifted
in our system to the immediacy of sound awareness.
3. Continuous, on-line recognition with measure of cer-

tainty/uncertainty.
While many systems exists for recognition of musical tim-
bre, often the interest lies in the out-of-time acts of classi-
fying musical notes, excerpts, passages or pieces in a way
that is categorical. In contrast, our work builds an under-
standing or likely scenario of the type of sonic gesture that
is being played, with a continuous degree of certainty about
this understanding. In a sense, we are less interested in a
musical retrieval than using the process of musical retrieval
in a way that an improvising performer does, continually
updating their expectation.
4. Novel output from the system that is continuously influ-

enced by performer’s sonic gestures.
Our goal was a system that would continuously produce
spontaneous, novel, and what one might call “creative” events
at the same relatively low level on which we focus for anal-
ysis and recognition. Therefore we explored the use of pro-
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cesses that were directed while being under the influence of
randomness.

With these design constraints in mind, we have arrived
at a system in which continuous recognition of textural and
timbrally-focused sonic gestures are recognized with vary-
ing degree of probability and confidence. This understand-
ing then directs an evolutionary process that is finally mapped
to an appropriately-defined system output. The sound anal-
ysis, gestural recognition and search process together are
considered as an agent that reacts to the musical situation,
influencing it by some output which is treated as an applica-
tion of the agent rather than an inherent part of it.

2 RELATED WORK

There are several well-known examples of interactive sys-
tems for improvisation. One of the most prominent and
musically successful is George Lewis’ Voyager system [8],
which converts pitch to MIDI data in order for various inter-
nal processes to make decisions depending on the harmonic,
melodic and rhythmic content before producing symbolic
output to interact with the human performer. Similar work
can be see in Robert Rowe’s Cypher system [11], which
explores musical cognition and theory to form structuring
principles based again on analysis of MIDI data. There ex-
ist other examples of MIDI/symbolic music content analysis
systems, and the reader is directed to [11] as one point of
reference.

As noted, our current system differs in that we exam-
ine continuous signal-level timbral/textural features to drive
system output so that the system adapts to the changing au-
dio content – as in [7] or [9] – with added layers of com-
plexity from sonic gesture recognition and evolutionary pro-
cesses. Another approach to analysis of sonic gestures was
taken in [6] in which parameter curves for pitch, loudness,
noisiness, roughness, etc. were extracted, with captured se-
quences being stored in a database in order to drive synthe-
sized gestures having similar timbral contours. In this way
the system is similar to the musical gesture-driven process-
ing of [10], with the added layer that out-of-time gestural
inflection drives the system rather than direct online parame-
ters. Our system shares the conviction that sonic gestures are
important in human-machine interaction for improvisation.
However we differ in that the recognition itself is on-line
with our system, and continual adaptation to the anticipated

gesture is used as an element of the machine intelligence.
Finally, while the evolutionary paradigm has been widely

used for algorithmic composition and sound design, there
have also been several approaches to using evolutionary al-
gorithms in an improvisational context. Biles’ Genjam sys-
tem [2] used an interactive genetic algorithm (GA) to evolve
a system that learns to play jazz music along with a solo hu-
man player. The goal is to use the GA as a means to evolve
the final state, while our interest is in the GA process itself

as engaging with performer in improvisation. In a similar
spirit is the work of [3], in which pitch values become cen-
ters of attraction for a swarm intelligence algorithm, produc-
ing a melodic stream that moves about these input values.
Our system shares the interest of mutual influence between
evolutionary/biological process and performer’s sound out-
put, while we focus on dynamics of recognition as an added
layer to help guide this process.

3 SYSTEM OVERVIEW

The overall system, depicted in Figure 1, was written in
Max/MSP utilizing several custom externals as well as the
FTM, Gabor and MnM packages from IRCAM. In the first
step, the system continually extracts spectral and temporal
sound features. At the same time, onsets and offsets are
tracked on a filtered version of the signal, which act as dis-
crete cues for the system to begin recognizing sonic ges-
tures. When such a cue is received, a set of parallel Hidden
Markov Model (HMM) based gesture recognizers follow the
audio, with the specific number of these being chosen as a
product of needed resolution as well as processing power.
The recognition continually provides a vector of probabil-
ities relative to a “dictionary” of reference gestures. Pro-
cessing on this vector extracts features related to maximum
likelihood and confidence, and this information drives the
fitness, crossover, mutation and evolution rate of a GA pro-
cess acting on the parameter output space.

3.1 Sound Feature Analysis

The goal of the system is not to recognize a given sound
quality absolutely, but rather to differentiate between sounds
made by a performer along a continuum in several dimen-
sions. In particular we believe that in the free improvisa-
tion context that is our focus, that global spectral features
related to timbre are important for an immediate parsing
of sound, with further qualitative differences coming from
textures that are more separable in time and acting over a
larger time scale (e.g. less than 20ms vs. 20-1000ms). Sim-
ilarly, rather than the specificity of pitch values, the relative
strength or “pitchness” of a note becomes important, as well
as its register. In light of this we employed features that
can be broken down into global spectral, pitch strength and

textural.
For the first group we extract Spectral Centroid and Spec-

tral Deviation. The first is a commonly-used feature that has
proven to be a strong perceptual correlate of timbral bright-
ness in distinguishing between sounds, while the second
provides a useful means of differentiating between spec-
trally dense or sparse sounds. Deviation is calculated from
the second order central moment of the power spectrum.

For the pitch strength features we use the robust Yin model
[4], extracting Frequency, Energy, Periodicity and AC Ratio.
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Figure 1. System Overview including feature extraction,
recognition and mapping to GA process. The input param-
eters are used to tune the temporal response of system, and
can be used to update this in real-time.

Periodicity provides a degree of “pitchiness”, used as a mea-
sure of the confidence in the pitch estimate, while AC ratio is
a qualitatively different measure of regularity, coming from
the ratio of the first two autocorrelation coefficients.

The textural quality of the gestures is examined using the
3rd and 4th Order Moments of LPC Residual. As was dis-
cussed in [5], higher order moments from the excitation de-
scribe jitter properties of this signal, which relate to non-
linear frequency modulations of sustained partials and so to
textural phenomena. Therefore we extract the residual value
by way of LPC analysis, and compute 3rd and 4th order mo-
ments on these values in order to differentiate between dis-
parate musical textures. We have found that this measure is
very useful in separating voiced and unvoiced content.

3.2 Onset/Offset Detection

Our system uses onsets and offsets as cues to indicate that
a relevant event may have begun/ended, with the final de-
cision of whether an event is relevant being determined in
the recognition stage. Rather than model onset detection
for particular types of events, we employ a straightforward
approach that uses tuning parameters for thresholds and re-
sponse time. Specifically, we utilize the levelmeter object
from Max/MSP - which models a VU-style meter - to pro-

duce an RMS value of the input sound. The purpose of
using this object is that allows for tuning the ballistics of
attack/decay times, which strongly influences the onset de-
tection. After extracting the smoothed value, the difference
of successive values is taken, and if this difference is greater
than a given threshold an onset is considered to have oc-
curred. The same is done in the opposite direction with off-
set detection. This is represented in Figure 1 as the first two
stages of the left-most signal path. When an onset has been
detected, it opens up a gate which causes the system to be-
gin searching for sonic gestures that it may recognize from
the audio stream. The way that the individual gates close
depends either on an offset cue or on other factors related to
the recognition as we will discuss in section 3.3.4.

3.3 Sonic Gesture Recognition

Our sonic gesture recognizer is built on the efficient gesture-
follower [1] modules from the MnM library developed at
IRCAM. This implementation uses an HMM and dynamic
time warping to follow as well as recognize gestures in real-
time. While there are some trade-offs made with this imple-
mentation for efficiency and to allow use with a low number
of training examples, we have found it to work well in light
of our requirements 2 and 3 as stated in the introduction.
These modules work on any data that one can represent in
matrix form, leading us to adapt them for our sonic recogni-
tion stage. We use all eight of the employed sound features
as a singular multidimensional gestural representation, pro-
ducing a vector that will represent one state in the underly-
ing HMM model, defined using a left-to-right state topology
as is standard in applications such as speech recognition.

3.3.1 Gestural Dictionary

The gestural follower requires training examples as a basis
for future comparisons. Our interest is not to provide exem-
plary gestures that performers must later try to recreate - and
in this sense perhaps our approach is an outlier for HMM-
based recognition. Rather, our goal is to populate a space of
gestures that represent a general playing style, in disparate
parts of “gesture space”. That is, these sonic gestures should
be orthogonal in some musical sense, and this is regarded as
part of the composition for the system. From experience
of using the follower implementation, however, two impor-
tant considerations arise: the gestures should be roughly the
same length and there is a complexity limit (total of number
of states in the database) beyond which adding new gestures
makes recognition impossible.

3.3.2 Continuous, Dynamic Attention

After the recognizer is trained on a set of gestures, it is ready
to accept vectors of the same type for comparison, provid-
ing a probability for each member of the gestural dictio-
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Figure 2. Output probability vectors. Top value shows
strong certainty for one gesture while bottom shows con-
fusion over three possible gestures.

nary given the current input. In order to define the temporal
boundaries of a gesture from the current input, the recog-
nizer must be explicitly started and stopped, which we initi-
ate with onsets. Most importantly, once a start message has
been given the probabilities are updated in real-time for each
member of the gesture space, providing a form of dynamic

attention. This is important in the context of improvisation,
where one’s expectation of what a sonic gesture is at any

given moment is continually being updated. We use this in-
formation to drive system output, thereby mapping this dy-
namic attention into action as an engaged improviser would.

3.3.3 Probability Dynamics Processing

From the raw probability values for each gesture, we ex-
tract the normalized probability, the maximally-likely ges-
ture and the deviation between the maximum and the few
highest values. These latter values each give some indica-
tion of how strongly the system believes that the performed
gesture is one from the system. Both values are needed to
know uniqueness as well as strength of recognition, as illus-
trated by Figure 2.

At the same time, instantaneous recognition values are
not enough in order to usefully map the dynamics of recog-
nition, as the HMM produces sudden changes in the prob-
ability vector. For stable gestures this is normally a slow
oscillation between perceived values, but occasionally the
recognizer will change course abruptly. Therefore, a leaky
integrator is applied to the extracted maximum mk,i and de-
viation values dk,i to create a confidence value defined as

Cn,i = δ(mn,i − mn−1,i)
n∑

k=0

2
−1

λk,i (mk,idk,i).

This represents a building of confidence in a given ges-
ture’s likelihood over time n for gesture space i. If the
maximum probability value changes abruptly between two
members (i.e. if a strong “change of mind occurs”) then
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Figure 3. Probability dynamics for three most-likely ges-
tures and related confidence level.

the integrator is cleared by the binary δ function. Other-
wise, the value decays smoothly as determined by the re-
sponse time λn,i. Figure 3 illustrates a situation in which
uncertain movement keeps the confidence value low until
this subsides, when the confidence begins to build.

3.3.4 Parallel Gestural Spaces

Although the follower does use dynamic time warping in or-
der to provide a best guess of the gestural scale, the imple-
mentation is limited by the need to have similarly-sized ges-
tures in a given dictionary. Further, it is not trivial to track
the beginning and ending of gestures along differing tem-
poral scales in one analysis, as well as to make decisions on
what is considered a meaningful gesture as exceptional play-
ers often embed one type of gesture within another. In order
to examine these different levels of granularity, we create
gestural spaces that act on different time scales in parallel,
as noted in the diagram of Figure 1. The generality of the
diagram reflects the fact that the number may vary depend-
ing on computing power and musical context, while we have
found that using three different temporal scales has been ad-
equate for our own purposes thus far.

As noted we use onsets as a way to cue the recognition
process. When an onset is detected, recognition is trig-
gered using the shortest database of sonic gestures. If the
smoothed maximum value stays below a given threshold,
then the recognition stop after μi seconds, which represents
half of the average length of gestures from the ith set. Other-
wise, recognition ends after Mi, the maximum time over all
gestures in i. If no offset is detected, then the next N−1 lev-
els of recognizer immediately begin searching their databases.
If the accumulated confidence value Cn,i for space i is not
above a given threshold by μi, then the recognizer is re-set
to the beginning. Otherwise it is reset when Mi is reached.
For example, Figure 3 represents gestures from a database
where the average gestures length is 5 seconds, and μi =
2.5. In the initial portion from 0-1 seconds there is devia-
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tion between the three main gestures so that confidence Cn,i

remains low. However it increases rapidly after one gesture
asserts itself, easily passing any threshold the user may set.
If μi were instead 1 second, then the system would likely be
reset as confidence would be below any threshold value.

3.4 Gesture-Driven Evolutionary Process

While sonic gesture recognition is an important part of our
system, as noted it is ultimately the process of recognition
and understanding that is central to its musical behavior.
The goal is to have a continuous interplay between this pro-
cess and an output that guides performers in a feedback
loop as they in-turn guide this system. We have utilized
genetic algorithms as a goal-directed process that moves in
a globally predictable direction while maintaining random
elements on a local scale. Rather than set the goal a pri-
ori as one commonly would in a GA used for optimization
purposes, the “goal” changes as a product of the system’s
gestural recognition and confidence.

The underlying parameter space for our GA implemen-
tation is tied to the size of the gestural spaces employed.
As noted there is a limit to the size of each gestural space,
which we have found to be between 20-30 depending on the
time scale of the gestures. At the same time, the required
population size for a GA implementation is a product of the
problem complexity for optimization purposes. For our ap-
plication to real-time improvisation, we have found spaces
as small as 20 members to be effective in moving towards a
perceptible goal.

The reason that we constrain the population size to that
of the gestural space is that each member of the gene pool
is treated as an ideal output that should arise when a given
sonic gesture is believed to be present. Therefore, if a per-
former “plays into” a certain known gestural type, the sys-
tem will strongly recognize this and move the GA towards
an output that is intended for this type of playing. The way
that we achieve this is by mapping the probability for each
gesture in a dictionary into the fitness for the corresponding
member of the GA population. Thus, for example, in figure
2 if the top probability vector were in steady-state, then the
GA would converge towards the member associated with the
highly-probable member located in the center of the image.

While belief in a particular gesture causes output to con-
verge towards a particular parameter set, the dynamics of
this convergence are determined by the confidence value. As
the confidence raises, the probability of mutation (random-
ization of output parameters at crossover step) as well as the
depth of mutation (degree of randomization) decrease. Tak-
ing the example from figure 3, the fitness value would os-
cillate as a function of the three probability curves while the
mutation rate would be high due to the low confidence. This
would cause the members selected for breeding to move
into new areas of the parameter space. After the inflec-

tion point – when one gesture begins to dominate and the
confidence level starts to rise – the space would move to-
wards the highly-probable level, with less mutation applied
at each new generation. The rate of each generation (“rate
of evolution””) is context sensitive, being controlled by the
confidence level for large-scale gestures or by onsets for
small-scale gestures. The relative nature and dividing line of
“small” vs. “large” gestures is a product of musical context.
The reason for making this distinction is that we have found
that short, attack-focused gestures that occur with higher
frequency can evolve the space at a reasonable rate, and ap-
pear more musical as the change in output is tied to musical
events. Longer-scale gestures do not drive the space at a
fast enough rate. Further, improvisation and other sound-
focused music tends to listen for internal developments “in-
side” a given sound gesture as it unfolds, so that evolution
of system output should not be tied to the initial moment of
attack.

As with the gesture-follower, the GA implementation is
built up from abstractions written in Max/MSP, while the
core GA itself is a C external programmed with operators
that are unique to our application. This external is instanti-
ated with messages for population and member size. Each
member is a string of float values in the range 0-1. A list
of fitness values may be input – one for each member –
and a bang message causes a random sampling of members
of the population (with selection probability proportional to
fitness) for mating/crossover. A simple one-point crossover
occurs between members at a random location in the param-
eter list. This GA implementation is categorical in that each
member is tied to a particular member in the corresponding
gestural dictionary. Therefore, rather than using a random
replacement operator, care must be taken in order to replace
the proper parent from a previous generation with its chil-
dren, where the children inherit the fitness of the parent until
the recognition assigns a new value.as

4 CASE STUDY: ACOUSTICS/ELECTRONICS
TRIO

The premiere of our system in concert was in the context of
a new piece written by the first author for the New York City
Electroacoustic Music Festival (NYCEMF) 1 . The piece was
written for saxophone, accordion and laptop performer. The
electronics capture the sound of the acoustic performers in
real-time and transform them in order to define new sonic
gestures having their own timbre and texture. The soft-
ware system is a granular feedback-delay system written by
the first author as a performance tool, where input sound
may be scrubbed (via gestural control), time-stretched and
novel transformations applied through per-grain processing
and feedback-delay coupled with larger-scale (e.g. 5-15 sec-

1 http://www.nycemf.org/ - last accessed on June 8th, 2009.
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Figure 4. Gesture recognition to GA mapping. Composi-
tional choices are reflected, such as onsets to drive space 1,
and choice to mix or gate (depending on section) space 2
and 3 output depending on confidence values.

onds) delay modulations that return as independent gestures
rather than transformations on previous material. The struc-
ture of the piece was centered around how the sonic gestures
and sound processing should co-evolve over time, and how
much influence the agent exerted over the human electronics
performer. As such, “composing” took on several meanings.

The choice of sonic gestures with which to train the agent
was one of the strongest compositional choices. This de-
fined the central gestural types that the performer could then
choose to “play into”” or to “play around”. The system used
1, 5 and 10-second gestural spaces in parallel. The short
gestures focused on a variety in regards to brightness and
pitch material, while the 5-second gestures defined different
textural values in terms of voiced vs. unvoiced qualities and
rough vs. smooth tones. The 10-second gestures defined
forms that one might call phrases: differentiating between
fast, stunted patterns and slower drones, having different
timbral qualities.

A second compositional choice was made in terms of the
type of processing to map to each gesture space. The desire
was for shorter gestures having sudden attack to lead to a
variable number of output gestures that related timbrally to
the input while having their own unique gestural character.
This was achieved by mapping this smallest gestural space
to sound parameters that controlled an array of modulating
delay lines each with a unique modulation function, wherein

the number of active delay lines, their modulation rate and
depth, and memory size (i.e. how far back in time to look for
input) were controlled by the agent. Meanwhile, medium
and large-scale gestures were mapped into the granular pa-
rameters related to grain size, rate, inter-grain phasing, per-
grain feedback gain and delay time as well as interpolation
time between parameter changes. In this way, the extended
gestures with slower attack could be scrubbed by the lap-
top performer or time-stretched automatically depending on
the section, while the internal characteristics of the granular
processing evolved at a rate that depended on the anticipated
length of the gesture (i.e. whether driven from the 5 or 10
second gesture spaces). This application illustrates one of
the great strengths of our system: that a particular gestu-
ral type can be mapped into a sound processing parameter
set that is tailored to its dynamic sonic character. The na-
ture of the sound processing can then be changed for differ-
ent temporal scales of sonic gesture. Therefore, rather than
content-based processing where the audio quality directly
determines the transformation type (as in e.g. [10]), we have
added the layer in which the processing type is determined
by the audio feature content (indirectly) and type of gestu-
ral dynamics (directly) that the system believes is occurring,
creating an appropriate interplay for improvisation.
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ABSTRACT 

The paper presents a method for automatic transcription of 

recordings of bell chiming performances. Bell chiming is 

a Slovenian folk music tradition involving performers 

playing tunes on church bells by holding the clapper and 

striking the rim of a stationary bell. The tunes played 

consist of repeated rhythmic patterns into which various 

changes are included. Because the sounds of bells are 

inharmonic and their tuning not known in advance, we 

propose a two step approach to transcription. First, by 

analyzing the covariance matrix of the time-frequency 

representation of a recording, we estimate the number of 

bells and their approximate spectra using prior knowledge 

of church bell acoustics and bell chiming performance 

rules. We then propose a non-negative matrix 

factorization algorithm with selective sparsity constraints 

that learns the basis vectors that approximate the 

previously estimated bell spectra. The algorithm also 

adapts the number of basis vectors during learning. We 

show how to apply the proposed method to bell chiming 

transcription and present results on a set of field 

recordings. 

1. INTRODUCTION 

Bell chiming is a Slovenian folk music tradition that still 

exists in its original context today. It takes place in the 

church tower and its original role is strongly connected to 

Christian religious contexts. Bell chiming combines the 

signaling, ritual, and musical functions, because it is most 

often used to call the faithful to mass in a musical way, 

and at the same time to mark important church holidays. 

This is how the difference between conventional bell 

ringing and bell chiming as a more solemn form of 

playing the bells is established [1]. 

Slovenian-style bell chiming is performed by the 

musicians holding the clapper and striking the rim of the 

stationary bell at regular intervals. The sound is thus not 

produced by a swinging bell hitting the clapper, but by the 

clapper, typically held close to the rim, hitting the bell’s 

rim. This gives musicians more control in altering the 

rhythm, speed, dynamics and accents of individual strikes, 

as well as leaving out strikes if desired. In the so called 

“Flying” tunes, one of the bells (usually the largest) is 

swung with a rope or electronically, and all the other bells, 

which are stationary, are played by striking the clapper. 

As a rule, each musician is responsible for playing one 

bell, and should strike the bell only with its clapper 

(touching the bell’s rim with hands or other tools is not 

allowed). Another important rule in bell chiming is that 

two tones can never be played at the same time, but 

exceptions do occur.  

Bell-chiming tunes contrast one another in the method 

of playing, the number of bells used, and their rhythmic 

and metric structure. Tunes themselves consist of repeated 

rhythmic patterns into which various changes, typically 

dynamic and agogic are included to enliven the 

performance. Since musicians perform in groups, without 

the group’s consent, only small changes are possible 

within the time limits allocated to the bell chimer for 

performing his role.  These changes are usually expressed 

as double strikes, triplets, or pauses [1].  

Pioneering work in analysis of bell chiming practices 

was made by Ivan Mercina in the late 19
th

 and early 20
th

 

century, who introduced a numerical notation system and 

published a repertoire of 243 bell chiming tunes. His work 

is carried on by researchers of the Institute of 

Ethnomusicology of the Scientific Research Centre of the 

Slovenian Academy of Sciences and Arts, who are still 

actively researching bell chiming practices. Their digital 

archive of Slovenian folk music and dances Ethnomuse 

[2] holds a large collection of bell chiming recordings, 

collected from the 1950s onwards. Only parts of the 

archive have been manually transcribed and annotated. 

In this paper, we present a method for automatic 

transcription of bell chiming recordings. Automatic music 

transcription is a difficult problem to solve, although 

methods are improving constantly; Klapuri and Davy 

provide an extensive overview of the current state of the 

art [3]. Unsupervised learning techniques have been used 

by several authors to perform transcription. Abdallah and 

Plumbley [4] used sparse coding for transcription of 

synthesized harpsichord music, while Virtanen used it to 

transcribe drums [5]. A number of authors use variants of 
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non-negative matrix factorization to transcribe polyphonic 

music [6-9]. Their methods, however, were devised for 

music composed of harmonic sounds and are thus difficult 

to apply to our domain, because the sounds of bells are 

inharmonic and their tuning not known in advance.  

To solve this problem, we propose a two step approach 

to bell chiming transcription. We first present an 

algorithm that analyzes a bell chiming recording and 

estimates the number of church bells and their 

approximate spectra by using prior knowledge of church 

bell acoustics and bell chiming performance rules. We 

then show how non-negative matrix factorization (NMF) 

can be used for transcription by introducing two 

extensions to the standard NMF learning algorithm: 

selective sparsity constraints that take prior knowledge of 

approximate bell spectra into account, and adaptation of 

the number of basis vectors during NMF learning. 

2. ESTIMATING THE NUMBER OF BELLS  

AND THEIR SPECTRA  

The shape or profile of a bell determines the relative 

frequencies of its vibrations. The conventional western 

shape of bells, which stems from the middle ages, tends to 

give the bell a single dominant pitch. Figure 1 shows the 

magnitude spectrum of a bell, whose dominant pitch lies 

at 412 Hz. The names of significant partials of the bell are 

also shown. These partials are usually the strongest, 

although (as can be seen) many others exist. The dominant 

pitch of the bell is defined by relations of three of its 

significant partials: nominal, superquint and octave 

nominal [10]. These form a near harmonic series with 

ratios 2/2, 3/2 and 4/2 resulting in a perceived virtual pitch 

at approximately half the nominal frequency. Most of the 

other partials, including the strongest for this bell (tierce), 

do not belong to this harmonic series.  

 

 

Figure 1. Magnitude spectrum of a bell  

An extensive analysis of acoustics of church bells of 

western shape was made by Hibbert [10]. He showed that 

a relationship exists between the position of significant 

partials above the nominal and the ratio of octave nominal 

to nominal frequency. Hence, we can quite accurately 

infer the frequencies of these partials if we know the 

frequencies of the nominal and octave nominal. 

Frequencies of partials below the nominal do not exhibit 

strong relationships with the nominal. To assess their 

positions relative to the nominal, we analyzed a set of 318 

church bells and used the means and standard deviations 

of partial frequencies in this collection. 

We estimate the number of bells in a given recording 

and their spectra by analyzing the covariance matrix C of 

frequency bins of the time-frequency magnitude 

spectrogram. The elements of the matrix are calculated as: 

 � �� �
1

1

1

n

ij ik i jk j

k

c f f
n

� �
�

� � �
� � , (1) 

where n is the length (number of frames) of the 

spectrogram, fij its elements and �i the average magnitude 

of the i-th frequency bin. We exploit the fact that in a bell 

chiming performance, bells are usually struck many times, 

but typically not at the same time. Therefore, the 

amplitude envelope of a bell’s partial will be correlated to 

amplitude envelopes of other partials of the bell, but not to 

amplitude envelopes of partials of other bells. Groups of 

bells are usually tuned so that some of their strong partials 

overlap, but then these will also be at least partially 

correlated with non-overlapping partials. Figure 2 shows 

two rows of the covariance matrix of a bell chiming 

performance including three bells. The top row is placed 

at the tierce frequency (488 Hz) of the bell from Figure 1 

(B1). The bottom row is placed at the nominal frequency 

of B1 (824 Hz), which coincides with the superquint of 

another bell with nominal frequency 548 Hz (B2). 

 

 

Figure 2. Two rows of the covariance matrix.  

The top row clearly shows that the amplitude envelope 

of the tierce partial of B1 correlates well with amplitude 

envelopes of other partials of B1. Even though two more 

bells are present in the recording, amplitude envelopes of 

their partials are quite different and therefore not 

correlated with B1’s tierce. The bottom row shows that 

even though partials belonging to two bells share the 
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frequency of 814Hz, partial series of both bells can be 

discerned from this row of the covariance matrix. 

These findings led us to the following algorithm for 

estimation of the number of bells and their approximate 

spectra from the covariance matrix: 

1. given a time-frequency representation F of an audio 

signal, we calculate its covariance matrix C, which 

contains covariances of amplitude envelopes of all 

frequency bins; 

2. for each row ci of the covariance matrix, we find all 

pairs of peaks (cij , cik) that may form a nominal - 

octave nominal pair of partials. Our analysis of bells 

showed that the octave nominal typically lies in the 

range of 1050 to 1350 cents above the nominal, so all 

pairs within this range are taken into consideration; 

3. for each pair of peaks (cij , cik), we construct a spectral 

template Bijk={ (�p, �p), p=1,...,l } of a bell using the 

Hibbert’s model [10] for calculating the frequencies of 

partials above the nominal  and our own analysis of 

bells for partials below the nominal. The template 

contains estimates of frequencies of significant bell 

partials and their standard deviations; 

4. for each template Bijk we calculate its correlation to the 

row ci of the covariance matrix. If it exceeds a 

threshold T1, we include the template in the set of all 

bell templates B.   

To test the bell finding algorithm, we collected a set of 

22 bell chiming recordings performed on three to five 

church bells and manually labeled the nominal frequencies 

of bells used in performances. We calculated the 

Constant-Q magnitude spectrogram of each recording by 

using a maximum window size of 125ms, a step size of 

31.25 ms and 20 cent spacing between adjacent frequency 

bins. To flatten the spectral energy distribution, we scaled 

the bark scale sub-bands inversely proportional to their 

variance, as suggested by Klapuri [11]. This especially 

enhances the amplitudes of higher frequency partials, 

which is helpful for finding the correct number and 

spectra of bells with the algorithm described previously, 

as well as for subsequent NMF learning, which tends to be 

more sensitive to high-energy observations. Comparable 

methods for weighting the spectrum were also used by 

other authors. Virtanen [12] used a weighted cost function 

in which the observations were weighted so that the 

quantitative significance of the signal within each critical 

band was equal to its contribution to the total loudness. 

Similarly, Vincent [7] used perceptual weights to improve 

the transcription of low energy notes.  

The whitened power spectrum was used as input to the 

previously described algorithm. We evaluated the 

algorithm by calculating the precision and recall scores 

describing how the nominal frequencies of the found bell 

templates match the manually annotated nominal 

frequencies of bells. The mean precision-recall curve for 

all 22 recordings, calculated by varying the threshold T1, 

is shown in Figure 3. For our further experiments, we 

chose to set the threshold T1 at 0.35. In this way, a high 

recall value of 0.97 was obtained, meaning that virtually 

all bells in all recordings were correctly identified, while 

precision of 0.68 yielded an average of two false positives 

(superfluous bell templates) per recording. 

 

 

Figure 3. Precision-recall curve of the bell finding 

algorithm 

3. TRANSCRIBING BELL-CHIMING 

RECORDINGS  

When non-negative matrix factorization (NMF) is applied 

to transcription of polyphonic music, a time-frequency 

transform is first used to transform the time-domain audio 

signal into time-frequency space, thus obtaining a time-

frequency representation A. NMF approximates A by two 

non-negative matrices W and H, so that: 

 A ��WH ,  (2) 

where W is a matrix of basis vectors and H a matrix of 

coefficients. For music applications, the columns of W 

corresponds most naturally to individual music events 

(spectra of bells in our case), while the rows of H explain 

how amplitudes of these events change over time. Several 

efficient implementations of NMF exist in the literature. 

Our experiments are based on a recent algorithm 

introduced by Kim and Park [13] that allows sparsity 

constraints on matrices W or H.  

The naive approach to applying non-negative matrix 

factorization to transcription of music signals simply by 

factorizing the magnitude or power spectrum has several 

shortcomings. As music events overlap in time, there is no 

guarantee that NMF will separate individual music events 

into separate basis vectors. A single vector may end up 

containing partials of several events or only a subset of 

partials of an individual event. We also have to estimate 

the number of basis vectors in advance; using too few 

basis vectors will result in vectors containing several 

events, on the other hand, too many vectors may result in 

fragmentation of events over several vectors. Authors 

have addressed these issues in the past by constraining 

basis vectors to predefined harmonic templates. 

Niedermayer [9] used a preset number of fixed basis 

vectors learned from recordings of individual piano notes 

and only adapted the matrix of coefficients H during 
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learning. Raczynski et al. [8] used a preset number of 

basis vectors corresponding to individual piano notes, 

initialized and constrained the vectors to non-zero values 

only for frequency bins corresponding to perfectly 

harmonic partial series and learned the weights of these 

harmonics, as well as the matrix of coefficients. The idea 

was extended by Vincent [7], who learned the weights of 

predefined hamonic narrowband partial series belonging 

to different notes. Vincent also allowed for inharmonicity 

of the partial series.  

The described approaches all assume that the 

transcribed music signal is composed of a number of 

individual events (notes) that are composed of (almost) 

harmonic partials series and thus spectral templates of 

these events can be constructed in advance.  While this 

works well for piano music, on which all of the mentioned 

approaches were tested, it cannot be directly applied to 

our domain. The sound of church bells is inharmonic. We 

do not know what frequencies the bells are tuned to and 

even when we do, frequencies of significant bell partials 

can only be coarsely approximated. Our analysis of bell 

partials below the nominal showed that their frequencies 

can vary by as much as 150 cents from an estimated 

average. In addition, we simply have no data to model all 

of the bell partials (see unlabelled partials in Figure 1).  

We therefore devised an NMF learning algorithm with 

selective sparsity constraints that uses the spectral 

templates found by the bell finding algorithm presented in 

section 2 to initialize and guide the learning process, so 

that the learned basis vectors approximate the actual bell 

spectra and as a result, the matrix of coefficients describes 

the amplitude envelopes of individual bells.  

3.1. NMF Learning with Selective Sparsity Constraints 

As described previously, non-negative matrix 

factorization can be used to factor the spectrum into two 

non-negative matrices W and H, so that columns W 

corresponds to individual music events, while rows of H 

explain how the amplitudes of these events change over 

time. We wish to use the set of bell templates B obtained 

by the algorithm described in the section 2 to guide NMF 

learning, so that the basis vectors of W will approximate 

the found bell templates, while at the same time allowing 

the algorithm to find the best fit to the actual bell spectra.  

To this end, we introduce selective sparsity constraints 

into NMF learning. Our algorithm is derived from Kim 

and Park’s SNMF/L learning algorithm, which is based on 

alternating non-negativity constrained least squares and 

active set method [13]. The algorithm already supports 

sparsity constraints by imposing L1-norm based 

constraints on H or W. Factorization is calculated by 

solving:  

22 2

1,
1

1
min , , 0,

2

m
T
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where 
T

iw is the i-th row vector of W, m the number of 

rows of W, 	�� 0 a parameter that suppresses the growth 

of H, while 
�� 0 balances the trade-off between accuracy 

of approximation and sparsity of W. Eq. (3) is minimized 

by iteratively solving two sub-problems using an active 

set based fast algorithm for non-negativity constrained 

least squares with multiple right hand side vectors: 
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W A
H H

0I

, (5) 

where k is the number of basis vectors, m the number of 

rows of W, n the number of columns of H, e1�k��1�k
 a 

vector of ones, 0k�n��k�n
 a matrix of zeros and Ik a k�k 

identity matrix. Minimization of equation (4) involves L1-

norm minimization of each row of W, thus imposing 

sparsity on W. The strength of this constraint is controlled 

by the parameter 
. 

To introduce prior knowledge into NMF learning, we 

propose a modification of the above approach that 

selectively enables sparsity constraints only for parts of W 

where no partials are expected. The goal is to constrain W 

to approximate the spectral templates derived from the 

covariance matrix, while still allowing NMF to learn the 

best match to the actual bell spectra. Learning improves 

the estimated partial frequencies, adds partials not 

included in spectral templates and estimates partial 

amplitudes. 

The bell finding algorithm described in section 2 can 

estimate the number of church bells in a given recording, 

as well as their approximate spectral templates (Bi�B, 

i=1,...,k) by analyzing the covariance matrix of the time-

frequency representation. The templates are represented as 

a set of partial frequencies and their standard deviations: 

Bi={ (�ip, �ip), p=1,...,l }. We can thus construct a 

selectivity matrix V as: 

 
2

1, : , 1,...,
[ ] ,

0,

i jp jp

ij m k ij

p f T p l
v v

elsewhere

� �
�

� � � � ��� �  
�!

V ,  (6) 

where fi is the center frequency of i-th row of the time-

frequency representation A and T2 a threshold determining 

the amount of allowed deviation of a partial from its 

estimate in B. The number of columns in the selectivity 

matrix is equal to the number of bell templates found. 

Each column of the matrix corresponds to one template 

and contains ones in places where we expect partials to 

occur in the time-frequency representation (according to 

the corresponding template), and zeros elsewhere. The 
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matrix can be used to selectively apply sparsity constraints 

only for components of W where no partials are expected 

(V contains zeros), and leave components where partials 

should occur unconstrained. To incorporate selective 

sparsity constraints, we modify the first part of the 

SNMF/L learning iteration (Equation (4)) to obtain the 

SSNMF/L algorithm: 

� �

2

min , 0, 1,...,

1 ( ) 0
T
i

T T

T Ti

i iT T

i
F

i m



� � � �
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w

H a
w w

v

, (7) 

where , and
T T T

i i iw v a are i-th rows of matrices W, V and A 

respectively. The matrix V acts as a selector that enables 

or disables sparsity constraints with regard to 

corresponding bell templates. Equation (7) should be 

minimized for each row of W; for efficiency, we can 

group together all rows with the same values of 
T

iv  and 

perform non-negativity constrained least squares 

calculation once for each group.  

3.2. Adapting the number of basis vectors during 

learning  

To initialize NMF learning, we must decide on the 

number of basis vectors to use. We set this number to the 

number of bells found by the algorithm presented in 

section 2. The algorithm is tuned to correctly find most of 

the bells in a recording, with an average of two additional 

false positives (bells not present in the recording). These 

false positives are problematic, as partials may be 

incorrectly attributed to the false-positive vectors during 

learning. We observed that this usually happens with only 

a small number of partials, so that the false-positive 

vectors are a poor match to their corresponding spectral 

templates. We therefore introduce an additional step to the 

SSNMF/L learning algorithm, which removes the basis 

vectors that do not match the templates. The entire 

learning algorithm is as follows: 

1. calculate a set of bell templates B using the algorithm 

described in section 2; 

2.  set the number of NMF basis vectors k to the number 

of bell templates found and initialize SSNMF/L 

learning; 

3. repeat minimization of equations (7) and (5) until the 

change in the normalized Karush-Kuhn-Tucker 

residual ", as defined in [13], falls below a set 

threshold #1; 

4.  remove all basis vectors that do not match any of the 

bell templates in B; 
5.  repeat points 3. and 4. until the change in "�falls below 

a threshold�#2�$ 

We tested the algorithm on the same set of manually 

annotated bell chiming recordings used for evaluation of 

the bell finding algorithm. We also used the same time-

frequency representation as previously described. The 

values of other parameters were set to: 


���%$%%%&n'�()���)'�#1=0.01, #2=10
-9

, 	���%$%*$ For com-

parison, Table 1 displays results achieved with the 

standard NMF algorithm without constraints, Kim and 

Park’s SNMF/L with sparsity constraints on W, the 

proposed SSNMF/L with selective sparsity constraints on 

W and finally SSNMF/L with adaptation of the number of 

basis vectors. The listed precision and recall scores show 

how well the found basis vectors correspond to the actual 

bells. Gradual improvement is attained when sparsity and 

selective sparsity constraints are introduced, while a major 

boost is achieved by adapting the number of basis vectors 

during learning. Adaptation is especially helpful in 

boosting precision, because it removes irrelevant basis 

vectors, which in turn also boosts recall by correctly 

distributing the partials amongst the remaining basis 

vectors. 

 

 precision recall 

standard NMF 0.61 0.83 

SNMF/L 0.65 0.82 

SSNMF/L without adaptation 0.66 0.86 

SSNMF/L with adaptation of 

the number of basis vectors 

0.89 0.89 

Table 1. Evaluation of basis vectors learned by 

different NMF methods  

3.3. Transcribing bell chiming recordings 

The presented SSNMF/L algorithm factors the time-

frequency representation of a bell chiming recording into 

two non-negative matrices W and H, so that W 

corresponds to the spectra of bells, while H explains how 

the amplitudes of bells change over time. The 

transcription algorithm we propose is straightforward. 

Onsets are first detected with the complex domain 

algorithm devised by Bello et al. [14]. The matrix H is 

filtered with a fourth order low-pass Butterworth filter 

with cutoff frequency at 0.25+ to smooth the amplitude 

changes and remove small irregularities. Then, for each 

onset found, we analyze the 150 ms section of the filtered 

matrix H around the onset and assign the bell with the 

strongest increase in H to the onset.  

 

 num

bells

bells found 

prec. / rec. 

onset 

precision/recall 

transcription 

precision/recall 

r1 3 0.75 / 1 0.94 / 0.96 0.93 / 0.95 

r2 3 1 / 1 0.91 / 0.96 0.78 / 0.83 

r3 4 1 / 1 0.88 / 1 0.79 / 0.90 

r4 4 0.75 / 0.75 0.99 / 1 0.71 / 0.72 

r5 5 1 / 1 0.87 / 0.92 0.66 / 0.69 

r6 5 0.8 / 0.8 0.75 / 0.98 0.45 / 0.59 

Table 2. Evaluation of transcriptions of six bell 

chiming recordings 
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To test the algorithm, we manually transcribed 20 

second excerpts of 6 bell chiming recordings containing 

three to five bells and evaluated the number of correctly 

transcribed bells. Table 2 lists results for the 6 recordings. 

Its columns contain: the number of bells in each recording 

(2), precision and recall of the match between the basis 

vectors and the actual bells (3), precision and recall of 

onset detection (4) and precision and recall of 

transcription (5). 

When all bells are correctly represented by the basis 

vectors, the average recall is around 0.84. We are satisfied 

with this result, because we are transcribing real field 

recordings, which are affected by factors such as poor 

microphone placement, weather conditions, bell tower 

acoustics etc. Even though onset detection itself works 

very well, most of the errors are still made due to 

indistinctive bell onsets, which may occur because of the 

aforementioned factors, long bell decay times or change of 

dynamics by performers. Weak onsets make it hard to 

determine which bell actually sounded at a given onset, 

resulting in ignored onsets or incorrectly labeled bells. 

Because of long bell decay times, which cause most bells 

to sound throughout a performance, as well as bell tower 

acoustics, partials may be attenuated or amplified during a 

performance, which may also lead to false positives or 

incorrect bell labeling. Accuracy drops sharply when bells 

are not accurately identified, as wrong bells are assigned 

to the found onsets. 

4. CONCLUSION 

The proposed approach to transcription of bell chiming 

recordings is a good first step into making this part of 

Slovenian cultural heritage more accessible to interested 

researchers. There is plenty of room for improvement, 

especially with the transcription algorithm, but we also 

plan to extend our researches into automatic extraction of 

bell chiming patterns, as well as the development of a 

retrieval system for queries based on bell chiming patterns 

and recording excerpts.  
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ABSTRACT

Mel-frequency cepstral coefficients are used as an abstract
representation of the spectral envelope of a given signal.
Although they have been shown to be a powerful descriptor
for speech and music signals, more accurate and easily
interpretable options can be devised. In this study, we
present and evaluate the shape-based spectral contrast
descriptor, which is build up from the previously proposed
octave-based spectral contrast descriptor. We compare
the three aforementioned descriptors with regard to their
discriminative power and MP3 compression robustness.
Discriminative power is evaluated within a prototypical
genre classification task. MP3 compression robustness
is measured by determining the descriptor values’ change
between different encodings. We show that the proposed
shape-based spectral contrast descriptor yields a significant
increase in accuracy, robustness, and applicability over
the octave-based spectral contrast descriptor. Our
results also corroborate initial findings regarding the
accuracy improvement of the octave-based spectral contrast
descriptor over Mel-frequency cepstral coefficients for the
genre classification task.

1 Introduction
Music information retrieval (MIR) studies processes,

systems and contexts for automatically acquiring
information about music from large collections [8]. It
plays an increasingly important role in a society that moves
towards a freely accessible abundance of recorded music.
The main audiences benefiting from MIR research are
end-users, industry bodies and academics. Users have
easier and personalized access to their collections, the
industry employs these methods in the production process
from creation to distribution, and researchers are able to
discover new patterns in large corpora of data [3].

Content-based MIR methods extract information from
the music itself rather than from any supplied meta-data.
One of the prototypical tasks in content-based MIR is
the automatic classification of a song, in the form of an
audio signal, into a music genre [1, 3, 11, 12]. The

octave-based spectral contrast (OBSC) is a descriptor
specifically designed for this task [6, 14]. The spectral
contrast of a sub-band in a signal can be seen as a measure of
the signal’s difference to white noise [10, 14]. In addition,
the concept of spectral contrast is also used to enhance
sound for hearing impaired people [16]. Because the
spectral contrast of an audio signal is based on its timbre it is
related to descriptors like spectral centroid, roll-off, flatness,
skewness, spread and Mel-frequency cepstral coefficients
(MFCCs) [10, 11, 12]. MFCCs were originally developed
for use in speech recognition applications and later on
proved to be useful for music information retrieval [10, 12].
They provide good discriminative power but can be hard to
interpret [9].

In this study the shape-based spectral contrast (SBSC)
descriptor is presented. SBSC yields a significant increase
in accuracy, robustness, and applicability over OBSC.
For evaluation, SBSC is compared to OBSC and MFCCs
in terms of discriminative power and MP3 compression
robustness. Discriminative power is evaluated by measuring
their accuracy on different combinations of data sets and
classifiers for the automatic genre classification task [1, 12].
We study the robustness of the descriptors at different MP3
encodings as it is not so common in the literature to test MP3
robustness [5, 13]. A descriptor is considered to be robust
when its values do not change significantly while the audio it
describes is encoded at different levels of MP3 compression.
Finally, information overlap between MFCC and spectral
contrast is briefly investigated.

The structure of this document is as follows. In section 2
we briefly summarize OBSC. Section 3 presents the SBSC
descriptor and section 4 the evaluation methodology. In
section 5 the results are presented and we conclude our study
in section 6.

2 Octave-based Spectral Contrast
The OBSC descriptor was introduced by Jiang et al. in

[6]. It describes the ratio between the magnitudes of
the peaks and valleys within sub-bands of the frequency
spectrum. This way, the relation of harmonic to
non-harmonic frequency components of each sub-band is
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reflected.
This feature has been proven useful for genre

classification [6, 14]. The two aforementioned studies
explain in detail how the descriptor is calculated. In
short, the audio signal is loaded and cut into frames with
an overlap of 50% (figure 1). Then, the spectral data
resulting from an FFT of every frame is divided into 6
octave-scaled sub-bands (with boundaries at 0, 200Hz,
400Hz, 800Hz, 1.6kHz, 3.2kHz, and 8kHz). For each
band k, the magnitudes of the FFT bins x are sorted into
descending order and the peak Pk and valley Vk values are
subsequently calculated by averaging a percentage of the
highest and lowest magnitudes. The ratio between Pk and
Vk, defined as contrast Ck, and Vk itself comprise the feature
vector OBSCk of a single frame, with a dimensionality of
twice the number of sub-bands:

OBSCk = [Ck, Vk] , (1)

where

Ck = log
Pk

Vk
, (2)

Pk =
1

αNk

αNk∑
i=1

xk,i, (3)

and

Vk =
1

αNk

αNk∑
i=1

xk,Nk−i+1. (4)

Here α corresponds to the part of all bins in the band to
average over (0 < α ≤ 1 ), Nk to the total number of bins
in the sub-band, and i denotes the sorted bin index. In [6],
α is set empirically to 0.02. Finally, the dimensions of the
feature vector of OBSC are decorrelated for each frame by a
Karhunen-Loève Transform (KLT) to increase the accuracy.
The orthogonal base vectors for the KLT are generated from
the averaged covariance matrices of all classes involved in
the problem [6].

3 Shape-based Spectral Contrast
The SBSC descriptor is a modification of the OBSC

descriptor intended to improve accuracy, robustness and
applicability. It does so by employing a diferent sub-band

division scheme, an improved notion of contrast, and a
different use of the KLT transform.

3.1 Accuracy
OBSC calculates a sub-band’s contrast by regarding

its valley and peak. However, by including information
about the shape of the band’s sorted spectrum, a better
estimation of spectral contrast can be made. Figure 2
shows two possible shapes of sorted sub-bands. Both
possibilities would yield the same Ck value, as Pk and
Vk would be the same. However, if we consider noise
to be the equal presence of all frequencies, figure 2A
intuitively corresponds to a more noisy sound than figure
2B. Accordingly, the shape in figure 2B should result in a
higher spectral contrast.

(A) (B)

bin index, i bin index, i

m
a
g
n
it

u
d
e
, 
x k
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1 N
k 1 N

k

0

1

0

1

Figure 2. Two possible shapes of sub-bands sorted by
magnitude. The horizontal red line indicates the average
magnitude of the sub-band.

When we look at the location of the average magnitude in
the sub-band relative to the peak and the valley we can better
distinguish between both shapes. Accordingly, the contrast
Ck (equation 2) could be calculated as:

C ′
k =

log(Pk/Vk)
logμk

, (5)

where

μk =
1

Nk

Nk∑
i=1

xk,i (6)

Equation 5 is equivalent to logμk
(Pk/Vk) and expresses

the spectral contrast in base μk. Through trial and error,
the following equation was determined to have similar
characteristics but a slightly better accuracy:

C ′
k =

(
Pk

Vk

)1/logμk

(7)

3.2 Robustness
Because the spectral contrast is calculated from the peaks

and valleys, MP3 compression, which eliminates masked
frequencies, might have a large effect on the robustness of
OBSC [4]. When peaks and valleys are averaged over a

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 144



larger number of bins, eliminated frequencies have a smaller
impact and the spectral contrast can be expected to be more
robust. The neighbourhood ratio α and the total number of
bins in a sub-band Nk are therefore looked at for increasing
robustness.

For flexible adjustment of Nk and the number of
sub-bands K, a different sub-band division scheme is used
in SBSC instead of the original octave-based scheme. A
portion of the bins of the FFT analysis is distributed equally
among sub-bands while the rest is distributed exponentially:

Bk =
(

(1 − s)U
L

)k/K

L +
(U − L)sk

K
, (8)

where Bk denotes the upper boundary of the k-th band, s the
portion of the spectrum to distribute equally (0 ≤ s ≤ 1),
and U and L the upper and lower bound (in Hz) of the
spectrum, respectively. This way, all sub-bands contain
enough bins to be stable and the distribution still mimics
the non-linear frequency response of the human ear [7]. In
all SBSC tests in this study, s = 0.15 and L = 20Hz (see
section 4.1). For U = 11kHz and K = 6, boundaries are
20 Hz, 330 Hz, 704 Hz, 1256 Hz, 2303 Hz, 4729 Hz, and
11 kHz. Parameters K, and U vary from test to test and are
set manually.

3.3 Applicability
Instead of applying a KLT based on the averaged

covariance matrices of all classes [6] (see section 2),
SBSC applies the KLT based on the covariance matrix of
each individual song. This does not perform significantly
different and has two additional advantages: (a) when either
the instances in the data set or the number of categories
changes, the average covariance matrix will not have to
be recalculated and (b) the descriptor can be used in other
applications where no training data set is required (e.g., song
similarity, audio fingerprinting, etc.).

4 Evaluation Methodology
We here detail the methods employed for determining

genre classification accuracy, evaluating MP3 compression
robustness, and studying MFCC and SBSC information
overlap.

4.1 Genre Classification Accuracy
The discriminative power of both OBSC and SBSC

is compared by measuring their accuracy in a genre
classification problem. In addition, we evaluate MFCC
(12 coefficients with the zeroth coefficient included) as a
baseline. The means and variances of the feature vectors of
all frames are used for classification.

Three distinct classifiers are trained and evaluated on two
data sets. The classifiers used are decision trees, support
vector machines (SVM), and linear logistic regression

models (LLR) as implemented by the WEKA software 1

[15]. All classification results are computed on a 10-fold
cross-validation scheme and averaged over 10 runs. The 2
data sets used are the following. Data set A is the same data
set that was used by Tzanetakis in [12]. It consists of 10
genres with 100 song-excerpts per genre and has a sample
rate of 22050 Hz. The genres include blues, classical,
country, disco, hip-hop, jazz, metal, pop, reggae, and rock.
Data set B was developed in-house, has a sample rate of
44100 Hz, and consists of 55 full songs for each of 8 genres,
which are classical, dance, hip-hop, jazz, pop, rhythm and
blues, rock, and speech.

The data set employed by Jiang et al. in [6] had a
frequency range of 8 kHz. To check the effect of a bigger
frequency range, OBSC is compared to MFCCs at two
different frequency ranges, 8 kHz and 11 kHz. Because
MFCCs are more accurate at a frequency range of 11 kHz,
SBSC is only tested at this frequency range. The SBSC
descriptor is also tested with the spectrum divided into both
6 and 9 bands. Finally, MFCCs, OBSC, and SBSC are
tested with the delta coefficients included. The descriptors
are evaluated at the settings summarized in table 1. For all
SBSC tests, α = 0.4 and for all OBSC tests α = 0.1 (the
α value in [6] is 0.02, and is said to perform the same as
α = 0.1).

Test Descriptor Freq. range Bands

MFCC-A MFCC 8 kHz 12

MFCC-B MFCC 11 kHz 12

MFCC-C MFCC + ΔMFCC 11 kHz 12

OBSC-A OBSC 8 kHz 6

OBSC-B OBSC 11 kHz 6

OBSC-C OBSC + ΔOBSC 11 kHz 6

SBSC-A SBSC 11 kHz 6

SBSC-B SBSC 11 kHz 9

SBSC-C SBSC + ΔSBSC 11 kHz 6

Table 1. Test settings for descriptors.

4.2 MP3 Compression Robustness
The two spectral contrast descriptors and MFCCs are

tested for MP3 robustness on a song by song basis.
OBSC+ΔOBSC is not tested for robustness due to the
expectancy of it to be highly unstable and the considerable
time it takes to run the test. The wave files of data set A
are compressed at two different compression rates, 192 kb
and 64 kb by the Lame MP3 encoder 2 . The descriptors for
all three versions of all songs in the data set are extracted.
In order to make the descriptors from the compressed
and original data comparable in terms of distributions
and ranges, we adapted Box-Cox’s transformation [2]

1 http://www.cs.waikato.ac.nz/ml/weka/
2 http://lame.sourceforge.net/
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for obtaining uniform distributions for each descriptor
attribute between 0 and 1. The transformation is calculated
from the uncompressed descriptors and applied to both
the uncompressed and compressed descriptors. For each
dimension of each song, the absolute difference between the
values of the uncompressed and compressed descriptor sets
is calculated:

Dh,d,e = |Rh,d,e − Qh,d| , (9)

where Dh,d,e is the robustness value of the h-th song for
the d-th dimension of the e-th encoding, and R and Q
denote the descriptor values of the encoded version and
the uncompressed version, respectively. We say that the
descriptor fails for that particular song, dimension and
encoding when Dh,d,e > 0.1. The percentage of songs
that fail per dimension is calculated and the average and
maximum are kept as the final robustness error measures.

4.3 MFCC and SBSC Information Overlap
We follow different paths with the aim to obtain

converging evidence of the amount of overlap of
information between MFCC and SBSC. First, we use
several attribute selection techniques on the combined
feature vectors MFCC-B and SBSC-A of data set A in order
to check the ranking of features or the near-optimal subset
that is chosen. The selection methods used are correlation
based feature subset selection (CFS), SVM ranking, and
individual attribute rankers based on the most frequently
preferred indices (infogain, gain ratio, and chi-square test)
[15]. The percentage of SBSC attributes, as opposed to
MFCC attributes, present in the first and last quartile of
the combined ranked attribute list is used as a measure of
information overlap. If there is no clear majority of one
of the features in the quartiles, this can be interpreted as
evidence of overlap.

Secondly, we perform a one-way analysis of variance
(ANOVA) on the ranks obtained by the feature selection
indices mentioned above, in order to check if there is an
effect of the subset type (MFCC versus SBSC) on the index
value. If the subset proves not to be significant, then we can
consider it as evidence of overlap between them.

5 Results

5.1 Genre Classification Accuracy
Our results of analyzing and testing the OBSC descriptor

corroborate the findings of Jiang et al. [6] and West and
Cox [14]. In our tests (table 2), for both data sets and all
three classifiers, the OBSC descriptor performs better than
MFCCs, although the increase in accuracy is not as high
as previously reported in [6]. There, on a different data
set and using Gaussian mixture models, OBSC performs at
82.3% and MFCCs at 74.1%. The accuracy of our MFCC

implementation is tested with a naive Bayes single Gaussian
classifier (47.6% for 13 coefficients) and is similar to the
one achieved on the same data set in [12] (47% for 10
coefficients).

We can see in table 2 that SBSC’s accuracy is higher
than that of OBSC and MFCCs for SVM and LLR. For
these two classifiers the average relative increase for both
data sets is 6.5%. Only with trees OBSC performs better
than SBSC, but these accuracies are significantly lower than
those achieved with SVM or LLR.

We also see that an increased frequency range has a small
and slightly irregular effect on the accuracy (MFCC-A,B
and OBSC-A,B, table 2). It raises MFCCs’ accuracy for
almost every combination of classifier and data set, while
OBSC’s accuracy only increases for LLR on data set A and
trees on data set B.

Test Data set A Data set B
Trees SVM LLR Trees SVM LLR

MFCC-A 41.3 60.0 61.3 56.6 77.6 78.6
MFCC-B 41.9 60.6 63.6 59.7 76.8 78.6
MFCC-C 48.2 71.6 71.1 63.1 81.4 80.1

OBSC-A 47.4 61.6 62.4 58.7 82.8 83.8
OBSC-B 46.4 61.4 64.4 64.2 81.4 81.0

OBSC-C 49.0 67.3 69.0 61.4 82.2 80.7

SBSC-A 45.5 67.3 68.1 63.1 85.7 85.5

SBSC-B 48.5 67.0 68.9 62.3 86.8 85.5

SBSC-C 49.9 72.5 72.7 65.1 86.2 86.2

Table 2. Genre classification accuracy (%) for the
descriptors tested.

Looking at the SBSC-A and SBSC-B tests we can
see that using more than six sub-bands for SBSC does
on average only provide a slightly better performance.
Including the delta coefficients for SBSC increases accuracy
but does not provide the same improvement as the delta
coefficients do for MFCCs (an average of 9.8% for
MFCC+ΔMFCC and 4.8% for SBSC+ΔSBSC). Including
the delta coefficients for OBSC provides a modest average
accuracy increase of 3.1%.

In addition to the results presented in table 2, we also
studied the effect of different KLT application variants
(sections 2 and 3). Decorrelating the dimensions of the
feature vector using KLT for each song separately results
in a small decrease in accuracy of 0.3%. Not applying KLT
results in a significant performance drop (e.g. from 67.3%
to 59.7% for SBSC when using SVM).

5.2 MP3 Compression Robustness
In table 3 it can be seen how unstable OBSC is, and

how robust the MFCC implementation is in comparison.
MFCCs only fail for 0.7% of the songs, while OBSC fails
for 13.6% (MFCC-B and OBSC-B, 64 kb, table 3). A
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higher neighbourhood ratio α, together with the application
of equation 8 for sub-band division, results in an increased
robustness for the SBSC in respect to OBSC, as it only fails
for 1.6% of the songs. The robustness of the most unstable
dimensions of SBSC improves significantly from 61.4% to
12.4% of failed songs when compared to OBSC (SBSC-A,
64 kb, table 3).

When the frequency spectrum is divided into 9 bands,
SBSC is more unstable (SBSC-B, table 3). This can be
attributed to a smaller number of bins in each sub-band and
thus a smaller number of bins over which the peaks and
valleys are averaged. Apart from the results shown in table
3, it is worth to mention that the delta coefficients for both
SBSC and the MFCCs are very unstable with an average
failure rate of 75% for 192 kb. One might hypothesize that
this is due to the large effect that small changes in the audio
have on the delta coefficients. Also, we find that the valley
dimensions are more unstable than the contrast dimensions
as these are affected most by the MP3 compression.

Test Error rate at 192kb Error rate at 64kb
mean max mean max

MFCC-A 0.7 8.7 0.4 4.9
MFCC-B 0.4 3.0 0.7 6.7

MFCC-C 22.1 87.9 21.8 83.0

OBSC-A 6.5 45.3 9.9 58.6

OBSC-B 5.4 23.2 13.6 61.4

SBSC-A 1.4 4.9 1.6 12.4

SBSC-B 2.2 13.5 3.1 13.4

SBSC-C 19.7 83.7 19.7 79.9

Table 3. MP3 compression robustness error rates (%) for
the descriptors tested.

5.3 MFCC and SBSC Information Overlap
The highest scoring subset of SBSC and MFCC attributes

is achieved with CFS and has the same accuracy as a subset
of only SBSC attributes: 67.3% for SVM (both subsets
consist of 24 attributes). We also find that SBSC attributes
are predominant in the first quartile of all ranked attributes
and that this pattern is reversed in the last quartile, where the
predominant attributes are MFCCs (table 4). Table 5 shows
that for every ranking method the average SBSC rank is
higher than the average MFCC rank. According to ANOVA,
SBSC’s attributes also rank statistically significantly higher
than MFCCs’ attributes.

The possible synergistic effect of the combination of
both sets is addressed in figure 3, which shows the step
by step increase in accuracy when adding more attributes
to the selected subset for SVM classification (the order
of addition is provided by the chi-square test ranking).
MFCCs’ accuracy quickly climbs when adding more
attributes but increases only slightly after the 10th attribute.

SBSC’s accuracy increases at more regular intervals and is
higher than MFCCs’ when using 10 or more dimensions.
Combining both sets and using 10 or more coefficients
increases the performance above that of MFCCs, but never
reaches that of the SBSC attributes. This can be taken as
evidence that the description provided by SBSC subsumes
and improves classification over that of MFCCs.

With all this accumulated evidence, it seems safe
to conclude that the two subsets of attributes are
capturing similar aspects of the sound spectra and, as
their combination does not increase the classification
performance beyond the level attainable by SBSC attributes
alone, we should prefer them over MFCCs. However, we
cannot say there is a clear overlap of information as SBSC
is preferred by all attribute selection methods.

Rank method SBSC presence SBSC presence
in first quartile in last quartile

SVM 75% 25%

Chi-square 67% 17%

info gain 75% 17%

gain ratio 75% 17%

Table 4. Percentual presence of SBSC attributes in the
first and last quartile of a ranked list containing MFCC and
SBSC attributes.

Rank method F Probability Average Average
MFCC rank SBSC rank

SVM 5.8 0.0204 29.1 19.9

Chi-square 7.0 0.0110 29.5 19.5

info gain 8.8 0.0048 30.0 19.0

gain ratio 10.4 0.0023 30.5 18.5

Table 5. ANOVA results of attributes’ rank number and
origin, degrees of freedom is always 1.

6 Conclusion
In this paper, the shape-based spectral contrast descriptor

is presented and evaluated. It is based on the octave-based
spectral contrast, but takes the mean magnitude of a
band into account in order to calculate a more descriptive
measure of spectral contrast. Also, it divides the spectrum
and applies KLT differently for increased robustness and
applicability. SBSC is compared to both OBSC and
MFCCs in terms of genre classification accuracy, to test
discriminative power, and MP3 compression robustness.
OBSC is shown to achieve higher accuracies than MFCCs
in the genre classification task, corroborating initial findings
of Jiang et al. Moreover, SBSC’s outperforms OBSC and
MFCCs. When it comes to MP3 compression robustness,

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 147



0 5 10 15 20 25
20

25

30

35

40

45

50

55

60

65

70

Number of attributes considered

A
cc

ur
ac

y

 

 

SCs + MFCC
SCs
MFCC

Figure 3. Increase in accuracy while considering an
increasing number of attributes.

MFCCs provide the most robust option. However, SBSC
represents a significant increase in robustness over OBSC.
Including the delta coefficients results in higher accuracies
for all descriptors but yields very unstable descriptors.
Results obtained from testing information overlap between
SBSC and MFCC indicate they capture similar aspects of
the sound spectra. However, we found no clear evidence of
overlapping information.
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ABSTRACT

We present a freely downloadable program, InTune,

designed to help musicians better hear and improve their 

intonation. The program uses the musical score from 

which the musician plays, assisting our approach in two 

ways. First, we use score following to automatically align 

the player’s audio signal to the musical score, thus 

allowing better and more flexible estimation of pitch. 

Second, we use the score match to present the tuning 

analysis in ways that are natural and intuitive for 

musicians. One representation presents the player with a 

marked-up musical score showing notes whose pitch 

characteristics deserve closer attention. Two other visual 

representations of audio overlay a musical time grid on the 

music data and allow random access to the audio, keyed 

by musical time. We present a user study involving 20

highly educated instrumentalists and vocalists.

1. INTRODUCTION

One of our most beloved music teachers was a forceful 

advocate for “facing the music,” by which he meant 

listening to recordings of our playing. As with the first 

hearing of one’s voice on recording, we each wondered 

“do I really sound like that!?” While sometimes revealing 

more than we were ready to hear, the long-term effect of 

this exercise helped us to “hear ourselves as others hear 

us.” Thus armed, we initiate practice habits that, perhaps 

over many years, move our music-making toward a state 

we might admire in others.

  The “face the music” approach begins by accepting 

that most of us are not born able to judge ourselves 

objectively, but can learn to do so when given the proper 

external perspective. We adopt this approach here, still in 

the service of music education, though we use visual, in 

addition to aural, feedback. While a visual representation 

of audio is necessarily an abstraction, it has the advantage 

that the observer can “visit” the image according to her 

will. For instance, she may see a note having a certain 

undesirable (or desirable) property; find the same trait in 

another note of the same pitch; formulate a hypothesis of 

systematic error (or accuracy); and validate or refute this 

theory on subsequent notes. In contrast, audio data must 

be digested nearly at the rate it comes into the ear.

We apply the “face the music” approach to the practice 

of intonation — the precise tuning of frequencies 

corresponding to different musical pitches. While good 

intonation, “playing in tune,” is often neglected in the 

earliest years of musical practice, it is as essential a part of 

technique as the playing of fast notes or the control of 

emphasis. Intonation is also central to what some see as 

the illusion of tonal beauty — that is, for a sound to be 

beautiful it must commit itself clearly to the “correct” 

pitch. We introduce a system that allows musicians to 

visualize pitch in ways that leverage the centuries-long 

tradition of music notation, and are intuitive to the non-

scientist.

The electronic tuner is, without doubt, one of the most

widely used practice tools for the classically-oriented 

musician, thus justifying efforts to improve this tool. The 

tuner provides an objective measurement of the pitch or 

frequency with which a musician plays a note, which can 

be judged in relation to some standard of correctness (say 

equal tempered tuning at A=440 Hz.). Though the tuner 

has been embraced by a large contingent of performing 

musicians, it does have its weaknesses, as follows. The 

tuner gives only real-time feedback, requiring the user to 

synthesize its output as it is generated. The tuner takes 

time to respond to each individual note, making it nearly 

impossible to get useful feedback with only moderately 

fast notes. The tuner cannot handle simultaneous notes, 

such as double stops — this is actually part of the reason 

the tuner fails on fast notes, since past notes linger in the 

air, thus confusing the instrument. Perhaps most 

significantly, the tuner does not relate its output through 

the usual conventions of notated music, thus hiding

tendencies and patterns that show themselves more clearly

when presented as part of a musical score. Our program, 

InTune seeks to overcome these weaknesses by presenting 

its observations in an intuitive and readily appreciated 

format.
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In what follows, we present our system, InTune,

describing the three different views of audio the program 

allows, as well as the backbone of score-following that 

distinguishes our approach from others. We consider other 

approaches to this problem and place ours appropriately in 

this context. Finally we present a user study, giving 

reactions to our effort from a highly sophisticated 

collection of users. The program was developed in close 

consultation with two professors emeriti of music in the 

School of Music at our university, and is freely available 

for download at http://(removed for review, program and 

files can be provided upon request).

2. PAST WORK

We know of two recent examples addressing computer-

assisted music instruction on intonation from the computer 

music community: [12], [13], though these efforts address 

several other performance aspects, including dynamics, 

rhythm, articulation, etc. Of these two, [13] shares our use 

of score following, though their use is based on on-line 

recognition, and thus is somewhat limited in its ability to 

relate its measurements to the musical score. We make 

analogous use of on-line recognition for real-time 

feedback, but focus mostly on off-line alignment, due to its 

greater accuracy and appropriateness for the off-line 

nature of the performer’s analysis of a performance [12] 

shares some of the basic kinds of displays as our work, 

though the effort is restricted to the playing of long tones, 

rather dramatically restricting its reach. This work also 

does not relate the results to a musical score, thus shifting 

the burden of interpretation to the musician.

There has been significantly more commercial interest

along these lines as exemplified by [1], [2], [3], [7], [14], 

[15]. The basic kinds of visual music display we use are

found in the cited examples as well. [2] [15] uses the 

spectrogram, [3] use pitch trace representation, and [7], 

[14] annotates a musical score to reflect a specific 

performance. However, there are some important ways in 

which we differ from these efforts. Most important is our 

use automated score alignment, which allows us to relate 

the music data directly to our score representation. While 

[7] and [14] use traditional music score display, they relate 

the music data to the score by requiring the player to play 

along with a rigid accompaniment. While this “solves” the 

alignment problem, it imposes a foreign constraint on the 

musician for typical intonation practice. Other cited efforts 

either prompt the musician to play specific notes, or try to 

estimate the notes of the musical score from audio.

The most significant difference between our work and

these cited is our use of score alignment as the 

fundamental means of relating our measurements to the 

music itself. Using score alignment we can link our three 

representations, thus allowing the user to move freely 

between them while retaining focus on the current position 

or note. An additional difference between our work and 

[7], [13], [14] is our deliberate effort not to grade the 

musician’s performance, but rather to give them the 

objective feedback needed by the musician in reaching 

independent conclusions.

3. ESTIMATING PITCH

The backbone of InTune is a score-following system that

aligns the audio input with a musical score. Thus we 

assume the musician plays from a known score. We base 

our approach on score following since the quality of blind 

(no score) music recognition degrades rapidly as 

complexity increases — we know of no blind recognition 

approaches, including our own, that produce good enough 

results for our task at hand. Furthermore, we wish to 

present our feedback in the context of the musical score. 

Since the score must be known for this to happen, we 

might as well put this knowledge to good use.

Our score following is based on a hidden Markov 

model, as documented in [10]. This model views the audio 

input as a sequence of overlapping frames, with about 30 

frames per second, which form the observable part of the 

HMM, Nyyyy ,...,,
21

� . We construct small (10-or-so- 

state) Markov models for each score note modeling, 

among other things, the distribution of the number of 

frames devoted to the note. These sub-models are 

concatenated together, in “left to right” fashion, to form 

our state graph. The hidden Markov chain,

Nxxxx ,...,,
21

� , corresponds to the path taken through 

this state space. Given audio data and a musical score, we

perform alignment by computing the onset time of each 

score note, in̂ as

),...|start(maxargˆ Niin
n

i yyxPn ��

where istart is the unique state that begins the ith note

model. This approach performs well when confronted with 

the inevitable performance errors, distortions of timing, 

and other surprises that frequently occur in musical 

practice, and has been the basis for a long-standing effort 

in musical accompaniment systems [11].

Our score following approach tells us when the various 

notes of the musical score occur, thus giving us the 

approximate pitch for each frame of audio. That is, if the 

score match designates a frame to belong to a score
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Figure 1. InTune’s three displays of a performance.  

The score image (left) colors the heads of “suspicious” notes. The pitch trace (upper right) shows precise pitch evolving 

over time. The spectrogram (lower right) is the traditional display of frequency content evolving over time.  The vertical 

lines show the measure or beat boundaries (red), the note boundaries (white), and the current position (green).

event having MIDI pitch m , then the pitch of the note is 

approximately

12/)69(
2440)(

��� mmf      (1)

Hz. Such knowledge makes it much easier to estimate the 

pitch more precisely. In fact, many pitch estimation and

tracking approaches suffer more from coarse pitch errors

on the octave level (misestimating by a factor of two), than

from the fine tuning of pitch [6]. 

The frequency is defined here as the instantaneous rate

of change of phase; we estimate the frequency for a 

particular frame by approximating this derivative. This is a 

timehonored and intuitive approach dating back to [8]. If 

)(kYn is the windowed finite Fourier transform of ny at 

frequency k , we estimate the frequency as

t

kYkEkYrk
f nn

n "
��


� 
 +,, 2/))](()())(([/
ˆ 1

where r is the frame overlap rate, (), is the argument or

angle of a complex number, 
r

kkE +2
)( � mod +2 is the 

deterministic phase advance of frequency k between 

frames, and t" is the time, in seconds between frames. 

The numerator in this calculation simply computes the 

fractional number of cycles that have elapsed for 

frequency k , which is then divided by the elapsed time to 

get cycles per second.

Since we know the nominal score pitch of the current

note from our score match, our choice of k is not too 

difficult. If there is sufficient energy around the 

fundamental frequency we take k to be the frequency 

“bin” in the neighborhood of the fundamental having 

greatest energy. Otherwise we scan the neighborhoods of 

the lowest 4 or 5 harmonics seeking the bin having the 

greatest amplitude. If this bin corresponds to the hth 

harmonic, we must divide our frequency estimate by h to 

estimate the fundamental frequency. Thus our pitch 

estimation algorithm functions well when several of the 

lowest harmonics have little or no energy. When no 

harmonic seems to have any significant amount of energy, 

we assume the player is not generating any sound at the 

moment, and do not estimate frequency in this case.

4. THE THREE VIEWS OF INTUNE

On bringing up the program, the musician begins by 

choosing a piece to work on, at which point standard 

music notation is displayed. While InTune begins with a 

small collection of ready-made pieces, MIDI files can be 

imported, thus extending the program’s range to nearly 

anything playable by a single instrument. The player then 

selects a range or excerpt from the piece and records a 

performance. The audio is then automatically aligned to 

the score, followed by pitch estimation, as described 

above. This information is then displayed to the musician 

in a collection of three linked views, as shown in Figure 1. 
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All three views use the notion of equal tempered 

tuning as reference point. For instance, if we choose A = 

440 Hz as our pitch level, then the reference frequency of 

MIDI pitch m would be as given in Eqn. 1, (69 is the 

MIDI pitch for the “tuning” A). The location of the tuning 

A is adjustable by the user. We acknowledge here that 

there is no single “correct” view of tuning. For example, in 

many situations it is common to prefer tuning based on 

simple integer ratios, such as 3:2 for a perfect 5th. In 

addition, some players advocate various kinds of 

“expressive tuning” such as the raising of leading tones, or 

bending pitches in the direction of future notes. We choose

equal temperament as our reference due to its simplicity 

and wide acceptance—not to assert its correctness. Users 

of the program can easily make their own judgments of the 

desirability or accuracy of the tuning based on this 

reference point without necessarily “buying in” to equal 

temperament. In fact, the importance of displaying, rather 

than judging, the tuning results was a basic tenet of ours, 

due to the lack of any single agreed-upon yardstick.

The score view is immediately presented by the 

program after a recording is made. This view employs a 

mark-up of the music notation, coloring notes whose mean 

frequency differs by more than a (user-adjustable) 

threshold from the equal tempered standard. We use red 

for high or “sharp” notes and blue for low or “flat” ones, 

due to their implications of hot and cold. The coloring of 

notes gives an easy-to-assimilate overall view of the 

performance that may show tendencies of particular notes 

or parts of phrases, such as the undesirable change in pitch 

that can accompany a change in loudness on some wind 

instruments. Clicking on any note in the score view opens 

a window that graphs the pitch trajectory over the life of 

the note. This aspect gives higher-resolution pitch detail, 

allowing one to see the tuning characteristics of vibrato, as 

well as variation associated with the attack or release of a 

note. Visualization of vibrato was of particular interest to 

the music faculty with which we developed this project.

Of course, one cannot appreciate the most important 

dimension of the performance without sound, so the score

view (as well as the others) allows audio playback that is

mirrored as a moving pointer in the image display. 

Variable-rate playback through phase-vocoding [5] allows 

the truly brave user to hear details of the performance 

often lost at the original speed. Since we have aligned the 

audio to our musical score the user can play back the 

performance beginning with any note, and at any speed, 

thus allowing random access to the audio and enabling 

more focused listening than normally possible with audio.

A second view of the audio data is called the pitch 

trace (top right of Figure 1). This representation is 

analogous to a piano roll graph in which notes are 

represented as horizontal lines whose height describes the

note’s pitch and whose horizontal extent shows the time 

interval where the note sounds. Typically, one uses a log 

scaling of frequency in a piano roll graph so that each 

octave (or any other interval) corresponds to a constant 

amount of vertical distance. We modify this graph simply 

by allowing the lines to “wiggle” with changing pitch. To 

make the graph more intelligible we mark measures, beats, 

or some other musical unit of the user’s choosing, with 

vertical lines, courtesy of the score alignment. As with the 

score view, the user is free to page through the notes and 

to play the audio starting from the current location.  

The final view (bottom right of Figure 1) is a traditional

spectrogram, in which we show frequency energy on the

vertical axis evolving over time on the horizontal axis. 

Except for the use of color to denote notes with suspicious 

tuning, and vertical lines to mark musical time units, this 

view presents an uninterpreted view of the raw data. To 

some extent, one can make judgments about timbre by the 

proportions of energy in the various “harmonics” of a note 

(integral multiples of the fundamental frequency). In user 

tests we have found a number of musicians to be 

particularly fascinated with this data view, since it seems to 

support concrete assertions about the seemingly intangible 

world of timbre.

5. USER STUDY

Figure 2. User study response.

We performed a small 20-subject user study using 

undergraduate and graduate performance majors from the 

School of Music. The school is one of the very best music 

conservatories in the US, yielding a musically 

sophisticated collection of subjects. The subjects consisted 

of a mixture of woodwind, brass, and string players, as 

well as two vocalists.

The students were directed to perform some simple 

tasks using the program, involving playing their 

instruments, recording, as well as visualizing and hearing 

their audio data. The students then responded to a 

questionnaire assessing their belief about the usefulness of 

InTune and their interest in incorporating the program into 
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their practice. Overall, the students we quite positive about 

the the program, with most saying they would incorporate 

InTune into their practice if it were available. Figure 2

summarizes the response in the most illuminating 

questions:

Q1 Did InTune help you recognize inaccuracies you did 

not hear?

Q2 Is InTune’s sense of intonation consistent with your 

own?

Q3 Would you use InTune with your practice when it is

available?

We were most pleased with the musician’s willingness to

use the program in actual practice, and hope that professed

willingness holds true.

Several themes emerged through the written and 

voiced comments that accompanied the study. Virtually all 

perceived the program as an improvement over the tuner, 

though acknowledging the difficulty of carrying a laptop 

to the practice room. This improvement was primarily due 

to the possibility of scanning and studying past pitch 

histories while making these data accessible by relating 

them to the musical score. Players also commented on the 

program’s facile and informative handling of fast notes. 

Some players found the program gave especially useful 

feedback on vibrato, by allowing one to clearly see the 

width of pitch excursions.

Figure 3. Example showing pitch estimation for fast notes.

The program did not perform as well with the vocalists 

who generally sing with accompaniment, thus giving an 

external pitch reference. The singers’ overall pitch level

tended to drift and all agreed that they should not be

“marked down” for this. Another criticism repeated by 

several musicians addressed the note-oriented view of 

pitch. They observed that musicians often spend time 

“between” notes, and found the program’s pitch estimation 

wanting in this scenario. We admit that our view of pitch 

estimation simply did not take this phenomenon into 

account, most common with singers and string players. In 

essence, we gain a significant advantage by assuming the 

player’s pitch is close to the notated pitch, allowing 

accurate handling of otherwise difficult situations, though 

this gain does not come without cost. Several players 

argued for the value of expressive context-dependent

tuning, not recognized by the program. In spite of our 

efforts no prescribe the correct answers, it seems 

inevitable that some may interpret the program’s output 

this way.

Figure 3 shows an example from the user study of a 

horn playing a section of the Haydn Cello Concerto. The 

notes here are fast enough so that a tuner would provide

little use, while accurate recognition from pure audio 

would be challenging and, likely, unreliable. 

  One especially interesting example occurred with a 

graduate flute major whose pitch data are shown in Figure 

4 on the 2nd movement of the Mozart Clarinet Quintet, K. 

581. In these data she observed a rising pitch trend in the 

early life of many notes. Our teacher’s “face the music” 

maxim seemed to reverberate when she commented that 

the program had pointed out a tendency that she was 

unaware of, but could now hear. This example 

demonstrates the utility of automatic score alignment. The 

audio for this and all other examples can be heard at http://

(removed for review, files can be provided upon request).

Figure 4. Example showing the rising pitch tendency, first 

made clear to the player by the program.
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ABSTRACT

We present a performance rendering system that uses a prob-
abilistic network to model dependencies between score and
performance. The score context of a note is used to pre-
dict the corresponding performance characteristics. Two ex-
tensions to the system are presented, which aim at incor-
porating the current performance context into the predic-
tion, which should result in more stable and consistent pre-
dictions. In particular we generalise the Viterbi-algorithm,
which works on discrete-state Hidden Markov Models, to
continuous distributions and use it to calculate the overall
most probable sequence of performance predictions. The
algorithms are evaluated and compared on two very large
data-sets of human piano performances: 13 complete Mozart
Sonatas and the complete works for solo piano by Chopin.

1 INTRODUCTION

Research on performance modelling and rendering constantly
faces the problem of evaluation. The RENCON-Project [2]
addresses this by providing a platform to present rendering
systems to a public audience and in the process rate and
judge the ’naturalness’ and expressiveness of the rendered
performances.

In the following we present YQX, the system that won all
three awards in the autonomous category of the RENCON08
that was hosted by the ICMPC in September 2008 1 2 . How-
ever successful, the system tended to sometimes produce
unstable, ’nervous’ sounding performances. In response to

1 Given the specific context of this paper - published results of REN-
CON08, existing system YQX, availability of demo videos - we consider it
pointless to try to keep this submission strictly anonymous.

2 Videos of YQX in action at RENCON08 can be found at http:
//www.cp.jku.at/projects/yqx. The test pieces were composed
specifically for the contest by Prof. Tadahiro Murao.
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this we present two extensions to the system that both aim
for smoother variations in the performance, while ideally
increasing the similarity to human performances. This is
in concordance with [7] who states that an average of sev-
eral performances can sound more aesthetically appealing
than the actual performances going into the average. To
achieve this we incorporate the performance context, infor-
mation about the performance currently rendered, into the
decisions. In contrast to the original system, which makes
ad hoc decisions based only on the score context at hand,
this adds a dynamic component.

In the first extension we use the additional information
locally: The prediction for the previous note influences the
current prediction according to the relations found in the
training data. In the second extension we use the additional
information to calculate the sequence of predictions that is
globally the most probable of all, given the probabilities
learned. In a series of experiments we test whether and to
what extent the renderings of both extensions are smoother
and more consistent than the renderings of the original sys-
tem.

2 RELATED WORK

Much research has been done on the modelling and synthe-
sis of expressive music. Since e.g. [10] gives a very de-
tailed overview, only a few more recent approaches shall be
mentioned here. Grindlay and Helmbold [1] use hierarchical
Hidden Markov Models to generate expressive tempo values
based on score characteristics. The different levels of hier-
archy are used to represent different phrases of the piece.
Due to the sophisticated learning algorithm and the intuitive
structure the learned model is easy to interpret. They report
good generalisation to new scores and positive evaluation in
listening tests. A more recent approach [8], also submitted
to RENCON08, uses the technique of Gaussian Processes
[6] to automatically learn a mapping between score and per-
formance characteristics. The model aims at predicting a
sequence of performance parameters that is optimal with re-
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gard to the whole piece. Although the approach differs from
ours, the intended effect is similar to our second extension
to YQX. However the authors report a rather weak generali-
sation to new scores (perhaps due to the lack of high-quality
training data).

3 THE DATA

In Spring 1989, Nikita Magaloff, a Russian-Georgian pi-
anist famous for his Chopin interpretations, performed the
entire work of Chopin for solo piano that was published
during Chopin’s lifetime (op. 1 - op. 64) in six public ap-
pearances at the Vienna Konzerthaus. These concerts were
recorded with a Bösendorfer computer-controlled grand pi-
ano. The data set comprises over 150 pieces with over 320.000
performed notes. The MIDI data were manually matched
to symbolic scores derived from scanned sheet music. The
result is a unique corpus containing precisely measured per-
formance data for almost all notes Chopin has ever written
for solo piano.

The second data collection we use for the evaluation of
our models are 13 complete Mozart Piano Sonatas played
by the Viennese pianist R. Batik, likewise recorded on a
Bösendorfer computer piano and matched to symbolic scores.
This data set contains roughly 106.000 performed notes.

4 FEATURES AND TARGETS

We aim at learning a mapping between the score notes with
their local score context and the human performance in our
corpus. The prediction, the application of the learned map-
ping to unknown music, will be note-wise: each note of the
melody of the score will be assigned three numeric values,
the targets, determining the performance of the note. The
targets are the dimensions with which we describe a piano
performance: loudness, articulation and tempo. In the fol-
lowing instead of tempo we will actually use ioi ratio, which
is directly related. The characteristics of a note and its local
score context are described by the features extracted from
the score.

One of these features (IR-Arch, see below) is based on
E. Narmour’s Implication-Realization model of melodic ex-
pectation [5]. The theory constitutes an alternative to Schenke-
rian analysis, focused more on cognitive aspects of expecta-
tion than on musical analysis. The model analyses the mu-
sical progression of a piece and the expectations aroused in
the listener’s mind. One of the main claims of Narmour is
that sequences of intervals, harmonies etc. either produce
further expectations, a situation of non-closure, or not, a
situation of musical closure. Calculating the distance of a
melody note to the nearest point of closure provides clues
about whether a note represents a phrase boundary or not.

In our experiments we use the following (very small) set
of score features:

Figure 1. The probabilistic network forming the YQX sys-
tem

Pitch Interval The interval between a melody note and its
successor, measured in semitones.

Duration Ratio The logarithmic ratio between the score du-
ration of a melody note and its successor.

I-R Arch The distance from the nearest point of closure,
calculated from the Implication-Realization analysis.

The targets to be predicted are defined as follows:

IOI Ratio The logarithmic ratio of the length between two
successive played notes and the length between the
two corresponding score notes. A positive value indi-
cates that the time between two notes is longer than
notated, resulting in a decreased performance tempo.

Loudness The logarithmic ratio of the midi velocity of a
note and the mean velocity of the performance. Thus
positive values are louder than average, negative val-
ues softer.

Articulation This measures the amount of legato that is ap-
plied by a quotient of the gap between two successive
played notes and the notated gap between the two cor-
responding score notes.

5 YQX - THE SIMPLE MODEL

YQX models the dependencies between score features and
performance targets by means of a probabilistic network.
The network consists of several interacting nodes represent-
ing the different features and targets. Each node is associ-
ated with a probability distribution over the values of the
corresponding feature or target. A connection between two
nodes in the graph implies a conditioning of one feature or
target distribution on the other. Discrete score features (the
set of which we call Q) are associated with discrete proba-
bility tables, while continuous score features (X) are mod-
elled by gaussian distributions. The predicted performance
characteristics, the targets (Y), are continuously valued and
conditioned on the set of discrete and continuous features.
Figure 1 shows the general layout. The semantics is that of
a linear gaussian model [4]. This implies that the case of a
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Figure 2. The network unfolded in time

continuous distribution parenting a continuous distribution
is implemented by making the mean of the child distribu-
tion depend linearly on the value of the condition. In the
following sets are marked with bold letters, vectors with an
arrow super-scribed over the variable name.

Mathematically speaking this models a target y as a con-
ditional distribution P (y|Q,X). Following the linear Gaus-
sian model this is a gaussian distribution N (y; μ, σ2) with
μ varying linearly with X: given Q = q and X = −→x 3

μ = dq +
−→
k q · −→x ,

where dq and
−→
k q are estimated from the data by least squares

linear regression. The average residual error of the regres-
sion is the σ2 of the distribution. In effect we collect all
instances in the data that share the same combination of dis-
crete feature values and build a joint probability distribution
of the continuous features and targets of those instances.
This implements the conditioning on the discrete features
Q. The linear dependency of the mean of the target distri-
bution on the values of the continuous features introduces
the conditioning on X. This constitutes the training phase
of the model.

The prediction of the performance is done note by note.
The score features of a note are entered into the network as
evidence −→x and q. The instantiation of the discrete features
selects the appropriate probability table and the parameteri-
sation dq and

−→
k q, the continuous features are used for cal-

culating the mean of the target distribution μ. This value is
used as the prediction for the specific note. As the targets are
independent we create model and prediction for each target
separately.

6 YQX - THE ENHANCED DYNAMIC MODEL

In the following we present two extensions of the system
that both introduce a dynamic component by incorporat-
ing the prediction made for the preceding score note into
the prediction of the current score note. Graphically this
corresponds to first unfolding the network in time and then
adding an arc from the target in time-step t − 1 to the target

3 We treat the real valued set of continuous score features like a vector

in time-step t. Figure 2 shows the unfolded network. This
should lead to smoother and more consistent performances
with less abrupt changes and ideally to an increase of the
overall prediction quality.

6.1 YQX with local maximisation

The first method is rather straight forward: We stick to the
linear gaussian model and treat the additional parent (the tar-
get yt−1) to the target yt like an additional feature that we
calculate from the performance data. In the training process
the joint distribution of the continuous features, the target yt

and the target in the previous time-step yt−1 given the dis-
crete score features, in mathematical terms P (yt−1, yt,

−→x t|qt),
is estimated. That slightly alters the conditional distribution
of the target yt to P (yt|Q,X, yt−1) = N (y; μ, σ2) with 4

μ = dq,yt−1 +
−→
k q,yt−1 · (−→x , yt−1).

The prediction phase is equally straight forward. Just as
in the simple model, the mean of P (yt|qt,

−→x t, yt−1) is used
as the prediction for the score note in time-step t. This is the
value with the locally highest probability.

6.2 YQX with global maximisation

The second approach drops the concept of a linear gaus-
sian model completely. In the training phase the joint condi-
tional distributions P (yt−1, yt,

−→x t|qt) are estimated as be-
fore, but no linear regression parameters need to be calcu-
lated. The aim is to construct a sequence of predictions that
maximises the conditional probability of the performance
given the score features with respect to the complete history
of predictions made up to that point.

This is calculated in analogy to the Viterbi-decoding in
Hidden Markov Models (HMMs), where one tries to find
the best explanation for the observed data [3]. Apart from
the fact that the roles of evidence nodes and query nodes are
switched, the main conceptual difference is that we have to
deal with continuous instead of tabular distributions as used
in the standard HMM setup. This rules out the dynamic
programming algorithm usually applied but calls for an an-
alytical solution, which we present in the following. Like
the Viterbi algorithm the calculation is done in two steps: a
forward and a backward sweep. In the forward movement
the most probable target is calculated relative to the previ-
ous time-step. In the backward movement, knowing the fi-
nal point of the optimal path, the sequence of predictions is
found via backtracking through all time-steps.

6.2.1 The forward calculation

Let −→x t,qt be the sets of continuous and discrete features at
time t and N be the number of data points in piece. Let fur-

4 The construct (−→x , yt−1) is a concatenation of the vector −→x and the
value yt−1 leading to a new vector with a dimension dim(−→x ) + 1.
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ther be αt the probability distribution over the target values
yt to conclude the optimal path from time-steps 1 to t − 1.
By means of a recursive formula α(yt) can be calculated for
all time-steps of the unfolded network 5 :

α(y1) = p(y1|x1,q1) (1)
α(yt) = max

yt−1∈R

[p(yt, yt−1|−→x t,qt) · α(yt−1)] (2)

This formula can be interpreted as follows: assuming that
we know for all the target values yt−1 in time-step t− 1 the
probability of being part of the optimal path, we can calcu-
late for each target value yt in time-step t the predecessor
that yields the highest probability for each specific yt of be-
ing on the optimal path. In the backward movement we will
start with the most probable final point of the path (the mean
of the last α) and then backtrack to the beginning by choos-
ing the best predecessors. As we cannot calculate the maxi-
mum over all yt−1 ∈ R directly, we need an analytical way
to calculate α(yt) from α(yt−1), which we will derive in the
following. We will also show that α(yt) remains gaussian
through all time-steps.

In the following we will use the distribution p(yt−1|yt,
−→x t,qt)

∝N (yt−1; μt−1, σ
2
t−1) that can be calculated via condition-

ing from the joint conditional distribution p(yt−1, yt,
−→x t|qt)

that is estimated in the training of the model. For details as
to how this is done see e.g. [6]. As we will prove that the
α(yt) are gaussian, we will refer to the mean and variance
by μα,t and σ2

α,t.
The inductive definition of α (eq. 2) can be rewritten (the

conditioning on qt,
−→x t is omitted for simplicity):

α(yt) = max
yt−1∈R

[p(yt−1|yt) · α(yt−1)] · p(yt) (3)

Assuming that α(yt−1) is gaussian, the result of the prod-
uct in brackets is gaussian N (yt−1; μ∗, σ2

∗) with a normal-
ising constant z, that also is gaussian in either of the means
of the factors:

σ2
∗ =

σ2
t−1 ∗ σ2

α,t−1

σ2
t−1 + σα,t−1

(4)

μ∗ = σ2
∗

(
μt−1

σ2
t−1

+
μα,t−1

σ2
α,t−1

)
(5)

z =
1√

2π|σ2
1−1 + σ2

α,t−1|
e

„
−(μt−1−μα,t−1)2

2(σ2
t−1+σ2

α,t−1)

«
(6)

Later on z will be multiplied with a gaussian distribution
over yt, hence z has to be transformed to a distribution over
the same variable. By finding a yt, such that the exponent
in eq. 6 equals 0, we can construct a proper μz and σ2

z .

5 We use α(yt) and p(yt) as an abbreviation of α(Yt = yt) and p(Yt =
yt), respectively

Note that the variable μt−1 is dependent on yt due to the
conditioning of p(yt−1|yt) on yt.

z ∝ N (yt; μz, σ
2
z) (7)

μz = −σ2
t · (μt−1 + μα,t−1) + μt · σ2

t,t−1

σ2
t,t−1

(8)

σ2
z = σ2

t−1 + σ2
α,t−1 (9)

As z is independent of yt−1 it is not affected by the cal-
culation of the maximum:

α(yt) ∝ max
yt−1∈R

[N (yt−1; μ∗, σ2
∗)] · (10)

N (yt; μz, σ
2
z) · p(yt)

=
1√

2πσ2
· N (yt; μz, σ

2
z) · p(yt) (11)

The factor 1√
2πσ2 can be neglected as it does not affect

the parameters of the final distribution of α(yt). The distri-
bution P (yt) is gaussian by design and hence the remaining
product again results in a gaussian and a normalising con-
stant. As the means of both factores are fixed, the normalis-
ing constant this time is a single factor. The mean μα,t and
variance σ2

α,t of α(yt) follow:

α(yt) ∝ N (yt; μα,t, σ
2
α,t) (12)

σα,t =
σ2

t · σ2
z

σ2
t + σ2

z

(13)

μα,t = σα,t

(
μz

σ2
z

+
μt

σ2
t

)
. (14)

Thus α(yt) is gaussian in yt, assuming α(yt−1) is gaus-
sian. Since α(y1) is gaussian, it follows that α(yt) is gaus-
sian for 1 ≤ t ≤ N . This equation shows that the mean
and variance of α(yt) can be computed recursively over the
mean μα,t−1 and variance σ2

α,t−1 of α(yt−1). The param-
eters of αy1 equal μy1 and σ2

y1
, which are the mean and

variance of the distribution p(y1|−→x 1,q1), and are estimated
from the data.

6.2.2 The backward calculation

Once the mean and variance μt, σ2
t of α(yt) are known for

1 ≤ t ≤ N , the optimal sequence y1, ..., yN can be calcu-
lated:

yN = μα,N (15)
yt−1 = argmax

yt−1

[N (yt−1; μ∗, σ2
∗
]

(16)

= μ∗ (17)

6.3 The Problem of Flatness

Both extensions presented above are designed to eliminate
fast fluctuations from the predicted curves that, though small
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in amplitude, lead to unmusical irregularities in the rendered
performances. The predicted curves are smooth, as we will
show below, and suitable for rendering a consistent and prin-
cipally acceptable performance. On the other hand, the flat-
ter a curve, the more mechanical and unexpressive will the
rendered performance sound. Based on the predictions we
have, we can now try to counter this and superimpose peaks
at selected points in the curves. To do this, a small set
of note-level rules, automatically extracted by Widmer [9]
from real performance data, is applied:

1. Staccato Rule: If two successive notes have the same
pitch and the second of the two is longer, then the first
note is played staccato.

2. Delay Next Rule: If two notes of the same length
are followed by a longer note, the last note is played
slightly delayed.

3. Trill Rule: If a trill is indicated in the score, the dura-
tion of the trill note is slightly prolonged.

7 RESULTS

We evaluated the algorithms on three data sets: The com-
plete Chopin piano works, played by N. Magaloff and 13
complete Mozart Piano Sonatas, played by R. Batik, which
were split into fast movements and slow movements. We
first present the results of three-fold crossvalidations on the
separate data sets and then take a detailed look at the predic-
tions for an exemplary Mozart Sonata, and at the effects of
the note-level rules. The quality of a predicted performance
is measured by Pearson’s correlation coefficient between the
predicted curve and the curve calculated from the training
data.

The crossvalidations, the results of which are given in ta-
ble 1, show lower correlations on the Chopin data, implying
that these data are much harder to predict than the Mozart
pieces. This is probably due to the much higher variation
that the limited information in the score features must ac-
count for. Testing with different sets of features shows that
the prediction quality of a particular target depends greatly
on the choice of features. As the goal of this paper is to com-
pare different methods for introducing performance context,
we restrict ourselves to one particular set of features and
thereby refrain from choosing the best set for each target.

On the Mozart Sonatas the globally optimised algorithm
shows a slight quality increase in predictive accuracy of the
ioi ratios (12.5% for the fast movements and 10.9% for the
slow movements) and loudness (10.0% and 7.0%). The
slight decrease in average correlation for the articulation
is not too surprising, as articulation is a rather local phe-
nomenon that does not profit from long-term dependencies.
For the Chopin data only a minor improvement in the pre-
diction of the ioi ratios was registered (2.5%). The loud-

Figure 3. IOI Ratios predicted for bars 31 - 54 of K. 280,
Mv.3

Figure 4. Effect of the note level rules applied to Chopin
Prelude op.28 No. 18, bars 12 - 17

ness in particular yielded low correlations. This is a prob-
lem we already encountered with the original YQX and that
will need to be analysed in more detail in the future.

Figure 3 shows the ioi ratio predictions for bars 31 to 54
in the third movement of the Mozart Sonata K. 280. The
original YQX algorithm exhibits small fluctuations that are
rather uncorrelated with the human performance. This re-
sults in small, but noticeable irregularities in the rendered
performance. In contrast to the human performance, which
is anything but a flat curve, those make the result sound in-
homogeneous instead of lively and natural. The globally
optimised YQX eliminates those while still showing some
of the peaks present in the human performance. The corre-
lation for the movement was improved by 57.2% from 0.29
(YQX) to 0.456 (YQX global).

Figure 4 shows the effect of the note level rules described
in section 6.3 on the ioi ratios predicted for Chopin Prelude
op.28 No.18, bars 12 - 17. Instances of the Delay Next Rule
occur at beats 24, 24.5, 26.5, 28.5 and 29.5, all of which co-
incide with great contrasts in Magaloff’s performance.
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Mozart fast Mozart slow Chopin
ioi loud art ioi loud art ioi loud art

YQX 0.233 0.171 0.323 0.339 0.217 0.200 0.160 0.108 0.323
YQX local 0.238 0.160 0.296 0.345 0.196 0.161 0.169 0.053 0.313

YQX global 0.262 0.188 0.319 0.376 0.232 0.190 0.164 0.075 0.316

Table 1. Results of the crossvalidations. The values shown are correlations of the predicted performance with a human
performance

8 CONCLUSION

The automatic synthesis of expressive music is a very chal-
lenging task, especially regarding the evaluation of a sys-
tem, as one cannot really judge the aesthetic qualities of a
performance by numbers. An adequate measure of qual-
ity can only be provided by human judgement. The ren-
dering system we present passed this hurdle in the REN-
CON 2008 and therefore poses a baseline for our current
research. The two extensions we devised address the prob-
lem of unsteady performances by incorporating the current
performance context into the predictions. This proved to be
a tightrope walk: Finding a way to restrain the predicted
curves on the one hand but not losing (ideally increasing)
similarity to the original curves on the other hand.

Of the data we tested our algorithms on, the Mozart Sonat-
as form a simpler task than the Chopin data. We regis-
tered a considerable increase in similarity to the real perfor-
mances while achieving our goal of smoother predictions.
The Chopin data pose a harder nut to crack. Due to the
vast amount of highly heterogeneous data that has to be ac-
counted for by a very limited set of features we were not
able to increase the prediction quality significantly.

We consider this a work in progress. There is still a long
way to go to a machine-generated performance that sounds
profoundly musical. The main goal in the near future will
be to define a set of features that is capable of explaining
data with a high degree of interpretational freedom, like the
Chopin data. This will raise the problem of how to balance
the predicted performances against the peaks superimposed
by the note level rules. We also have to solve the problem of
big tempo or loudness differences within pieces that affect
the global mean, as this is the reference point for our predic-
tions. A promising approach is to calculate the ioi ratios and
loudness relative to a current mean and incorporate the mean
tempo and loudness curves into the prediction process. The
biggest challenge, however, will be to combine the model
with phrase level predictions, as e.g. are made in [11].
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ABSTRACT

We present an application of content-based music recom-
mendation techniques within an online community platform
targeted at an audience interested mainly in independent and
alternative music. The web platform’s goals will be de-
scribed, the problems of content management approaches
based on daily publishing of new music tracks will be dis-
cussed, and we will give an overview of the user interfaces
that have been developed to simplify access to the music
collection. Finally, the adoption of content-based music rec-
ommendation tools and new user interfaces to improve user
acceptance and recommendation quality will be justified by
detailed user access analyses.

1 INTRODUCTION

The FM4 Soundpark is a web platform run by the Aus-
trian public radio station FM4, a subsidiary of the Austrian
Broadcasting Corperation (ORF). The FM4 Soundpark was
launched in 2001 and gained significant public perception
since then.

Registered artists can upload and present their music free
of any charge. After a short editorial review period, new
tracks are published on the frontpage of the website. Older
tracks remain accessible in the order of their publication
date. Visitors of the website can listen to and download
all the music at no cost. Nowadays, the FM4 Soundpark
attracts a large and lively community interested in up and
coming music, and the radio station FM4 also picks out se-
lected artists and plays them on terrestrial radio. At the time
of writing this paper, there are 9577 tracks by 4689 artists
enlisted in the online catalogue.

Whereas chronological publishing is suitable to promote
new releases, older releases tend to disappear from the users’
attention. In the case of the FM4 Soundpark, this has the ef-
fect of users mostly listening to music that is advertised on
the frontpage, and therefore missing the full musical band-
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with. To improve the accessibility of music in the FM4
Soundpark database, we proposed (1) a music recommen-
dation system and (2) new user interfaces/visualizations that
simplify accessing unknown music. Because the music avail-
able in the FM4 Soundpark was only very sparsely equipped
with structured metadata (artist records can – but are not re-
quired to – be tagged with two genre labels out of a set of
six), and because the active FM4 Soundpark community was
considered of being yet too small for an approach based on
collaborative filtering [4], we decided to implement a rec-
ommendation system utilizing a content-based music simi-
larity measure.

2 RELATED WORK

While many research prototypes of recommendation sys-
tems/visualizations of music collections that use content-
based audio similarity have been described in the literature
(e.g., [5, 11, 7, 10, 6], to name just a few), very little has
been reported about successful adoption of such approaches
to real-life scenarios. Mufin 1 is advertised as a music dis-
covery engine that uses purely content-based methods. Mu-
sicIP 2 offers the Mixer application that uses a combination
of content-based methods and metadata to generate playlists.
Bang&Olufsen recently released the Beosound 5 3 home
entertainment center, which integrates content-based audio
similarity with a simple “More Of The Same Music”-user
interface, that allows users to create playlists by choosing
an arbitrary seed song.

3 SYSTEM OVERVIEW

As we had to integrate our system with an existing infra-
structure, we placed emphasis on a decoupled design and
gradual integrability of our software into the system of our
industrial partner. The FM4 Soundpark recommender was
implemented as a web service that offers the following func-
tionalities: (1) synchronize the recommender with the main

1 http://www.mufin.com/
2 http://www.musicip.com/
3 http://www.beosound5.com/
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database (import/delete tracks), (2) return similar songs to a
given seed song, (3) return metadata (artist/track name, artist
description if available), (4) return specialized data struc-
tures for the visualizations. Most client-server communica-
tion was done with proprietary XML- or text-based proto-
cols. The high-level web service interface was implemented
in Python (using the CherryPy 4 framework), while the low-
level functionality (feature extraction, database management,
similarity calculation) was implemented natively in C++.

The system frontend consists of two main user interfaces:
(1) an Adobe Flash MP3 player with integrated recommen-
dation of similar songs based on pure acoustic similarity,
and (2) a downloadable 3D visualization application that
uses a combined similarity measure (acoustic similarity +
user-defined genre labels).

3.1 Main components

As already mentioned, our software is only loosely coupled
with our partner’s infrastructure. Therefore, we had to de-
fine a communication protocol that can be used to trigger the
necessary synchronization operations, and we had to design
algorithms that are able to work on a large and constantly
changing database. More precisely, the following require-
ments had to be met: (1) the calculation of acoustic sim-
ilarities between songs must be fast and memory efficient
(see 3.3) and (2) for the map generation procedure (see 3.4)
a tradeoff had to be found between quality and performance.

3.2 Feature extraction

From the 22050Hz mono audio signals two minutes from
the center of each song are used for further analysis. We
divide the raw audio data into overlapping frames of short
duration and transform them to Mel Frequency Cepstrum
Coefficients (MFCC), resulting in a spectrally smoothed and
perceptually meaningful representation of the audio signal.
MFCCs are now a standard technique for computation of
spectral similarity in music analysis (see e.g. [8]). The frame
size for computation of MFCCs for our experiments was
46.4ms (1024 samples). We used the first 20 MFCCs for
all our experiments.

3.3 Computing spectral similarity of songs

We use the following approach to music similarity based on
spectral similarity. For a given music collection of songs, it
consists of the following steps:

1. for each song, compute MFCCs for short overlapping
frames

2. train a single Gaussian (SG) to model each of the
songs

4 http://www.cherrypy.org

3. compute distances between pairs of songs using the
Kullback-Leibler divergence between respective SG
models

We use a single Gaussian with full covariance per song
[9] and calculate the acoustic similarity between two song
models p and q as the symmetric KL divergence DKL(p, q)

DKL(p, q) =
KLN (p‖q) + KLN (q‖p)

2
(1)

where

KLN (p‖q) = 0.5 log
(

det (Σp)
det (Σq)

)
+ 0.5Tr

(
Σ−1

p Σq

)

+ 0.5 (μp − μq)
′ Σ−1

p (μq − μp) − d

2
(2)

Tr(M) denotes the trace of the matrix M , Tr(M) =
Σi=1..nmi,i.

Because we tried to keep memory requirements low, we
decided not to store the full distance matrix, but compute
song-to-song similarities online. In the current implementa-
tion, the calculation of a full distance matrix row for 9500
songs takes around 50ms on a standard PC-based system.

3.4 Map generation

For the 3D visualization, we refined the main ideas from Is-

lands of Music [11] and Neptune [5], implemented as an in-
teractive 3D virtual landscape walkthrough. Central to this
type of visualization is a terrain heightmap, which is gen-
erated automatically from the database of available tracks.
The visualization uses an islands metaphor, where islands
represent regions of similar-sounding music.

The heightmap profile was derived from a 2D MDS [2]
solution that approximates distances derived from a combi-
nation of acoustic and metadata similarity between tracks
as closely as possible. We chose not to use Self Organiz-
ing Maps because they inherently rely on an embedding
of data points in a high dimensional vector space, which
clearly is not the case when dealing with pure proximity
data. One common way to construct vector spaces from
proximity data – interpreting the distances of all data points
to a data (sub)set – did not seem feasible because the database
changes continuously (per day, on average 15 tracks are
added, while others are deleted), and we needed a way to
integrate new data without a complete recalculation of the
map.

Although calculating an MDS solution from pure audio
similarity tends to preserve distances as well as the local
neighborhood of songs, it did not not produce visually dis-
criminable clusters in 2D space. Each artist in the Sound-
park carries two genre labels, which he or she can select
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Figure 1. Map generation&visualization

freely from a set of 6 (Electronica, Funk/Soul, HipHop, Pop,
Rock, Reggae). The desirable result from the map gener-
ation procedure was a layout where (1) tracks with equal
genre labels are placed close to each other (2) the distances
between tracks with equal genre labels still reflect mutual
audio distances. Therefore, we decided to modify the audio
similarity space by constructing a combined distance mea-
sure from the audio distance Da and the genre distance Dg:

Da(t1, t2) = DKL + wa · (DKL(t1, t2) −DKL)

Dscaled(t1, t2) = 1 − exp(−Da(t1, t2)/100))

Gk(ti) = 1 iff ti has genre k, 0 otherwise

G(ti) = (G0(ti)...G5(ti))

Dg(t1, t2) = 1 − G(t1) · G(t2)

min(Σk(Gk(t1)), Σk(Gk(t2)))

Dc(t1, t2) = Dscaled(t1, t2) · ((1 − wg) + wg · Dg(t1, t2))

0 ≤ w < 1

DKL denotes the average audio distance in the data set.
The weight factors wa and wg determine the influence of
the tracks’ audio distance and artists genre distance, respec-
tively, on the overall distance measure. We chose values
wa = 0.6, wg = 0.9 in order to enforce strong discrimina-
tion between tracks with no genre overlap. The rescaling
step to calculate Dscaled(t1, t2) was inspired by [12].

Combined track-to-track distances are fed into the MDS
module, which iteratively calculates a 2D layout, where-
upon 2D positions are determined such that their respective
distances approximate the original distances as closely as
possible. We used Chalmers’ [1] optimized spring model-
based implementation. The complexity of the force calcula-
tion in this algorithm are reduced to O(1) (by stochastically
sampling the dataset and incrementally building a nearest-
neighbor set for each point in the MDS problem by keep-
ing the V nearest neighbors to each point over iterations),

therefore its overall complexity is in O(N2), which is a cru-
cial factor when dealing with data sets in the order of 10000
items and more (it should be noted that we found it neces-
sary to increase the size of the sampling set to 20 in order
to avoid falling into local minima during the solution of the
MDS task, see [1] for a detailed discussion of the peculiar-
ities of the algorithm). After 2N iterations (where N is the
number of music tracks) the layout was assumed to be stable
and the calculation was aborted.

From the low-dimensional track positions, we calculated
a heightmap profile by applying a kernel density estima-
tion [3] algorithm to the 2D point cloud, interpreting the
estimated densities at points (xi, yi) as height values. The
heightmap profiles are written to a binary file, which is then
made available to the visualization client via a web server.

Because it is not feasible to execute the MDS procedure
on each track import (which happens several times per day
and requires the extraction of a full distance matrix), we
place a newly imported track by calculating a weighted av-
erage position from its 5 nearest neighbors and do the MDS
recalculation only during low-traffic times.

4 USER INTERFACE

Currently, two user interfaces to the recommendation sys-
tem have been implemented: (1) A more traditional, Adobe
Flash-based MP3 player interface with a small integrated
visualization of similar tracks to the currently played one
(see 4.1) and a downloadable, fully interactive, 3D visual-
ization client (see 4.2).

4.1 Web player

The web player can be launched from within an artist’s web
page on the Soundpark website by clicking on one of the
artist’s tracks. Additionally to offering the usual player in-
terface (start, stop, skipping forward/backward) it shows sim-
ilar songs to the currently playing one in a text list and in a
graph-based visualization (see figure 2).

The graph visualization displays an incrementally con-
structed nearest neighbor graph (number of nearest neigh-
bors = 5), whereas nodes having an edge distance greater
than two from the central node are blinded out. Figure 3
demonstrates the dynamic behavior of visualization (to sim-
plify things, we have chosen a nearest neighbor number of
3 for this sketch): (1) User clicks on a track, visualizaton
displays track (red) and the 3 nearest neighbors (green), (2)
user selects track 4 by clicking on it, the visualization shows
the track and its 3 nearest neighbors; note that track 2 – who
is amongst the nearest neighbors to track 1 – is also in the
NN set of track 4. (3) user selects track 5 as the new cen-
ter, track 1 – which was nearest neighbor to track 4 in the
preceding step – is also nearest neighbor to track 5. In the
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Figure 2. Player and SoundGraph visualization
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Figure 3. Interaction sequence in SoundGraph

long run, the re-occurrence of tracks in the NN sets indi-
cates the existence of several connected components in the
nearest neighbor graph.

4.2 3D visualization

The 3D visualization was implemented as a cross platform
Java WebStart 5 application. The decision against a direct
integration with the webpage had several reasons: (1) Flash
cannot take full advantage of accelerated graphics hardware,
which is ubiquitous nowadays, (2) Flash and Java applets
both cannot access the local harddrive without quirks, which
was necessary for local data caching.

The application was implemented using the JMonkey En-
gine 6 3D framework. It implements an animated walk-
through of the island landscape; the user is put in a first-
person perspective, and she can control the application by
the well-known WASD+mouse method (W/A/S/D keys for
movements, mouse for controlling the viewing/walking di-
rection). Tracks are represented as images that are posi-
tioned at their appropriate positions and heights. By fo-
cussing a track image and clicking on it with the mouse,

5 http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp
6 http://www.jmonkeyengine.com/

Figure 4. The 3D application

the user can start playback of a track. Figure 4 shows a
screenshot of the running application.

By using optimized rendering algorithms (space subdivi-
sion with quadtrees), we were able to maintain interactive
framerates (∼35 frames per second), even for large scenes
consisting of ∼9500 tracks.

5 EVALUATION

5.1 Graph theoretical considerations

Our analysis of the incrementally constructed nearest neigh-
bor graphs concentrates on how likely it is that individual
songs are reached when users browse through the graph.
The analysis is done on an evaluation data base of 7665
songs. With the number of nearest neighbours nn equal 3
(5), 56.79% (65.28%) of the songs can be reached in prin-
ciple. The other songs are never part of any of the nearest
neighbour lists. Next we constructed the full nearest neigh-
bour graphs emanating from all of the songs by incremen-
tally expanding all subgraphs. As soon as an already vis-
ited song is reached again, the corresponding subgraph is
fully constructed. The size of the full nearest neighbour sub-
graphs (nn = 3) for 96.20% of the songs is between 597 and
957, for the remaining 3.8% it is only between 4 and 46. For
nn = 5 there is a similar behavior with more songs being
reached: the size of the full nearest neighbour subgraphs for
97.91% of the songs is between 2306 and 2669, for the re-
maining 2.09% it is only between 6 and 50. Looking at the
strongly connected graphs that exists in our data set helps
to explain this surprising behavior. For our incrementally
constructed nearest neighbor graph, a strongly connected
component (SCC) is a subgraph where every song is con-
nected to all other songs traveling along the nearest neigh-
bour connections. Using Tarjan’s algorithm [13] to find all
SCC-graphs in our nearest neighbour graph with nn = 3
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(nn = 5), we find that there is one single large SCC with
the size of 543 (2231) songs. The remaining 5913 (4674)
SCC have a size of only 1.2 (1.16) on average. All our re-
sults seem to indicate, that there exists one large tightly con-
nected subgraph that all other songs lead to when travelling
along the nearest neighbour connections.

5.2 Quality of map visualization

To quantify the success of mapping the high dimensional
distance space to the low dimensional map visualization, we
computed the following measures of neighborhood preser-
vation. We obtained an MDS solution DMDS

a using only the
audio distances Da as input. We obtained another MDS so-
lution DMDS

c using the combined distances Dc as input. For
every song, we compute sets of n nearest neighbours Na,
NMDS

a and NMDS
c using Da, DMDS

a and DMDS
c as dis-

tance measure. We also compute the set of n nearest neigh-
bours Nga within genres using Da as distance measure, i.e.
only songs with identical genres are allowed to be part of the
nearest neighbour set. We next compute the percentage of
common (overlapping) nearest neighbours O(Na, NMDS

a )
between neighbour sets Na and NMDS

a , as well as
O(Nga, NMDS

c ) between Nga and NMDS
c . Whereas

O(Na, NMDS
a ) measures the neighbourhood preservation

for a mapping based on audio alone, O(Nga, NMDS
c ) mea-

sures how well local audio similarities within genres are pre-
served in mappings based on the combined distances. This
is done for a random subset of 1000 songs with varying size
of n and the average overlaps are depicted in Fig. 5. As
can be seen, the preservation of local neighbourhoods within
genres in the combined map visualization is even better than
the preservation of neighbourhoods based on audio informa-
tion only. Combining audio and genre information not only
allows for more interesting map designs, but also respects
audio similarity at a local level.

5.3 Usage statistics

In this section, we will present analyses that prove the ac-
ceptance of music recommendation technology in everyday
use. Note that we did not evaluate usage behavior of the 3D
visualization yet, as this part of the system was very recently
finished.

By analyzing webserver log files, we were able to ver-
ify the following hypotheses about how it will be possible
to change the music consumption behaviour of FM4 Sound-
park users by utilizing music recommendation technology:
(1) The new technology is used by a significant number of
users
(2) while the absolute number of track accesses might stay
constant, the number of distinct track accesses increases,
(3) track accesses are more evenly distributed across the en-
tire track catalogue, that is, the age distribution of down-

Figure 5. Percentage of overlap (y-axis) of neighbourhood sets
O(Na, NMDS

a ) (solid) and O(Nga, NMDS
c ) (dashed) for varying

size of neighbourhood (x-axis).

loaded tracks is becoming flatter.
Figure 6(a) plots the number of distinct tracks that have

been downloaded per day between 2008-03-23 and 2009-
03-29. Our recommendation service was launched on 2008-
05-06. The peak at this date is clearly visible, and although
the numbers turn down again during the following days,
they clearly remain at a higher average level than they were
before. The distinct track access numbers before/after the
launch were distributed according to

min median mean max stddev
before 17 338 359 781 137
after 41 593 672 4355 394

The ages of accessed tracks in days were distributed accord-
ing to

min median mean max stddev
before 0 200 483 2383 613
after 0 476 766 2714 795

The boxplots in fig. 6(b) and fig. 6(c) give a better visual
impression of the effect of the recommendation service.

6 CONCLUSIONS

We have presented a real-life implementation of a music rec-
ommendation system that incorporates (1) purely content-
based recommendations based on a seed track, (2) a 2D vi-
sualization based on pure audio similarity, and (3) an in-
teractive 3D visualization based on a combined (audio and
metadata-based) distance measure. We showed that rec-
ommendations based on a k nearest neighbor approach are
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Figure 6. Usage statistics

likely to run into cycles if k is too small. We have presented
a combined audio-and-metadata distance measure, whereas
audio- and metadata-contributions can be weighted as re-
quired, and we have shown that a 2D MDS projection of
a data set based on this measure respects audio similarity
on a local level, while the coarse structure reflects distances
calculated from the metadata. To check the usefulness of
our system, we analyzed nearest-neighbor graphs calculated
from pure audio similarity with graph theoretical methods,
we analyzed MDS solutions with respect to neighborhood-
and distance-preserving properties, and we performed statis-
tical analysis of web server logfiles to analyze usage behav-
ior. The results indicate that the approach we chose works
reasonably well for our specific problem area.
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ABSTRACT

Sensory Threads is a pervasive multi-person interactive
experience in which sensors monitor phenomena that are
imperceptible or periphery to our everyday senses. These
phenomena include light temperature, heart-rate and spatial-
density. Participants each wear a sensor as they move around
an urban environment, and the sensor data is mapped in real-
time to an interactive soundscape which is transmitted wire-
lessly back to the participants.

This paper discusses the design requirements for the Sen-
sory Threads soundscape. These requirements include intu-
itive mappings between sensor data and audible represen-
tation and the ability for participants to identify individual
sensor representations within the overall soundscape mix.
Our solutions to these requirements draw upon work from
divergent research fields such as musical interface design,
data sonification, auditory scene analysis, and the theory of
electroacoustic music. We discuss mapping strategies be-
tween sensor data and audible representation, our decisions
about sound design and issues surrounding the concurrent
presentation of multiple data sets. We also explore the syn-
ergy and tension between functional and aesthetic design,
considering in particular how affective design can provide
solutions to functional requirements.

1 INTRODUCTION

Our everyday surroundings contain countless phenomena to
which we are oblivious. Our eyes and ears can only detect
within a limited range, while within our own bodies there
are countless rhythms and processes which we cannot feel
or sense.

Sensory Threads is an interdiserplinary research project
that combines the expertise of several institutions, and builds
upon technologies developed for Snout [1] and Feral Robots

[8]. The aim of the project is to create a collective and
shared sensing experience which highlights imperceptible
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Figure 1. Participant wearing a mobile sensor.

phenomena in our everyday surroundings. In the Sensory
Threads experience, participants wear mobile sensing tech-
nology (see figure 1, with discussion in section 4) and go on
an expedition through the urban environment. During their
expedition, a generative soundscape translates the real-time
sensor data into an audible representation, allowing the par-
ticipants to explore and experience the hidden quantities and
patterns of imperceptible phenomena that surround them.

A key requirement for the soundscape is the audible pre-
sentation of sensor data in a form which is intuitively per-
ceivable, thus allowing a participant to isolate the contri-
butions made by their own sensor or those of others in the
group. The soundscape also needs to be pleasant to listen
to, so as to retain participant attention during the expedition.
Solutions to these design challenges have been informed by
research from a range of fields, including data sonification,
electro-acoustic music and Auditory Scene Analysis.

The rest of the paper is structured as follows. Section
2 surveys related work and introduces research which in-
formed our approach to sound design, section 3 summarises
the requirements for the soundscape, stressing design prob-
lems posed by these requirements. Section 4 documents
the implementation process, giving examples of how the-
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ory from the above-mentioned fields was applied to satisfy
the design requirements. Section 5 outlines future work, and
the paper is concluded in 6.

2 RELATED WORK AND SOUND DESIGN
INFLUENCES

2.1 Related Work

Pervasive games are a form of interactive experience which
attempt to blur the boundaries between the physical world
and digital representations [16]. A good example is Can You

See Me Now [2], a game which involves real-world ‘run-
ners’ in an urban environment chasing online players who
are navigating a virtual model of the same physical location.
While using similar technologies (e.g., Global Positioning
System) to these pervasive games, the Sensory Threads ex-
perience is not game-like or task-based in design; emphasis
is instead placed on the reflective experience of listening to
changes in the soundscape while exploring the urban envi-
ronment. Sensory Threads therefore shares more common-
ality with mobile experiences such as Sonic City [10] and
‘Ere be Dragons [7]. Sonic City is a mobile automatic mu-
sic creation system that uses mobile sensors to control the
manipulation of environmental sounds surrounding the par-
ticipant as they move through the city. ‘Ere be Dragons is a
pervasive experience which uses the participant’s heart rate
to control the real-time generation of a virtual environment.

Sensory Threads is also similar to Christina Kubisch’s
‘Electrical Walks’ [6], in which participants walk around
a city while wearing headphones that are designed to am-
plify the electro-magnetic interference caused by wireless
networks, electrical lighting and suchlike. However unlike
Kubisch’s walks, which give direct access to the phenom-
ena under observation, the sonification process in Sensory
Threads places a layer of abstraction between the raw sen-
sor data and the audible representation.

Although [10] [7] and [6] generate real-time audio in
response to live sensor data, they are solitary experiences,
and are therefore distinct from Sensory Threads, which is
a collective sound experience. An example of a collabora-
tively generated, sensor controlled soundscape is presented
in [13], however the emphasis is on encouraging sponta-
neous performance activities, rather than reflection on the
sensor data itself.

While we do not view Sensory Threads as an instrument
or musical interface, it is important to mention collabora-
tive interactive music systems. Blane and Fells [3] present
a comparison of many such projects, however in the major-
ity of cases, these projects are based around a fixed loca-
tion such as a computer system or physical interaface(s). A
notable exception to this is [17], who present a large scale
mobile collaborative music system using GPS and wireless
technologies. Despite differences in the style and presenta-

tion of these multi-party experiences, we can view them, and
Sensory Threads, within the framework of creative mutual
engagement [5].

2.2 Sound Design Influences

This section introduces fields of research which informed
the development of the sound design for the Sensory Threads
soundscape. Concrete examples of their application are given
in subsequent sections.

2.2.1 Sonification

Sonification is the process of representing data in an au-
dible format, using speech or non-speech sounds. Within
the field of sonification, we are particularly interested in ap-
proaches to presenting several pieces of information concur-
rently. McGookin [12] notes that the larger the quantity of
information presented simultaneously, the more problematic
it is for a user to interpret it correctly. [12] suggests several
design guidelines for addressing this problem, such as us-
ing a range pitch registers and timbres for different informa-
tion sets, and de-correlating the temporal onset of concur-
rent events.

While the field of data sonification provides guidelines
for the audible representation of data, there have been few
attempts to address the aesthetic quality of the sonification.
One exception is Vickers [15], who notes that the approaches
to organising sound used by electro-acoustic music com-
posers could be employed to enhance the aesthetic appeal
of sonified data.

2.2.2 Auditory Scene Analysis

Auditory Scene Analysis (ASA) investigates the means by
which humans interpret auditory signals. A key theory in
ASA is that of segregation; the process which allows us
to pick individual components, (e.g., voices or music) from
the noisy mix of sounds in our environment; a phenomenon
commonly known as the ‘cocktail party effect’. ASA at-
tempts to uncover the strategies we apply when segregating
signals into discrete channels (referred to as streams), and
the factors which affect our ability to perform this segrega-
tion. ASA also investigates the perceptual fusion of audi-
tory components; where sounds from different sources are
perceived as part of a single auditory stream [4].

ASA is useful in our context because it provides sug-
gestions for how to design a soundscape in which the con-
stituent parts are individually identifiable.

2.2.3 Spectromorphology

Spectromorphology, proposed by electroacoustic music com-
poser Dennis Smalley, is a theoretical framework for under-
standing the activity of listening, and the process of recog-
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nising sounds or sound-types [14]. Spectromorphology ref-
fers to the spectral qualities of a sound (the spectro) and
the ways these qualities change over time (the morphology).
In his theory, Smalley argues that listeners have a ‘natural’
ability to associate sounds with possible causes, a process
he calls ‘source-bonding’. One implication of the theory of
spectromorphology is that composers can try to suggest the
cause or nature of imaginary or synthetic sounds, by design-
ing sounds which may appeal to a listener’s innate tendency
to perform source-bonding.

In the Sensory Threads soundscape we try to leverage the
idea of source-bonding, by giving each audio stream distinct
spectromorphological characteristics, each intended to mir-
ror the properties of the phenomena they represent. This
also helps us to separate the different sensor representations
within the overall mix of the soundscape, as each represen-
tation is distinct.

2.2.4 Summary

Sonification and spectromorphology are both concerned with
the use of sound as a medium for description or represen-
tation. Sonification seeks to present some external source
of information in an audible format, using speech or syn-
thesised sound. Spectromorphology on the other hand is a
theoretical framework for classifying and explaining sound
types, and can be used as a tool for describing specific fea-
tures within a sound event. Underlying both sonification
and spectromorphology we find the field of Auditory Scene
Analysis, which investigates the human perception of sound.

3 SOUNDSCAPE DESIGN REQUIREMENTS

This section gives more detail about the specific design re-
quirements and features we identified for the Sensory Threads
soundscape. Most of the aesthetic and experience related re-
quirements were drawn from consultations with Proboscis,
the arts organisation co-ordinating the Sensory Threads project.
Other requirements were drawn from our previous experi-
ence in creating interactive sound experiences (e.g., [9] [13])
and our reflections on related research. Solutions to our de-
sign requirements are presented in the subsequent section,
where we also consider the issue of balancing aesthetic con-
cerns and functionality.

3.1 Perceivable mapping between sensor data and sound

The soundscape must provide feedback to the participants
about the state of the environment and their own physiolog-
ical systems. Therefore one of the most important require-
ments is that incoming sensor data is mapped to an audible
representation in a direct and perceivable fashion, thus al-
lowing participants to listen to the contribution their own
sensor is making to the soundscape as a whole.

To facilitate this, we decided that each sensor data stream
should be matched to a specific voice or instrument within
the soundscape. To avoid confusion while listening, we re-
quire these voices to be sonically distinct, so that each voice
is perceived within it’s own auditory stream, and voices do
not interfere with, or mask one another. We also argue that
the sound design for the sensor representation should reflect
the phenomena being monitored, so participants can intu-
itively interpret the meaning of the soundscape.

While providing identifiable sensor readings is integral
to the functionality of the soundscape, we also argue that
it is important for promoting group interaction and mutual
engagement. We believe participants should be able to iden-
tify changes caused by their sensor, and also become aware
of the way their fellow explorers are shaping the auditory
experience.

In summary, the mapping and sound design for the sound-
scape should serve the dual purpose of representing the data
in an easily readable format and promoting a sense of self
identify and group awareness within the participants.

3.2 Longitudinal Requirements

As the Sensory Threads experience lasts for up to an hour,
we recognise the need to incorporate temporal development
into the soundscape, to retain interest, counter fatigue and
avoid desensitisation to changes in the sensor data. We there-
fore considered additional, indirect sensor mappings to con-
trol longer term development of the soundscape, and also
‘composed’ changes within the soundscape, such as musi-
cal progressions or sounds which gradually evolve.

4 IMPLEMENTATION

4.1 Development Process

We developed the soundscape iteratively, starting with a prim-
itive prototype, and making modifications based on informal
testing and feedback from meetings at Proboscis.

4.2 Sensing Platform

Our collaborators at Birkbeck College have developed a portable
wireless sensing platform using embedded Linux Gumstix
computers. The current version of Sensory Threads uses
three of these devices, each of which transmits sensor read-
ings via Bluetooth to a small laptop computer, where the
soundscape is generated. Each participant carries a single
sensor. The sensors used are a light sensor, a noise sensor
and a ‘spatial density’ sensor, which uses four ultrasound
range finders placed on the front, back and sides of a partici-
pant to give an estimation of how cramped or constricted the
participant is within their current environment. A heart-rate
monitor, GPS receiver, 3G internet uplink and web-camera
are also connected to the laptop.
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Figure 2. Spatial Density sensors and shoulder bag

A Java program (written by the first author) interfaces
with the sensor hardware using Bluetooth and serial port
connections, and passes relevant sensor data to the sound-
scape using Open Sound Control [18]. This Java program
also uploads the GPS and sensor data to the web-server for
use in a gallery-based listening environment. The program
attempts to re-establish Bluetooth or internet connections if
they are lost, and all sensor data is logged locally.

A second Java application takes still images using the at-
tached web-camera. Images are taken at points of significant
change in the sensor data streams.

Audio is generated in the soundscape program (see be-
low) and transmitted to the four participants using Blue-
tooth headphones with external Bluetooth audio transmit-
ters. These transmitters are used instead of the laptop’s on-
board Bluetooth interface, making the system more robust,
as headphones can disconnect and reconnect without caus-
ing interference to the laptop or soundscape program.

The whole system runs on battery power and is worn in
fabric satchels created by a member of Proboscis (see Figure
2).

4.3 Soundscape Program

The soundscape program is written in SuperCollider [11].
All sounds are synthesised in real-time, rather than being
based on sampled audio. The main advantage of this ap-
proach is that the synthesis parameters can be modulated di-
rectly by the incoming sensor data, making the soundscape
flexible and sonically varied. Another advantage of this ap-
proach is that the synthesis models can be quickly created,
modified and tested during development.

4.4 Data Representation Streams

We developed four sound synthesis models, which we re-
fer to as the ‘representation streams’. These representa-

tion streams are collections of synthesis graphs coupled with
control and mapping algorithms. Each representation stream
was designed for a specific sensor.

4.4.1 Heart-Rate Stream

This heart-rate sensor is represented as a high-pitch pulse-
train, whose rate is determined by the heart-rate of the par-
ticipant wearing the heart-rate monitor. Reverberation is ap-
plied to the pulse, to make it sound less harsh. Over time, the
pitch of the individual pulses begins to modulate, gradually
transforming the simplistic tones into a melody.

4.4.2 Spatial Density Stream

The spatial density sensor is represented as a persistent drone,
to which frequency and amplitude modulation are applied.
As the participant wearing the sensor becomes more tightly
constricted in their current environment, the rate of modula-
tion is increased, causing the timbre of the drone to become
intense and foreboding. In a low-density environment the
drone becomes lighter and less prominent.

4.4.3 Noise Level Stream

The noise level sensor is represented as filtered white noise,
where the sensor reading is mapped to the cut-off frequency
of a low-pass filter. Some reverberation is applied to make
the noise sound less harsh.

4.4.4 Light Stream

The light sensor modulates the filter frequency of a rich syn-
thesised tone. Over time, additional musical notes are intro-
duced to this tone, creating a rich harmonic backdrop to the
soundscape. Delay and reverberation effects emphasise the
modulations caused by variations in the sensor data.

4.5 Sound Design

We designed the soundscape to stand out against the acous-
tic environment, using entirely non-speech sounds, and em-
ploying synthetic timbres rather than emulations of acoustic
instruments. The musical genre of the soundscape could be
described as ambient or minimal electronica.

Our sound design decisions for the representation streams
were not arbitrary. Rather, we tried to apply ideas from
Smalley’s theory of spectromorphology to make each rep-
resentation stream an intuitive reflection of the phenomena
under observation. For instance as the wearer of the spa-
tial density sensor becomes more tightly constricted, the in-
creasing modulation is intended to suggest the sensation of
claustrophobia. Another example is the light sensor rep-
resentation stream, which becomes sonically brighter and
more energetic as the ambient light level increases.
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We also use the idea of source-bonding, as with the vari-
ably spaced pulses of the heart rate representation, which
imply a source that is emitting discrete events at a constantly
changing speed. Here, we suggest that the pulsation be-
comes a metaphor for heart rate, as the pulses are not di-
rectly aligned with the heart beats of the sensor wearer.

4.6 Concurrent Data Representation

Using a distinct sonic identity for each sensor representa-
tion also means that streams can be distinguished from one-
another within the overall mix. To ensure that each represen-
tation stream is sufficiently distinct, we followed principles
outlined by [12] for the concurrent presentation of auditory
information. These guidelines include the use of different
timbres and pitch registers for each data element. We there-
fore used a variety of sound types, including high pitched
tones, filtered bands of noise, and harmonic textures.

We also applied lessons learnt from the principles of au-
ditory scene analysis (ASA), such as trying to ensure that
each sensory representation gets assigned to it’s own per-
ceptual stream. One approach to this was using a mixture
of continuous and discrete sounds, which can be viewed in
gestalt terms as figures and grounds. Where possible we also
de-correlated the onset of sound events, and used spatial-
isation to segregate elements, by placing them at different
positions within the stereo field.

To further avoid conflict between the representation streams,
we chose not to map sensor data directly to pitch, but instead
opted to map the incoming data to temporal and spectral pa-
rameters. This approach allows us to place each sensor rep-
resentation within a specific pitch region, with the assurance
that the live sensor data will not cause sensor representations
to gravitate towards a common frequency range and become
difficult to distinguish between.

4.7 Functionality and Aesthetics

During the development of the soundscape, we became en-
gaged in the tensions and synergy between functional and
aesthetic design concerns. Functional problems included
providing accurate representation of the data, and allowing
for the concurrent presentation of the four data sets. The
main aesthetic concerns we faced were developing repre-
sentation streams which were pleasant to listen to, ensuring
that the soundscape is clear and coherent despite multiple
layers of audio, and incorporating temporal development.

In some cases the functional and aesthetic requirements
were easily satisfied. For instance by assigning each repre-
sentation stream unique characteristics, we found that the re-
quirement for identifiable concurrent data presentation was
met, however in the process we also arrived at a set of in-
teresting and complimentary sonic voices, which work to
create a coherent and musical soundscape.

The requirement for pleasant sounding sonification was
met by using harmonic and musical sounds where possible,
and through applying reverberation to create a more ‘pol-
ished’ presentation. In creating a soundscape that is pleas-
ant to listen to, we also go some way to satisfying the func-
tional requirement of supporting and encouraging engage-
ment over a prolonged duration.

However, functional and aesthetic concerns were not al-
ways neatly resolved. As an example, we are conscious
that temporal developments of the soundscape (as outlined
above) might be confusing or misleading to the participants,
who could potentially accredit time-based changes to the in-
coming sensor data. This is still an unresolved issue.

5 FUTURE WORK

5.1 Soundscape Development

A primary concern is to enhance the temporal evolution of
the soundscape over the course of a Sensory Threads expe-
dition. We see this work as important because if the sound-
scape remains relatively static participants may become bored
or fatigued by the sounds. This may involve developing a
context sensitive model of the experience, which is main-
tained as an expedition takes place. This approach is a de-
parture from the current state-machine approach to temporal
development, where new behaviour is introduced as certain
time thresholds are crossed.

Although the system can recover from communication
loss, we plan to introduce audible feedback to indicate when
participants stray too far from one-another. As well as be-
ing functionally useful, these signals could also become an
aspect of the group experience.

5.2 Formal Evaluation

We intend to carry out an evaluation of Sensory Threads,
investigating not only the degree to which participants are
able to interpret the sensor data, but also social factors such
as the characteristics of the group interaction that takes place
during the Sensory Threads experience.

We would also also like to assess the degree to which our
implementation matches our design requirements, and we
will use the evaluation to improve the soundscape design, in
accordance with the principles of user-centric design.

Sensory Threads will be shown at various events during
the summer of 2009, and we aim to use these events as a
platform for performing our evaluations.

6 CONCLUSION

Sensory Threads is a pervasive multi-party experience in
which four participants listen to an interactive soundscape as
they move around an urban environment. Each participant

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 171



wears a mobile sensor, which controls a particular element
within the soundscape. The soundscape has been designed
according to a specific set of requirements, and our solutions
to these requirements have been made through the applica-
tion of ideas and techniques from a variety of research fields
and artistic disciplines.
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ABSTRACT

This paper presents an empirical study of the performance
of final ritards in classical piano music by a collection of
famous pianists. The particular approach taken here uses
Friberg and Sundberg’s kinematic rubato model in order to
characterize the variability of performed ritards across pieces
and pianists. The variability is studied in terms of the model
parameters controlling the depth and curvature of the ritard,
after the model has been fitted to the data. Apart from find-
ing a strong positive correlation of both parameters, we de-
rive curvature values from the current data set that are sub-
stantially higher than curvature values deemed appropriate
in previous studies. Although the model is too simple to
capture all meaningful fluctuations in tempo, its parameters
seem to be musically relevant, since performances of the
same piece tend to be strongly concentrated in the param-
eter space. Unsurprisingly, the model parameters are gen-
erally not discriminative for pianist identity. Still, in some
cases systematic differences between pianists are observed
between pianists.

1 INTRODUCTION AND RELATED WORK

One of clearest manifestations of expressive timing in mu-
sic is the final ritard, the slowing down toward the end of a
musical performance to conclude the piece (or a part of it)
gracefully. Several models have been proposed to account
for the specific form of the ritard. These models typically
come in the form of a mathematical function that describes
how the tempo of the performance changes with score po-
sition. For example, Repp [9] found a quadratic function
of score position to adequately describe IOI’s measured in
28 performances. Honing [6] proposes a different kind of
model, that consists in the combination of two computa-
tional models, one for tempo tracking, and one for rhythmic
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categorization. This model, rather than describing a single
tempo curve, predicts the upper and lower boundary of the
range of acceptable tempo curves for ritards. Since the two
constituent models are intended to mimic perceptual pro-
cesses involved in human listening, this can be called a per-

ceptual model of expressive timing.
Another kind of models has arisen from the analogy of

expressive timing with physical motion [11, 10, 3]. For
example, Todd [11] describes a model for expressive tim-
ing where tempo is treated as the velocity of a particle that
moves under constant acceleration or deceleration, depend-
ing on its position. The physical position of the particle is
equated to score position with respect to phrase boundaries.
Also lead by the analogy with physical motion, Friberg and
Sundberg [4], derive a model for the velocity of human mo-
tion, when halting after running. An evaluation of the run-
ner’s stopping movement in terms of aesthetic quality yields
that stopping motion with approximately constant decelera-
tion power is rated highest. From the assumption of constant
deceleration power, they derive a model of tempo as a func-
tion of score time.

As pointed out in [5], models that are dependent only on
score position are incomplete in the sense that they ignore
any characteristics of the musical material that is performed.
Also, the physical motion metaphor ignores perceptual and
production aspects of music performance that are relevant to
the shaping of musical tempo [2, 5].

Nevertheless, the kinematic rubato models described above
predict the evolution of tempo during the final ritard quite
accurately, when matched to empirical data [4, 11]. An ad-
ditional advantage of the models is their simplicity, both
conceptually (they contain few parameters) and computa-
tionally (they are easy to implement).

In this paper we study the variability in the final ritards of
Chopin’s Nocturnes performed by multiple famous pianists,
using Friberg and Sundberg’s kinematic model. Rather than
validating the model on empirical data, we use the model
to learn about the data (as in [12]). More specifically, we
investigate whether the identity of the piece or the pianist
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is reflected in the parameters of the model. Given the sim-
plicity of the two-parameter model, the existence of such an
effect would be surprising, but would also shed some light
on the interplay of personal interpretative freedom on the
one hand, and performance practice and conventions on the
other.

The data used for the study is described in section 2. Sec-
tion 3 deals with the kinematic model and how it is applied
to the measured data. Results are presented and discussed in
section 4. Finally, section 5 states conclusions and remain-
ing work.

2 DATA

The data used here consists in measurements of timing data
of musical performances taken from commercial CD record-
ings of Chopin’s Nocturnes. The contents of the data set are
specified in table 1. We have chosen Chopin’s Nocturnes
since they exemplify classical piano music from the roman-
tic period, a genre which is characterized by the prominent
role of expressive interpretation in terms of tempo and dy-
namics. Furthermore, the music is part of a well-known
repertoire, performed by many pianists, facilitating large
scale studies.

Tempo in music is usually estimated from the interon-
set intervals of successive events. A problematic aspect of
this is that when a musical passage contains few events, the
obtained tempo information is sparse, and possibly unreli-
able, thus not very suitable for studying tempo. Therefore,
through inspection of the score, we selected those Nocturnes
whose final passages have a relatively high note density, and
are more or less homogeneous in terms of rhythm. In two
cases (Op. 9 nr. 3 and Op. 48 nr. 1), the final passage con-
sists of two clearly separated parts, both of which are per-
formed individually with a ritard. These ritards are treated
separately (see table 1). In one case (Op. 27 nr. 1), the best-
suited passage is at the end of the first part, rather than at the
end (so strictly speaking, it is not a final ritard).

The data were obtained in a semi-automated manner, us-
ing a software tool [8] for automatic transcription of the au-
dio recordings. From the transcriptions generated in this
way, the segments corresponding to the final ritards were ex-
tracted and corrected manually by the authors, using Sonic

Visualizer, a software tool for audio annotation and analy-
sis [1].

3 METHOD

As mentioned in section 1, we wish to establish whether the
specific form of the final ritard in a musical performance
is dependent on the identity of the piece being played, or
the performing pianist. We address this question by fitting
a model to the data, and investigating the relation between

the piece/pianist identity and the parameter values of the fit-
ted model. We employ the kinematic model by Friberg &
Sundberg [4], mainly for it’s simplicity.

3.1 Friberg & Sundberg’s kinematic model

The model is based on the hypothesized analogy of musi-
cal tempo and physical motion, and is derived from a study
of the motion of runners when slowing down. From a va-
riety of decelerations by various runners, the decelerations
judged by a jury to be most aesthetically pleasing turned
out to be those where the deceleration force is held roughly
constant. This implies that velocity is proportional to square
root function of time, and to a cubic root function of posi-
tion. Equating physical position to score position, Friberg
and Sundberg use this velocity function as a model for tempo
in musical ritards. Thus, the model describes the tempo v(x)
of a ritard as a function of score position x:

v(x) = (1 + (wq − 1)x)1/q (1)

The parameter q is added to account for variation in cur-
vature (that is, the function is not necessarily a cubic root of
position). The parameter w represents the final tempo, and
was added since the tempo in music cannot reach zero. The
model is designed to work with normalized score position
and tempo. More specifically, the ritard is assumed to span
the score positions in the range [0, 1], and the initial tempo
is defined to be 1.

The effect of the parameters w and q is illustrated in fig-
ure 1, which shows plots of tempo curves defined by the
model for different values of w and q. Note that values of
q > 1 lead to convex tempo curves, whereas values of q < 1
lead to concave curves. The latter is not expected to occur
under normal circumstances, since tempo curves of ritards
are typically convex. Note also that w determines the verti-
cal end position of the curve.

3.2 Fitting the model to the data

The parameters of the model allow it to be fitted to ritards
performed by particular pianists. As explained above, for
this it is necessary to normalize the data. When normaliz-
ing the score position, it is important to make normalized
position 0 coincide with the actual start of the ritard. Al-
though in most cases there is a ritard instruction written in
the score, the ritard may start slightly before or after this in-
struction. A manual inspection of the data showed that the
starting position of the ritards strongly tended to coincide
among pianists. For each piece, the predominant starting
position was determined and the normalization of score po-
sitions was done accordingly.

When normalizing tempo, it is important to notice that
normalizing should be done globally for the data set, rather
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Pianist Year Op.9 nr.3 rit1 Op.9 nr.3 rit2 Op.15 nr.1 Op.15 nr.2 Op.27 nr.1 Op.27 nr.2 Op.48 nr.1 rit1 Op.48 nr.1 rit2
Argerich 1965 X
Arrau 1978 X X X X X X X X
Ashkenazy 1985 X X X X X X X X
Barenboim 1981 X X X X X X X X
Biret 1991 X X X X X X X X
Engerer 1993 X X X X X X X X
Falvai 1997 X X X X X X X X
Harasiewicz 1961 X X X X X X X X
Hewitt 2003 X X X X X X X X
Horowitz 1957 X X
Kissin 1993 X X
Kollar 2007 X X X X X X X
Leonskaja 1992 X X X X X X X X
Maisenberg 1995 X
Mertanen 2001 X X X X X X
Mertanen 2002 X X
Mertanen 2003 X X
Ohlsson 1979 X X X X X X X X
Perahia 1994 X
Pires 1996 X X X X X X X X
Pollini 2005 X X X X X X X X
Richter 1968 X
Rubinstein 1937 X X X X X X X X
Rubinstein 1965 X X X X X X X X
Tsong 1978 X X X X X X X X
Vasary 1966 X X X X X X X
Woodward 2006 X X X X X X X X
d´Ascoli 2005 X X X X X X X X

Table 1. Performances used in this study. The symbol “X” denotes the presence of the corresponding combination of pi-
anist/piece in the data set. The additions “rit1” and “rit2” refer to two distinct ritards within the same piece

q 
= 

-4

w = .3

q 
= 

1
q 

= 
5

w = .5 w = .7

Figure 1. Ritards produced by the model using different
values for the parameters w and q; In each plot, the x and y
axis represent score position and tempo respectively, both in
arbitrary units

than individually, since the latter would render the w param-
eter useless (the final tempo of every ritard would be 0). The
result of global normalization is that the tempo value 1 cor-
responds to the highest tempo occurring in the data set, and
the tempo value 0 to the lowest. Although this procedure
maintains the relative scaling of the ritards, the majority of
the ritards will not start with a tempo value of 1, whereas a
constraint of the model is that it starts at tempo 1. An ad-

ditional problem is that in some cases the first tempo value
is not always the maximal value. This implies that shift-
ing the data to make either the first value or the maximal
value equal to 1, will result in a poor fit. To illustrate this,
a problematic case is presented in the left plot of figure 2,
where the maximal tempo value is not equal to 1. The fit-
ted model is clearly a very poor approximation of the data.
To alleviate these problems, an additional offset parameter
is included added to the model while fitting. The right plot
of figure 2 shows the same data with the fitted model using
the offset parameter. Within its capabilities, the model now
fits the data relatively well. Note that the offset parameter is
only used for calibration purposes and is not regarded as a
meaningful part of the model.

The model is fitted to the data by non-linear least-squares
fitting through the Marquardt-Levenberg algorithm, using
the gnuplot implementation 1 . The model fitting is applied
to each performance individually, so for each combination
of pianist and piece a value is obtained for w, q, and the
root mean square of the error after fitting (this serves as a
goodness-of-fit measure).

4 RESULTS AND DISCUSSION

The values obtained from fitting are displayed as a scatter-
plot on the two-dimensional parameter space q versus w, in

1 The fitting must be done by numerical approximation since the model
is non-linear in the parameters w and q.
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Figure 2. The necessity of an offset parameter for fitting
the model (dashed line) to the data (‘+’ symbols). left: fit-
ting without offset compensation; right: fitting with offset
compensation (see text)
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Figure 3. Two extremes of the effective parameter space;
left: Rubinstein’s ritard in Op. 15 nr. 2 (low w, low q);
right: Mertanen’s ritard in Op. 27 nr. 2 (high w, high q)

figures 4 and 5. 2 To facilitate the interpretation of points in
specific locations of the plane, the reader is referred to fig-
ure 1, in which the relative location of the plots corresponds
to the topology of the w-q plane.

In figure 4, the symbols group the data points by piece,
such that the performances of the same piece by different pi-
anists have identical symbols. The sizes of the symbols are
proportional to the goodness-of-fit. That is, bigger symbols
are represent a better fit of the model to the data, and are
therefore to be considered more reliable than smaller sym-
bols.

The scatter plot reveals a strong positive correlation be-
tween the w and the q parameter. In musical terms, this
implies that the tempo decrease in deep ritards (low w) is
more gradual (low q), whereas in shallow ritards (high w),
the tempo decrease is more sudden, and postponed to the
last notes of the ritard (high q). These two situations are
illustrated by the ritards shown in figure 3.

Notable is also that virtually all performances correspond
to q values above 3. This value (marked in the figure as a
black horizontal line), corresponds to the model setting that
mimics the motion of a physical body under constant brak-

2 The figures are best viewed in color

ing power. This setting, together with q = 2 (constant brak-
ing force, assumed in [7] and [11]), is claimed by Friberg
and Sundberg [4] to yield ritards that are aesthetically pre-
ferred by listeners. They suggest that this preference is due
the fact that we are familiar with these conditions from our
perception of physical motion. In contrast, the higher q val-
ues that are measured in the current study suggest model
settings where braking power increases with time. Interest-
ingly, the scatter plot shows a strong ridge close to q = 4,
where the range above the boundary is highly populated,
whereas the range below it is virtually empty. This means
that, independent of the depth of the ritard, curvatures below
q = 4 (approximately the curvature displayed in the left plot
of figure 3) are very uncommon.

The distribution of the symbols indicate that, even if the
data points of some pieces overlap, they are clearly clustered
according to piece. For example, the performances of Op.
15 nr. 2, are all located in the lower ranges of w and q (deep
and gradual ritards), whereas those of Op. 27 nr. 2 are all in
the higher ranges (shallow and sudden ritards).

Another notable aspect of the results is that the ritards of
Op. 48 nr. 1 rit. 2 (except for one, by Leonskaja) are played
with various depths (w), but always with low curvature (q).

Figure 5 shows the same data, but labeled according to
pianist. In this case clustering is less apparent from the
plot. In part this may be due to the amount of different pi-
anists (and thus symbols) displayed in the figure. However,
since the data shows a considerable clustering along piece,
a strong clustering along pianists is not to be expected. Still,
upon more detailed inspection, the w-q plane conveys some
differences between pianists.

Firstly, some pianists tend to concentrate in distinct areas
of the w-q plane. This is the case for Leonskaja and Vasary.
Their performances are displayed jointly in figure 6. Note
that the pianists are almost separable based on their w and q
coordinates.

As a second example of differences between pianists,
consider the performances of Rubinstein and Pollini (fig-
ure 7). Rubinstein’s w-q coordinates span a much larger
part of the plane, suggesting that he plays ritards in a more
diverse ways, whereas Pollini’s coordinates are concentrated
in a smaller area, suggesting a more uniform way of playing
ritards. It is interesting to note that the relative locations of
the pieces are roughly the same for Rubinstein and Pollini.

5 CONCLUSIONS AND FUTURE WORK

In this study we have used a kinematic rubato model [4]
to investigate the performance of final ritards in Chopin’s
Nocturnes, played by 25 pianists. To our knowledge this
is the first application of the model to data gathered from
famous pianists. Studying the value range of model param-
eters that represent the measured ritards, we found that there
is a strong positive correlation between the depth of ritards
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Figure 4. Distribution of rubato model parameter values
over pieces; the size of the symbols is proportional to good-
ness of fit of the parameters to the data

(w) and their curvature (q). In addition, fitted q values are
only sporadically below 4. This contrasts with earlier stud-
ies stating q = 2 and q = 3 as plausible settings [4, 7, 11].

Furthermore, ritards of the same piece by different pi-
anists tend to be concentrated in the w-q plane, suggesting
that the musical material being played is an important fac-
tor in the determination of the depth and curvature of the
ritard. Although in general the model parameters are not
discriminative for pianists, in some cases the differences in
the parameter ranges for individual pianists are consider-
able. In order to make more decisive claims about pianist-
specific differences however, more performances per pianist
are needed.

An important issue that we have not addressed in this pa-
per is that in many cases the structure of the ritards are more
complex than the model can accommodate. More specifi-
cally, the measured tempo data in addition to a simple tempo
decrease often shows internal structure that seems to be re-
lated to rhythmical patterns or motivic grouping in the mu-
sic. This affects the goodness-of-fit of the model, and shows
the need for a more elaborate modeling approach, either by
using more sophisticated models (such as the one proposed
by [6]), or by an analysis of the residual information after
the model has been fitted.

Figure 5. Distribution of rubato model parameter values
over pianists; the size of the symbols is proportional to
goodness of fit of the parameters to the data
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ABSTRACT

PV Stoch is a phase vocoder (PV) unit generator (UGen)
for SuperCollider. Its objective is the exploration of meth-
ods used in “non-standard synthesis”, especially in Dynamic
Stochastic Synthesis (Xenakis), in another domain. In con-
trast to their original conception, the methods are applied
in the frequency domain. This paper discusses some of the
compositional motivations and considerations behind the ap-
proach, it gives a description of the actual synthesis method
and its implementation, as well as a summary of the results
and conclusions drawn.

1 INTRODUCTION

PV Stoch is a generator for frequency domain stochastic syn-
thesis. After having worked at the generalization of “non-
standard” synthesis[4], the development of PV Stoch was
driven by an interest in extending stochastic synthesis; an
interest in testing the transferability of its principle workings
and reapply them in another area, the frequency domain. In
this paper, we will discuss the first result of this investiga-
tion.

1.1 Transferability

Iannis Xenakis used stochastic functions for the generation
of sound after having used them on a higher-level before.
They have been compositional tools to him. The step to syn-
thesize the sounds themselves using probabilities, as well as
the introduction of them in musical composition itself, fol-
low the belief that a method which has successfully been
employed on one level or one domain may successfully be
transferred to another.

Any theory or solution given on one level can
be assigned to the solution of problems of an-
other level. Thus the solutions in macrocom-
position (programmed stochastic mechanisms)
can engender simpler and more powerful new
perspectives in the shaping of microsounds.
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1.2 Overview

Firstly, the synthesis method itself is described. The indi-
vidual parameters are presented, as well as brief descrip-
tion of their aural effects. It shall be noted that the descrip-
tions are somewhat simplified and most of all, the control
parametrization is not congruent with their multi-layered
perception. Although, the perceptible effects of each of the
parameters is briefly addressed, their inter-dependencies and
trans-active nature is far too complex to be properly outlined
here.

Subsequently, we will give attention to PV Stoch’s rela-
tion to the “non-standard” synthesis approaches and thereby
place it in a historical and theoretical context. Although
PV Stoch does not fulfill all the criteria to be classified as
“non-standard”, we are trying to demonstrate that it does
indeed comply with and even extend some fundamental no-
tions present in these approaches.

Furthermore, some of the challenges and features we have
encountered in the practical work with the generator are dis-
cussed by means of the description of a 96-channel compo-
sition by the author which was realized exclusively with PV

Stoch.

2 IMPLEMENTATION

PV Stoch is a phase vocoder UGen for SuperCollider (J.
McCartney). SuperCollider features a robust and efficient
framework for the design of frequency domain operators.
As the development of PV Stoch has been a rather exper-
imental investigation, SuperCollider’s flexibility and real-
time controllability proved to be crucial. The implemen-
tation framework is straight forward and the UGen can be
combined with a variety of already existing UGens and con-
trol mechanisms.

PV Stoch takes the following parameters, which are ex-
plained below. Except of nBps and lambda, which only
have effect during the initialization, all parameters are dy-
namically controllable:

2.1 Basic Functionality

PV Stoch is a frequency domain stochastic synthesis gener-
ator. Although, it operates on a FFT buffer, it does not pro-
cess an analyzed sound, but rather synthesizes sound with-
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PV_Stoch(buffer, nBps, lambda,
phaseSwitch, specDec,
interpBase, range,
offset, deviation)

Figure 1. The parameters of PV Stoch

out input source. 1 The created spectra have an envelope, or
spectral contour, which is constructed of interpolated break-
points. The positions of these breakpoints deviates from
frame to frame, as the time domain breakpoints deviate from
cycle to cycle in Xenakis’s Dynamic Stochastic Synthesis.

When the UGen is initialized, it generates an initial spec-
tral envelope. The distribution of the breakpoints follows
controllable probabilistic laws – an exponential random dis-
tribution – and the interpolation function may vary over time.
Frame by frame the positions of the breakpoints, and thereby
the spectral shape, deviate. The amount of deviation is dy-
namically controllable. The created spectrum can also be
dynamically frequency shifted or stretched, which are famil-
iar frequency domain techniques. Furthermore, the phase
spectrum generation has three states and it can be interpo-
lated between them.

2.2 The Envelope

The initial envelope has a big effect on the resulting sound.
Initially, its shape is determined by three parameters: the
number of breakpoints (nBps), a random variable control-
ling the spread of an exponential random distribution which
determines the horizontal (frequency) position of the break-
points (lambda), and the base of the interpolation function
(interpBase). If the base is 1, the interpolation is linear, if it
is bigger or smaller than 1, the interpolation is exponential,
resulting in concave and convex curves respectively.

A higher number of breakpoints (nBps > 20) results
in more defined and more complex spectra, a lower num-
ber creates sounds similar to more simply filtered noise. If
lambda is smaller (lambda <= 1.0), the resulting sounds
are more distinguishable and the deviations are clearer, if the
random variable is greater, the sound becomes more static,
the changes less drastic. A more concave interpolation curve
(interpBase < 1.0) articulates the attenuated frequency re-
gions more clearly, whereas more convex shapes create blur-
rier noise regions.

The vertical (amplitude) positions of the breakpoints are
determined by a beta random distribution. Additionally, the
magnitudes of the whole spectrum are also scaled by an ex-
ponentially decreasing shape, whose steepness is variable
(specDec).

1 One exception is the phase, which is explained in 2.5.

Figure 2. Shifting and compressing the created spectrum

2.3 Shifting and Stretching

Figure 2 illustrates two additional – and well known – op-
erations which can have a drastic effect on the sound: fre-
quency shifting and stretching/compressing. As can be seen,
the entire spectral shape can be shifted (offset) along the fre-
quency axis (in both directions) and stretched or compressed
(range). Since the spectral shape is expressed by interpo-
lated breakpoints whose position along the frequency axis
does not need to coincide with the frequency grid imposed
by the frame size, shifting and stretching or compressing
occurs smoothly without making the frequency resolution
audible. The shifting and stretching is similar to techniques
presented by among others Trevor Wishart[8]. Although,
Wishart’s approach is regarded as ”standard” synthesis, it is
surely a compositionally motivated approach to sound syn-
thesis.

2.4 Deviation

Figure 3 shows the deviation principle. The breakpoints de-
viate frame per frame from their previous position by a ran-
dom amount, the maximum of which is controlled by the
parameter deviation. Thus, similar to Dynamic Stochas-
tic Synthesis’, the breakpoints undergo random walks, how-
ever, only in their vertical position (amplitude).

2.5 Dealing with the Phase

There are three basic settings for the phase. It can be inter-
polated between them. The phases can be set zero, in which
case the results are closer to additive synthesis using sine
waves, the phase values can be generated randomly, which
creates sounds closer to filtered noise, or they can be de-
rived from an input source. Although PV Stoch has not been
designed to process analyzed input sources, this phase set-
ting was introduced in order to add “articulation” stemming
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Figure 3. The deviation of breakpoints in two successive
frames

from another source. It was primarily used with frequency
modulated impulses.

3 PV STOCH AS “NON-STANDARD” SYNTHESIS

The starting points for the development of PV Stoch have
been the so-called “non-standard” sound synthesis[6] ap-
proaches, especially Iannis Xenakis’s Dynamic Stochastic
Synthesis. The systems subsumed under the term “non-
standard” have in common that they do not adhere to any
superordinate acoustic models. 2 Instead, the models of
sound are derived from compositional models. Sound syn-
thesis is understood as the development of processes orga-
nizing the low-level units, as “microtemporal compositional

processes.”[3] PV Stoch takes up this idea of deriving higher
level structural properties from the description of lower level
processes. Here, the distinction between sound and music is
blurred.

For different reasons, however, the “non-standard” ap-
proaches rejected the frequency domain. Xenakis heavily
criticized the use of harmonic analysis for the synthesis of
sound. The results he deemed uninteresting, the approach
“inadequate”. He ascribed the problems to the “synthesis
by finite juxtaposed elements”-principle. “It is as though
we wanted to express a sinuous mountain silhouette by us-
ing portions of circles”[9], he writes. Curiously, Xenakis’s
UPIC system is based on the very principle he had been crit-
icizing so vehemently, it is a form of additive synthesis.

Perhaps, due to its mathematical nature and popularity
among the more simulating sound synthesis methods, the
frequency domain was considered inappropriate for a uniquely
digital music. It seemed to be a concept which was not very
well suited for answering the question, “what means of ex-
pression are idiomatic to computers?”[7] For Xenakis, the
reason for his rejection may rather have been his associa-

2 Oddly, the time domain is usually not considered an acoustic model in
the descriptions of “non-standard” synthesis.

tion of additive synthesis with the electronic music of the
Cologne studio.

In contrast to the lion share of the research done in sound
synthesis, the “non-standard” approaches are truly experi-
mental. The interest does not lie in “trying to reconstruct
a sound based on analytic data”, but in “composing sound
using musical procedures.”[1] They can be seen as explo-
rations of compositional representations of sound. In Koenig’s
SSP, amplitude and time values are elevated to the level of
musical unit elements. Surely, problems arise from that,
because their treatment “would require parameters to have
a recognizable identity”[2] PV Stoch continues to ask the
question “what is the minimum of logical constraints nec-
essary for the construction of a musical process”[9], but it
changes the underlying form of representation, also in hope
of creating elements with a more recognizable identity.

In fact, the so-called “non-standard” sound synthesis ap-
proaches are all characterized by the use of concepts which
are initially alien to the description of sound. With SSP,
for example, G.M. Koenig uses methods which he had de-
veloped for instrumental composition for the structuring of
audio sample values. Similarly, Paul Berg’s programs ASP
and PILE derive musical and sonic relationships from in-
structions present in programs for numerical computation.

There is, thus, an element of transfer, of reapplication, in
“non-standard” synthesis. The sound organizing principles
arise from a compositional interest, the compositional idea
is embodied in the ‘sound material’, it is not imposed on it.

In this line of thought, PV Stoch can be seen as an attempt
at creating frequency domain “non-standard” synthesis. Al-
though, this may stand very much in contrast to the rejection
of superordinate acoustic models, it follows Xenakis’s idea
of transferability of concepts.

Instead of aiming at the (re)creation of specific sounds, it
is rather a search for the remains of an organization princi-
ple, for the traces the prinicple may leave in the sound and
through another representation.

4 AN APPLICATION: SPACE STUDY 1

Space Study 1: Order From Noise is a fixed medium (tape)
piece for 96 independent channels which was composed by
the author in 2009. For the sound production PV Stoch was
used exclusively. Due to the immense amount of data and
coordination necessary for the independent composition of
96 tracks, it became unavoidable to automate many pro-
cesses in the production of the piece. A consequence of
the automation was the necessity of clear distinctions, of
parametric configurations on the one hand and strategies of
transitions and transformations of the other hand.

The piece consists of four sections which undergo a sim-
ilar macro-level development, there can be seen as variants
of a common higher-level description. For the most part,

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 181



the synthesis settings are the variable element among the
sections. The four sections are briefly described:

1. Impulses whose frequencies follow exponential curves,
and ranging from 1 to 100 Hz thus creating rhythm
and pitch, serve as the input for the phase values. PV

Stoch initially creates ”resonances” and gradually the
phases become more random, the impulses are thus
replaced by noise and the ”resonances” become the
central sound itself.

2. The phases alternate between noise, impulses, and zero,
thus creating clearly distinguishable types of events.
Instead of gradual change and slow transitions, the
different timbres are clearly opposed to each other.

3. Blocks of quickly deviating bursts form gestural units.
The deviation is high, lambda is low.

4. Finally, the phases are set to zero. The section is
rather soft in volume and the spectra act as clusters,
slowly shifted in frequency and space.

Each of the sections creates its own timbre space. When
the phases are derived from impulses, the generator creates
”resonances”, when it is random, the deviation is high, and
lambda is low, the random walks are most audible and the
output strongly resembles time-domain stochastic synthesis.
Since, all the timbre states are outcomes of the same pro-
cess, they can easily be related to each other.

5 FURTHER WORK

Peter Hoffmann writes about Xenakis’s GENDYN:

The key idea of stochastic synthesis is its non-
linear waveshaping, where the waveshaping func-
tion changes stochastically from period to pe-
riod. Consequently, it is not the waveform as
such that defines the aural result [...] but rather
the dynamic behavior of its deformation over
time. [5]

PV Stoch behaves similarly. It is not the specific spec-
trum created but rather the way it changes from frame to
frame that determines the aural quality of the result. The
behavior is also what is most controllable. Since the initial
envelope has a big effect on the resulting sound and since
it is not completely predictable from the parameter settings,
several instantiations of the same parametric configurations
can result in a great variety of different sounds. The gener-
ator is thus not very well suited for the purposeful creation
(simulation) of pre-conceived sounds. By controlling de-
viations, “spectral definition”, pitch and noisiness, types of
sounds and types of sonic behaviors can be created.

Several improvements and additions suggest themselves
and need to be tested regarding their musical effectiveness.
The deviation may be further refined. Since the dynamic
behavior of the system is the perceptibly most significant el-
ement, it should be further developed.Similarly to Xenakis’s
models, second order random walks could be included and
the breakpoints could move on the frequency axis as well.
Furthermore, the number of breakpoints should be dynami-
cally variable. The impact of different random distributions
on the various stochastic processes should be investigated.
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ABSTRACT

This paper presents an experimentation of an interactive per-
formance system that enables audience participation in an
improvisational computer music performance. The design
purports an improvisation tool and a mechanism by involv-
ing collective mobile interfaces. It also provides a design of
an adaptive control module in parts of the system. Design-
ing a collaborative interface for an easy to use and easy to
control everyday-life communication tool allows for an au-
dience to become more familiar with the collaboration pro-
cess and experience a way of making music with a mobile
device. The role of the audience is critical, not only for the
design process of the system, but also for the experience of
such experimental music.

1 INTRODUCTION

Mobile interfaces aid the participatory augmentation in col-
laborative computer music performances. They do not only
make use of the technology but also provide an opportu-
nity to emphasize the role of social communication and its
relationship to interaction in human actions and reactions
towards music.

Collaborative music making requires event participation
in a musical context and it includes all aspects of human mu-
sical interaction - voluntary and involuntary actions [1, 2].
Voluntary actions involve participants consciously forming
decisions about musical activity, both in listening and play-
ing modes. Some human actions on the other hand, are per-
formed without conscious comprehension, and it can be ar-
gued that it is hard to draw the line between voluntary and
involuntary actions, especially in an activity like music mak-
ing. In music, these actions result in exchanging musical
events and gestures, which in turn bring about a shared in-
teraction and experience framework.
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The level of interaction in a music performance can be es-
timated by whether the voluntary actions take an active role
or they are reduced to a passive role of just being a member
of the audience. In the context of experience design, inter-
activity is comprised of many attributes, such as feedback,
control, creativity, adaptivity, productivity, communications
and conversational experiences [3]. These attributes draw
the line from low-level to high-level interaction in the inter-
activity spectra. Interactive performance systems can enable
a high level of interaction by providing new practices for
voluntary actions in order to achieve a high level of feed-
back, communication and audience control in a computer
music performance. Creativity and productivity achieved in
the moment of participation and the adaptive ability of the
interactive system will also increase the level of interaction
during the performance. This will result in a shared collec-
tive musical experience and enhance musical satisfaction.

This paper introduces the current state of experimenta-
tion of the Control Augmented Adaptive System for Audi-

ence Participation (CAASAP), which is a part of the strate-
gies developed for a collective mobile music performance.
CAASAP is a facilitator of dynamic social interaction, con-
trolling group communication and its relation to the impro-
visation of music. The core novelty of the system is, that
it cumulates the participants’ control-data in a centralized
network and grounds it as a source to generate overall con-
trol parameters for improvised music. Figure I illustrates the
ideas for the performance modules and interaction model of
the system. In the following sections, the overview of the
current work done in developing strategies for system mod-
ules is presented and the interface and adaptive module plan
of action are introduced in detail. Paper concludes with a
presentation of outcomes and indicates the future develop-
ment of the CAASAP system.

2 BACKGROUND IN COLLECTIVE MOBILE
MUSIC PERFORMANCES

CAASAP can be categorized as a small-scale system based
on Weinberg’s taxonomy [4]. Mobile collective interfaces
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Figure 1. Modular structure of interaction in CAASAP performances.

give more possibilities to increase the amount of partici-
pants in collaborative music performances. However, de-
signing such a system to include audience participation re-
quires bringing together different technical platforms and
managing the complexity of their integration. In literature,
the collaborative, improvisatory and technological aspects
of mobile music performances are introduced as alternative
approaches for this integration in mobile music systems.

Golan Levin’s mobile music piece Dialtones (A Telesym-

phony) (2001) 1 is a large-scale collaborative performance
that brings forth a different approach to the performative
role of the audience. Low-level interaction achieved in terms
of decisions made by the audience; however, using mobile
phones as means of musical instruments, by hacking the di-
altones of the audience’s mobile phones and performing a
pre-composed piece by ringing and dialing, is a remarkable
event for the use of mobile devices in musical contribution.

A mobile phone, being a significant communication tool
for the majority of people, gives the opportunity to interface
its everyday-life practice for a collaborative musical experi-
ence. Call in the Dark Noise (2006) is a performance that
provided the audience with a responsive environment for
participating in an act of musical improvisation [1]. In this
performance, the interactive performance system allowed
the audience to use their mobiles phones as a musical in-
strument by sending SMS messages. The interactive sys-
tem altered SMS messages into sound structures and created
respond text messages. Using an everyday communication
medium as a musical instrument can make the audience feel
comfortable about participation and improvisation by send-
ing SMS messages can create an exciting framework for col-
laborative music making. Today, the technology of mobile
devices can support more possibilities than only receiving
and responding to SMS messages during a live performance.

As the technological aspects are developed further, new
capabilities and tools in mobile phone technologies have be-
gun to provide alternative feedback mechanisms. Tapping
on a touch screen, tilting the mobile device, multi-touch in-
terfaces change the way we interact with a mobile phone.
Moreover, they create a new gestural dictionary within the

1 http://www.flong.com/

context of interactive gestures 2 . Nokia N-series phones,
Apple iPhone and iPod touch mobile devices are the lead-
ing new alternatives that support these types of gestures.
Interfacing new mobile functions as expressive musical in-
strument is an interesting prospect. Mobile devices provide
alternative possibilities for experimenting with new music
making processes. MoPhO is the Mobile Phone Orches-
tra of CCRMA using mobile phones as musical instruments
in a larger scale performance [5]. They are using not only
new feedback mechanisms that come with the new series
of mobile phones, but they are also using the advantage of
enriched computational possibilities. However, the compu-
tational possibilities for audio synthesis in mobile phones
are still limited compared to other portable devices.

MoPhO compositions are performed through perform-
ers’ actions on mobile phones guided by the conductor of
the performance. These compositions can be interpreted as
freely composed pieces. Conducted improvisation in mu-
sic or the performance of pre-composed pieces might limit
the type of free communication that could be achieved in
a free or structured improvisation performance. The over-
all control structure in CAASAP does not scale down par-
ticipants’ collective activities as the performers of a pre-
composed piece, instead, it supports them developing their
musical ideas and activities in a real-time performance.

Malleable Mobile Music Engine in a broader scope shows
similarities with CAASAP as it serves as a platform for col-
laborative music making through mobile wireless networks
[6]. Malleable Music encourages participatory activity by
facilitating a system that detects involuntary gestures and the
remote geographic location of the participants. In contrast,
CAASAP is a facilitator for audience participation where
the improvised music content is generated through the vol-
untary actions of the participants.

3 OVERVIEW OF CAASAP

CAASAP is based on independently developed modules;
their interaction forms the characteristics of the interactive
system and its performance. The system consists of inter-
face, registration, adaptive control, and audio & visual syn-

2 http://intertactivegestures.com
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Figure 2. Block diagram of the system modules.

thesis modules. In addition to receiving and collecting con-
trol parameters, these modules also analyze control-data and
perform audiovisual synthesis allowing these actions to be
interfaced within a mobile device.

The modular structure of the system requires sequenced
action of particular modules. Figure 2 shows the intercon-
nected system modules. Registration module represents the
initial act that alters participation into action. This module
is in charge of creating a local network and maintaining the
requirements for real-time connections of the participants.
It includes assigning the server IP for participants to access
and join the local network. When all the participants are
connected, then the registration module uploads the inter-
face module to the participants’ mobile devices. The current
version of the registration and interface modules are enabled
by mrmr technology 3 . Mrmr is an ongoing research project
to develop a standardized set of protocols and syntax con-
ventions to control live installations and multimedia perfor-
mances. This technology, based on the Open Sound Control
(OSC) and other open standards, makes it possible to use
mobile devices as controllers in audio-visual performances.

Interface module is based on the design of a collective
mobile interface that enables interactive gestures and sends
parameter changes to the audio & visual synthesis module.
This module modifies main control parameters, including
instrument’s ID number, volume level, direction of the au-
dio stream, reverb level, noise level and text messages. In-
terface module also sends the state changes of participants’
interactive gestures to the adaptive control module for fur-
ther analysis of the control-data.

The adaptive control module will analyze the control-
data and it will generate overall control parameters for the
audio synthesis module. As a result of the different modes
of the participants’ musical activities, this module will gen-
erate alternative improvisation models during the collective
improvisation performance. Section 5 introduces the anal-
ysis and generative strategies that will be implemented in
adaptive control module in detail.

Audio & visual synthesis module receives control param-
eters and maps them onto control values of the digital instru-
ments. The changes of the direction of the audio stream will
be also used as visualized representation of the participants’
location in the performance space. Three-axis (x,y,z) ac-

3 http://poly.share.dj/projects/#mrmr

celerometer’s control data will be visualized as three circles
for each participant [7]. The rotation speed of each circle
will represent the participant’s speed of the action on the
particular axis.

4 INTERFACES IN CAASAP

In the course of the development of CAASAP, several avail-
able technologies have been studied and practiced. Figure
3 illustrates the UI every participant operates on. The inter-
face is made by using mrmr protocol and tools. The four
push-buttons on the top enable/disable up to four shared in-
struments (see section ”Audio Synthesis” for more discus-
sion). At this instant, the first instrument is selected and
the values for reverb, noise and volume parameters are as-
signed. The state changes of the interface are sent through
OSC protocol. The current version of mrmr technology sup-
ports one-way OSC communication, which does not enable
the system to send feedback based on state changes to the
interface module. On the other hand, this interface module
supports text message affordance, which opens up another
communication channel for participants and possible sonifi-
cation strategies for the audio synthesis module.

In the process of developing the interface module, RjDj
application 4 has also been experimented with. RjDj is a
technology that uses sensory input to generate and process
embedded scenes for iPhone and other mobile devices. RjDj
technology enables Pure Data 5 for processing live data taken
in mobile devices. The overall system architecture of the
CAASAP has been developed by using the Pure Data en-
vironment; therefore, RjDj gives more possibilities to inte-
grate control-data with other CAASAP modules. Accelerom-
eter and touch screen sensor data of the mobile device is
available and can be accessed with RjDj application. More-
over, it takes in the sensory input from microphone device,
which makes it possible to process the audio as a sensory
data in mobile devices. In order to improve CAASAP per-
formance, some part of the analyzes can be embedded in
mobile devices through RjDj application and resulted event
data can be transfered for further use in adaptive and audio
& visual modules. At the moment RjDj application also
only supports one-way OSC data stream; however when

4 http://rjdj.me/
5 http://www.puredata.info/
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Figure 3. The interface module enabled on mrmr technol-
ogy.

RjDj will support OSC stream in both directions, then it will
be possible to control audio device features of the mobile de-
vices in more advanced level and implement new features in
CAASAP.

5 CONTROL PARAMETERS FOR OVERALL
IMPROVISATION

Improvisation practices lead participants to experience a way
of music making, which takes form in the act of perform-
ing in a collaborative environment. In this participation, ex-
changed gestures play an important role together with the
exchanged musical events and together they form the par-
ticipant’s musical activity. CAASAP will collect these ex-
changed events similar to the way that the control-data of the
interactive gestures will be received. Accelerometer control-
data of the participants will be analyzed in order to generate
certain improvisation models to negotiate with the partici-
pants, moreover to support or provoke them to create new
musical ideas within the group dynamics of the collective
improvisation process. The overall improvisation parame-
ters will be generated in this process to control the group
communication, aiming to balance the flow of the impro-
visation; however there will be no pre-defined structure as
there is in a pre-composed music piece.

The current strategies for analysis of the control-data is
designed focusing on the performative aspects of music in
the performance space. This led the design ideas to involve
adaptive features based on the group dynamics of the col-
lective improvisation. Concentrating more on the group dy-
namics and adaptability, swarm patterns came forward as a
model for generating overall improvisation music materials

as swarms in real-life organize themselves flock patterns.
The method of the control-data analyses is also struc-

tured on the basic rules that are governing the interactions
between neighboring particles in swarm; 1) if apart, move

closer (cohesion), 2) if too close move apart (separation),

3) attempt to match velocities (alignment) [8]. The analysis
structure will determine whether the participants’ gestures
move closer, move apart or attempt to match their veloci-
ties. Resulting rule will make the decision in adaptive con-
trol module and it will generate further parameters for audio
synthesis. If the gestures will attempt to move closer or fur-
ther apart than the system’s thresholds, the overall control
parameters will be generated to respond as negative feed-
back to the collective improvisation. If the velocities of the
gestures will attempt to match, then the module will respond
as positive feedback. David Borgo points out that posi-
tive feedback forms the recruitment and reinforcement ac-
tivities and negative feedback keeps the balance by causing
unexpected occurrences in improvisation [9]. In addition
to positive and negative feedback, CAASAP will determine
random choices as well not to result too much regular and
repetitive moods for the improvisation. Resulting overall
improvisation will be formed based on direct and indirect
interactions; interaction happens among the individuals as
participants and the group as a whole [9].

5.1 Audio Synthesis

The audio synthesis module in CAASAP consists of two dif-
ferent parts. First, the system responds to parameter changes
received from interface module and maps them onto a num-
ber of musical textures. Second, the audio synthesis mod-
ule will respond directly to the adaptive module parameters
based on the analyzes of the control-data. The sound-action
strategy in audio synthesis is focusing on main action as tilt

to change state. Participant’s tilt to change state, accelerom-
eter sensor data, determines the similar control features of
each instrument. Participant can choose, switch, add and
control four different instruments. Volume, reverb and noise
levels can be set through the interface module.

The first instrument, Low3P is based on the combination
of three signal-controlled lowpass modules. In each mod-
ule the resonance frequency is set by continuos sinusoidal
waves, which bring changes in the bandwidth of the cut-
off frequencies. Accelerometer data is mapped to control
the frequency values of the sawtooth and sinusoidal waves
that determine cutoff frequencies. The tilt movement also
changes the width of the resonant peak. The gain of reso-
nance frequency results in more dramatic texture when all
three modules are activated within the equivalent low fre-
quency scale.

OscMood is the second instrument and it is based on
the basic frequency modulation where the carrier audio sig-
nals and modulation frequencies are controlled through ac-
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celerometer sensor data. The frequency range is set on a
very limited scale and this gives more weight to the modu-
lation frequencies to affect on resulted sounds. BeatMove is
an instrument that creates dynamic rhythmic patterns through
pulses generated by granular samples from a wavetable. The
speed and the force values of the accelerometer data cre-
ates the beat-move. Sound manipulation performed with
the fourth instrument, WaveStretch, is based on the playback
use of the sampled sound source and overlap mixing of the
wavetable reading points with sawtooth wave oscillator. The
gain of the oscillator is controlled by the amount of samples
in the sound file and changes in the noise texture.

The instruments, Swarm1 and Swarm2 will be controlled
through the adaptive control module. These instruments will
apply resulted parameter changes to the transformations of
sampled sound materials, using them as a source for the syn-
thesis of a new sound output. The transformation of the
sound will use a polyphonic synthesis patch with four differ-
ent parameters. Pitch, amplitude, duration and starting point
in milliseconds will be all modified by variations. Swarm1

and Swarm2 will generate a class of sounds with multiple
sonic gradations and variants.

5.2 VBAP - Direction and Communication

The spatial sound feature in CAASAP will make it possi-
ble to transform and perceive generated sounds from various
directions based on speaker locations in the actual perfor-
mance space. Receiving audio stream in different directions
during a collective improvisation performance can cause al-
ternative communication possibilities among the participants
and it can change the flow of improvisation. CAASAP will
use VBAP technology to control the direction of the audio
stream in the performance [10].

5.3 Visual Representation of the Sonic Location

Spatial sound also gives possibilities to represent partici-
pant’s location through the decisions made for the audio
streaming directions in the performance. CAASAP will vi-
sualize sonic movement and the interactive gestures of the
performers. Projecting these visual representations will sup-
port participants to recognize their sounds and their act of
control within the overall improvisation.

6 AUDIENCE-ORIENTED DESIGN

CAASAP aims to develop a set of evaluation methods in or-
der to study and examine the interactive system’s features
and its engagement with the audience reflecting its partic-
ipatory attributes. System design strategies will be devel-
oped further based on the audience experiences. Evaluation
methods will involve observations, interviews and question-
naires, which will be designed in order to achieve a cer-

tain level of comparison and assessment of the effective-
ness of sound-action-gesture strategies and to reflect on the
CAASAP research arguments.

CAASAP claims that besides exchanged musical events
in a collaborative music performance, musical activity of
the participants can be observed through participants’ ex-
changed gestures in the moment of playing. Sound and ges-
tures can be both regarded as an important mode of inter-
action in a collaborative music making process. This is a
generic hypothesis of musical interaction that CAASAP re-
search accentuates. The validity of this hypothesis is sup-
ported by a recent study [15] that categorizes the move-
ments of musicians as sound-producing, ancillary, sound-
accompanying and communicative that results in the music-
related body movements.

CAASAP also argues that the dynamic social interaction
in real-time performances challenges the traditional roles in
music by changing the role of the audience to that of a per-
former of improvised music. The main building block of the
modular structure of interaction in CAASAP research (Fig-
ure 1) is necessary and sufficient for wide-ranging scenar-
ios in defining social roles and social behavior in collective
music performances. Understanding the social behavior in
a collective music making process will develop the adap-
tive ability of the CAASAP interactive systems, which will
support the creativity and productivity achieved during the
participation. This will result in a shared collective musical
experience. Support for this hypothesis comes from the on-
going fundamental research issues in theoretical approaches
to social behavior in music and in analysis of social roles in
performers [11].

CAASAP research strongly claims that the level of inter-
action in music performances will be increased by providing
audience control, feedback and communication blocks in
social interaction in music. This hypothesis is supported by
specifically, in the context of experience and interaction de-
sign [3]. While mediated music making and listening is usu-
ally concerned as a passive, non-interactive and non-social
experience, CAASAP will facilitate audience participation
by providing finely balanced mechanisms for dynamic so-
cial interaction.

7 CONCLUSION

Collective improvisation enriches the musical experience and
audience participation enhances the pleasure achieved in a
musical activity. Interactive performance systems can fa-
cilitate audience participation by providing finely balanced
mechanisms for dynamic social interaction that expands in
event participation. These include accessible and easy use

- easy control tools that give audience control over creative
acts and allow them to explore musical experience. Con-
trolling group communication is another mechanism that
can provide a flow in the event. This paper focuses on the
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modular form of these mechanisms in the CAASAP sys-
tem and explicates the strategies in developing the interface
and adaptive modules. In this process, enabled technologies,
such as mrmr and RjDj, extended the research ideas in the
study of interactive gestures with mobile devices.

Computer-supported collaborative work has been a tradi-
tional focus in human-computer interaction (HCI), and col-
laborative music making is perhaps one of the most interest-
ing application domain. However, applying HCI method-
ologies directly to the interactive art [12] and computer mu-
sic [13] could be problematic, as HCI relies on a task-based
paradigms and graphical stimulus & response model (e.g.,
WIMP), whereas interactive art and music systems are based
on continuous interaction and multisensory feedback. Espe-
cially, the special nature of musical interaction by the use of
gestures requires special care for grounding our design de-
cisions [14, 15]. In the next phases of the system it is apt to
consider HCI methodologies such as hierarchical task anal-
ysis and interface design, as informed by interaction design
[16]. In a complementary task, there will be more advanced
feature analysis of audience voluntary actions in order to
broaden the strategies for mapping gestures to musical out-
put in the CAASAP system.

During a collective improvisation, participants discover
expressiveness in themselves, which is supported by the easy
to use interfaces. In this process of investigation and explo-
ration, the audience can learn more and without difficulty.
Therefore, alternative levels of learning curves will be im-
plemented in CAASAP in order to reach a wider musical
expressivity, varying from instant gratification to virtuosity.

The modular structure will help to extend the amount of
participants in the performance and develop interface mod-
ules that will not be dependent on a certain type of mobile
device as well. CAASAP is in early development stages
aiming to involve audience experiences in the process of its
development by organizing more collective performances.
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ABSTRACT 

Novel Musical Applications and Design Techniques for 

the Gametrak tethered spatial positioning controller are 

described. Individual musical instrument controllers and 

large-scale musical and multimedia applications are 

discussed. 

1. INTRODUCTION 

Although hundreds of new controllers have been explored 

for musical applications, very few have emerged as 

sufficiently flexible and general to serve as platform 

technologies for a wide variety of musical instruments and 

interactions. One successful controller that is already 

widely used in musical applications is the digitizing tablet 

[15, 16]. In this paper we show by exploring 

representative examples how the Gametrak controller is 

emerging as another viable platform technology. 

The Gametrak spatial position controller is an 

increasingly popular platform for experimental musical 

controllers, math and science manipulatives, large scale 

interactive installations and as a playful tangible gaming 

interface that promotes inter-generational creative play 

and discovery. Although largely displaced in its original 

market as a gaming controller by the Nintendo Wii, the 

Gametrak is attractive for music controller experiments 

and performance-quality instruments because of its 

unusually simple, cheap implementation and the ease with 

which it can be customized. 

After introducing the peculiarities of the Gametrak and 

comparing it to related spatial position sensing systems we 

survey musical applications of the device and some of the 

basic design techniques discovered by the authors. The 

short paper format cannot do justice to the depth and 

breadth of such applications, so projects have been 

selected based on whether they represent unusual or 

surprising uses of the controller or because they represent 

fruitful starting points for future explorations. More detail 

on each project can be obtained from the web links 

included in the bibliography.  

2. The Gametrak: a versatile tethered position 

sensing system 

The Gametrak system was invented in 2000 by Elliot 

Myers [8]. He arrived at the basic concept while playing 

with a retractable washing line in a hotel. By placing 

potentiometers on a worm gear driven by the hubs of two 

retractable nylon tethers, the distance of the extension of 

the chords can be estimated. Passing the chords through 

the knobs of a pair of gaming joysticks supplies two 

orthogonal angle estimates for each.  

This approach is cheap to implement but requires a 

careful mechanical design to achieve the desired 

precision, avoid tangling and to minimize the impact to 

the user of the pull of the tether. The first problem is 
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solved by a series of smooth guiding tubes and by a clean 

path for the nylon chords. The basic ergonomic design 

was influenced by gaming applications involving the 

swinging of clubs (golf), bats (baseball) bowling or skiing. 

The two joysticks and tethered sensors are housed in a 

weighted box that is normally placed on the ground. 

Nylon clips are provided that can be attached to 

accompanying gloves. The unit also includes a plug-in 

footswitch. 

 

 

Figure 1 Gametrak and Footswitch 

 

The control electronics implements serial protocols for 

USB using HID protocols for computers, a specialized 

USB protocol for PS2 and there is also support for XBOX. 

The choice of format is made by shorting solder pads 

under the board making it straightforward to change a 

Gametrak to a different platform if required. 

Perhaps the most important single factor to its recent 

popularity as an experimental music controller is the low 

cost of the device that resulted when thousands of 

Gametraks entered the surplus wholesale channel and 

became available for between US$8 and US$20 at internet 

retailers.  

The official retail price for Gametrak games bundles is 

listed as US$70 but MadCatz the current owner of the 

technology has discontinued the device. Unlike other 

interesting discontinued controllers such as the P5 glove 

and the fingerworks iGesture, the Gametrak will be 

readily available for many years as over 300,000 have 

been sold. Note that it is easy to build comparable 3-axis 

position sensing from readily available string pots (from 

Celesco or Penny and Giles, for example) and joysticks. 

3. Comparison with other Spatial Positioning 

Technologies 

The Gametrak occupies a unique niche in the rich 

ecosystem of devices that can be used for 3D spatial 

position sensing [3]. It is by far the cheapest of any 

absolute position-sensing device. The Gametrak has in 

common with 3D time-of-flight cameras and other remote 

optical sensing techniques of low mass at the point(s) 

being sensed. Most other position sensing devices require 

a wand or small box with associated weight and power 

requirements. Most IR sensing devices such as the Wii 

controller or Buchla Lightning only work reliably indoors. 

GPS on the other hand works poorly indoors and has too 

low resolution for gesture sensing. The Gametrak works 

outside but is not weather proofed for permanent 

installations. The Gametrak, like the Polhemus system, is 

insensitive to most interference in the physical 

environment.  

The major peculiarity of the Gametrak is of course the 

constant pull of the tethers. So although of low mass, each 

tether both constrains the position of objects to be sensed 

(because of tangling) and requires a source of 

counterbalancing force to establish a controlled position. 

In the following applications we will see that much of the 

interesting work with the Gametrak comes from strategies 

for embracing, tackling or defeating the tether. Note that 

the original Gametrak patent describes a haptic feedback 

component to the device where the tether’s response was 

controlled dynamically[8]. 

People have little difficulty compensating for the 

constant pull of the tether because they already master 

comparable interactions, i.e., lifting constant mass limbs 

against the force of gravity; car accelerometer pedal; high-

hat pedals; bent branches and stems; retractable dog 

leashes, key fobs, laptop cables, and vacuum cleaner 

power chords; fishing lines; sailing boat “sheets” and the 

bell ringers “sally,” etc. 

4. Gametrak Design Techniques and Applications 

4.1. Direct mapping: Tethered Theremin  

A straightforward musical application useful for exploring 

calibration, mapping and scaling of Gametrak gestures is a 

Tethered Theremin illustrated in Figure 2. the Gametrak 

gloves are used as originally intended on the hands, with 

one hand controlling pitch on the x-axis (and an optional 

wave-shaping filter on the y-axis) simulating distance 

from a theremin’s upright antenna, and the other hand 

controlling volume based on z-axis extension, simulating 

distance from the theremin’s loop antenna [10, 13]. 
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Figure 2: Tethered Theremin control axes 

4.2.  Counterweighting: Pendaphonics 

In Pendaphonics installations Gametraks are ceiling 

mounted with balls or other object (“Pendaphones”) 

attached to the tethers designed as counterweights to the 

spring-return force of the tether reels and to create 

physical dynamics that are engaging for users [5]. This 

effectively mimics what divers call a “neutral buoyancy” 

and from the users point of view (as for divers and 

astronauts) changes the interaction from counteracting a 

constant force to exercising inertial control. 

 

 

Figure 3. Pendaphone Components with Multiple Users 

 

Each Pendaphone can be raised and lowered between 

0–3 meters in height, and the trajectory of their swings 

directly controls the sounds emanating from a loudspeaker 

mounted above them. Multiple channels of loudspeakers 

are used to spatially distribute the sounds that are 

generated, enhancing the sense of physical immersion in 

the space. The physical setup is designed to be flexible 

and can be adapted to many different exhibition spaces 

and applications. 

 

 

Figure 4x, y, and z. Left x), a Pendaphone bob hanging 

with a projected 3D environment; top right (y), three 

suspended Pendaphones; bottom right (z), a child plucking 

the string while holding the Pendaphone bob steady. 

 

To illustrate the range of applications possible with 

pendaphonics we describe 3 mappings used at the 

Platform4 event. These were all directed towards the 

intuitive investigation of the interface, where exhibition 

visitors activate a soundscape in physical space. Familiar 

metaphors have been used, such as the idea of the 

turntable, where a rhythmical soundtrack is played back.  

4.2.1. Clockwise Rotation 

Clockwise rotation plays the sound forward, and 

counter clockwise rotation plays the soundtrack backward; 

the polar velocity of the swing changes the playback 

speed.  

4.2.2. Percussion Sounds 

Another sound feedback system consisted of percussion 

sounds that were mapped to cue points along the 360 

degrees of the pendulum swing. Every thirty degrees a 

percussion sound was activated. The percussion sound 

changed pitch, depending on how high or low the 

pendulum was positioned in the air, and the audio 

frequencies percussion sound was filtered according to the 

amount of acceleration.  
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4.2.3. Musical Piece 

The third sound feedback system was a musical piece 

composed by Mads Weitling (see http://www.kiloton.dk/). 

It consisted of a pre-composed soundscape, where the 

pendulum movement generated tones that mixed in with 

the soundscape and varied in texture and velocity. 

Other metaphors for Pendaphonics being explored are: 

� • Sound ball improvisation tool [1] 

� • Sound transfers and sound traveling (locally and 

networked), incorporating hanging loudspeakers 

embedded in the bob, providing natural Doppler 

and “Leslie” effects 

� • Diverse ways of throwing and catching sounds 

through physical actions with the pendaphones 

� • Plucking the pendulum strings to set up future 

events or trigger special effects (either sounds or 

visuals) 

� • Detection of user’s direct interaction with bobs 

while the string is motionless, e.g. w/ embedded 

accelerometers 

� • Detection of spatial interaction between two or 

more bobs 

� • Diverse game/play scenarios 

� • Individual instruments versus one collective 

instrument 

� • Physical vs. virtual presence, movement, and 

representation 

4.3.  Pendaphonics + Sound Directivity Control  

The Pendaphonics application of Figure 5 combines a 

Gametrak, an inertial sensor (Wii) and a 120-channel 

programmable directivity loudspeaker array [4]. In one 

application the tether is used to steer narrow sound beams. 

In another striking gestures are captured for a virtual 

swinging gong. These gesture parameters drive sound 

motion and directivity models that are synthesized in real-

time and rendered on the speaker array. 

 

Figure 5: Spherical speaker array radiation pattern control 

4.4. Combining and Duplexing Vertically 

Another way of providing “neutral buoyancy” is shown in 

Figure 6 with two Gametraks (one floor mounted, the 

other ceiling mounted) tethered at the corners of a 

lightweight cube corresponding to the vertices of a 

tetrahedron. This arrangement allows for orientation and 

position to be computed. It also offers an interesting set of 

mechanical resonances to interact with as the cube twists 

independently around its center and this center rotates 

around the axis between the Gametraks. 

 

 

Figure 6: Tethered cube viewed from upper Gametrak 

4.5.  “Gearing” with the Gametrak control space 

The conical bound on the Gametrak measuring region 

means that large spaces require a longer tether and are less 

precisely measured. These constraints suggest using the 

shortest tether that provides a large enough sensing region. 

It also affords mappings that let the user decide in real-

time what range of motion they want to use with the radial 

axis being the gear factor. For example for acquiring 

conducting gestures the Gametrak is installed at waist 

height (on a robust music stand for example) and the axial 

parameters are mapped to the rhythmic gesture analysis. 

Conductors with a flamboyant use of space use long 

tethers, more reserved precise conductors are closer to the 

Gametrak. Note that the distance axis information need 

not be discarded for gesture analysis. It can be used to 

establish, for example, a direction for the conductors’ 

leaning gestures. 

4.6.  Pinned Tether – The tea chest bass 

In addition to the free-plucked tether of the Pendaphone 

stopped-string instruments can be simulated by extending 

a tether, pinning it down and providing an angled 

fingerboard. One application of this idea simulates a tea-

chest or wash-tub bass. 

  

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 192



  

 

 

Figure 7 Gametrak Chordophone 

An analysis of attack events (based on impulses on the 

x- and y-axes) determines whether the musician has 

plucked a string and to what extent the string deviated 

from its average position. 

4.7.  Specialty Tether: Tethertonium 

With a conductive fingerboard and conductive thread 

attached to a tether the footpedal input can be used to 

provide accurate timing of touches on a simulated 

trautonium [14] as shown in Figure 7. 

  

 

Figure 7: Tethertonium 

4.8.  Dividing + Dismantling: Kotrak and Ondestrak  

In some applications the imposed distance between the 

two joysticks is too constraining. This can be easily 

addressed by adding a second Gametrak or by dismantling 

one and reassembling its two sensors at the desired 

distance. The Kotrak can be used to capture the string 

pressing and pulling gestures of Koto players. 

 

 

Figure 8: Kotrak 

 

The Ondestrak [7] takes the dismantling even further as 

one of the two sensors is used with its spring removed. 

This needs to be done carefully because of the energy 

stored in the spring, its sharp edges and the messy 

lubricant.  

The Ondestrak was built to explore a variant of the 

Ondes Martinot variable pitch interface. Instruments 

preceding the Ondes Martinot such as the Hellertion 

[6]and Trautonium [14] provided a combined amplitude 

and continuous pitch control for an untethered hand. The 

Ondestrak is a hybrid form of these instruments. A finger 

drags a ring attached to a loop of chord driving the 

Gametrak sensor without spring. The other sensor 

measures displacement of the board the whole system is 

built on as it is pressed against springs at each end. Note 

that the joysticks provide for a third axis of control as the 

ring is moved away and towards the player. This is 

naturally mapped to timbral parameters.  

Figure 9: the Ondestrak 

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 193



  

 

4.9.  Controller Replacement 

The HID interface using the PC USB configuration is 

“plug and play” using the HID objects in Max/MSP and 

PD and other music synthesis programs. It is common 

practice to rewrap the HID data as OSC messages. It is 

also straightforward to replace the Gametrak 

microcontroller with a wireless transmitting system or 

another interface as illustrated in Figure 10 which shows a 

$25 Microchip USB microcontroller board with uOSC 

[11] to provide a 1000Hz update rate for the data encoded 

directly in OSC. 

 

 

Figure 10: replacing the microcontroller 

 

As well as providing a higher data rate and higher 

resolution samples the uOSC board provides control of 

latency and jitter to reasonable bounds for exacting 

performance applications [12]. Pendaphonics installations 

typically use CUI boards [9] to acquire the data from 2 

pairs of Gametrak sensors. 

5. Conclusion 

Each of the applications presented invites exploration of 

numerous interesting mapping strategies for sound, image 

and motion synthesis. Ultimately development of the 

mappings takes longer than the physical prototyping. The 

Gametrak is a convenient platform to learn about mapping 

strategies and can facilitate rapid “sketching” of user 

interfaces [2] that may ultimately use untethered or 

inertial sensing. 

An important conclusion from our explorations is that 

although the tethers are sometimes a nuisance they often 

create opportunities to more fully engage users in physical 

interactions beyond those originally reflected in 

commercial gaming applications. 
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ABSTRACT

Ecosystem-based generative music is computer-generated
music that uses principles borrowed from evolution and
ecosystem dynamics. These are different from traditional
interactive genetic algorithms in a number of ways. The
possibilities of such an approach can be explored using
multi-agent systems. I discuss the background, motivations
and expectations of ecosystem-based generative music and
describe developments in building a software framework
aimed at facilitating the design of ecosystemic sonic art-
works, with examples of how such a system can be used
creatively.

1 INTRODUCTION

A traditional paradigm of generative and evolutionary mu-
sic is that of the interactive genetic algorithm (IGA), which
is based on the notion that an artist can evolve aestheti-
cally pleasing music by using their aesthetic judgement as
the ‘selective pressure’ in an artificial environment. More
recently, researchers in generative and evolutionary music
have started to broaden their interest to more collective be-
haviours, such as social learning, cultural dynamics, and
niche construction [9], in simulated multi-agent systems
[6, 11, 8]. This approach, which I will refer to generally
as ecosystemic 1 , abandons the goal of exerting direct con-
trol over evolving systems through aesthetic selection, re-
quiring a more complex creative interplay between software
and artist. For example, McCormack [7] has described mod-
elling processes such as niche construction as a kind of cre-
ative design pattern with which an artist can design com-
plex generative dynamics in an exploratory manner. One of
the major challenges in working with multi-agent systems is
that complexity of design rapidly gets in the way of deeper
exploratory investigation. Design patterns address this prob-
lem by helping us to break down and conceptualise systems,
providing general rules that could be applicable to a range

1 Arguably, ecosystem models are a more specific subset of this area.
The term is used here to refer more generally to any set of coevolving in-
terdependent elements.
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of different situations. As such, they reduce the opacity of
complex systems.

The framework discussed here (also see [3]) comple-
ments this software engineering-inspired approach by of-
fering additional ways to reduce the opacity of complex
creative projects, primarily through tools that facilitate the
batch processing and analysis of systems in a range of sce-
narios. Such challenges are already being addressed by
frameworks developed for studying multi-agent systems,
particularly in the social sciences and in artificial life. But
none of these systems have been built to deal with the practi-
cal goals and typical methodologies of artists and musicians
in mind. Multi-agent modelling experiments are of little cre-
ative value if they cannot be successfully transferred to cre-
ative domains, or be used creatively. However, they have the
potential to form the basis for a new approach to works such
as compositions, installations and creative software, due to
the variety of behaviour that multi-agent systems exhibit that
is not seen in traditional software.

This paper begins by discussing the motivations for pur-
suing an ecosystemic approach to artificial evolutionary mu-
sic and art, as compared to existing approaches such as the
IGA. I then describe a framework for developing ecosys-
temic artworks and music, which integrates an experimental
multi-agent modelling environment with a real-time music
environment. Finally, I demonstrate how this framework can
be used to develop ecosystemic sonic artworks: installation
works in which audio is used as the basis for an evolutionary
environment.

2 BACKGROUND, MOTIVATION AND
EXPECTATIONS

Despite moderate successes, the IGA approach to evolution-
ary art falls somewhat short of its original hopes. In princi-
ple, by analogy with natural selection, it promised to pro-
duce complex outputs that are both pleasing to, but beyond
the understanding of the user, that the user wouldn’t have
thought of himself, and perhaps couldn’t even have imag-
ined. In practice, this goal has proven elusive.

These shortcomings can be discussed in terms of the
structure of the space that an IGA user navigates in his
search. Parameterising a generative system in order to make
parts of it evolutionary inherently defines a space – the pa-
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rameter, or genotype, space of the system. This space may
be thought of as a network of points (genotypes) connected
by genetic mutations. The IGA user engages in a blind
and relatively passive process of evaluating and selecting,
which can be represented as a journey through this geno-
type space. Initially, an important question about the space
itself is whether it is structured such that the user can steer
the evolving system towards a certain target. If so, this is a
potentially powerful design tool. For example, even though
the target was pre-specified, it may have other interesting
incidental properties.

A more ambitious expectation for IGA software is that it
should also guide the user in interesting and surprising di-
rections. This prompts a second question about the design of
the genotype space: if interesting and surprising generative
artefacts appear on this journey, will they be positioned en

route to even more interesting and more surprising artefacts?
These questions highlight the importance of the parameteri-
sation of the system itself, suggesting that the art of design-
ing such systems lies in designing genotype spaces that lead
us to interesting places. Little development has been made
in this area, although examples, such as the Neuroevolution
of Adaptive Topologies (NEAT) project [12], have pointed
to ways in which evolutionary lineages could lead in diverse
aesthetic directions. NEAT specifies a procedure for neural
nets to increase in topological complexity during their evo-
lution. Here the evolved entities could be argued to have
accumulated a user’s preferences over time.

The aesthetic selection of computer generated art and
music by individual users is also bound for practical rea-
sons to the simple case where genotypes map directly to
phenotypes that can be treated as isolated units for evalu-
ation. Evolutionary entities with any kind of developmen-
tal process, environmental influence, or interaction between
the individuals within the population, are complex enough
to necessitate a different approach. One solution to this
fitness bottleneck [1] is to employ multiple users as aes-
thetic selectors. Recent research explores this avenue by
borrowing from areas such as social networking technol-
ogy, human computing 2 , and grid computing efforts such
as SETI@Home 3 , in order to find ways to distribute the pro-
cess of selection (e.g. Draves’ Electric Sheep 4 ).

The ecosystem approach attempts to rethink evolution-
ary art by focusing on the design of spaces which embody
coevolutionary processes such as niche construction 5 . In
IGAs, the passivity of users in their interaction with the

2 The use of human brains for data processing, such as in reCAPTCHA

[13]
3 SETI stands for the Search for Extra Terrestrial Intelligence. This

group maintains an ad hoc processing grid of subscribers’ home computers
for the brute-force analysis of cosmic radio data [5].

4 http://electricsheep.org
5 Coevolution typically refers to the mutual influence between the evo-

lution of two species, but can apply to a multitude of interacting evolving
entities, including the set of individuals within a species.

system is at odds with the supposed aesthetic influence
they have over it. Ecosystem models are primarily non-
interactive, but still face many of the same challenges as
the IGA approach: designing evolutionary spaces that lead
‘naturally’ to a diverse array of interesting states.

Nevertheless, sonic ecosystems also have great potential
for interactivity in more or less direct ways. In the inter-
active audio visual installation Eden, McCormack [6] used
audience presence as a resource for a population of evolving
agents, such that agents might evolve to draw the attention
of the audience.

In other forms, interaction with sonic ecosystems could
correspond more closely to the original goals of the IGA
approach. This follows the reasoning that the real world of
artistic and musical creativity itself resembles an ecosystem,
exhibiting heterogeneity, stability, interdependence and the
capacity for the components of the system to influence the
entire system’s future evolution in unpredictable ways. The
value of an artwork or piece of music is strongly tied to its
situatedness in a cultural context, which determines its rel-
evance [10]. If culturally determined relevance is a signif-
icant factor in determining the evaluation of artefacts, then
creative cultural domains can be said to involve a strong de-
gree of feedback. Prior experience affects our evaluation of
new music, and new music is discovered and consumed via
channels of authority that precede pure content-based eval-
uation. Evaluation of creative artefacts is constantly shift-
ing and heavily influenced by these factors. Accordingly,
in a future inhabited by fully fledged creative computational
systems, we would expect them not only to be adapted to
the cultural factors affecting value judgement, but also to
actively manipulate these factors through cultural interac-
tion. In short, it may be a mistake to assume that systems
designed to adapt to our preferences will actually produce
the most pleasing results.

This discussion highlights the extensibility of ecosys-
tem models towards more interactive and evaluative forms.
However, our present focus is on the more manageable
problem of creative ecosystems which are either closed or
loosely interactive. In this area, an obstacle to good de-
sign is that the behaviour of a multi-agent system is typi-
cally complex and requires detailed analysis of its macro-
scopic properties to be clearly understood. Put differently,
an ecosystemic approach is particularly interested in the cre-
ative exploration and use of exactly those models that are
complex and not immediately obvious, and the methodology
presented here is aimed at maximising the potential to ex-
plore interesting complex systems. In the sonic domain, this
might involve generative sonic works that continue to de-
velop and transform indefinitely, but with consistent struc-
tural and aesthetic properties.

The issues of complexity suggests the need for an it-
erative development process based on the analysis of be-
haviours in successive versions of a model. Similarly, dis-
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cussing approaches to the relationship between artificial life
models and real-world complex systems, di Paolo et al [4]
propose a three-stage development process of exploration,
experimentation and explanation. The exploratory phase
sets out to see what is of interest and relevance in a model
and to record information about the model. In the exper-
imental phase, hypotheses are tested about the behaviour
of the model. In the explanatory phase, the understanding
gained from the experimental phase is applied to the natural
world. The different goals of creative model building mean
that there is no explanatory phase, and a more open-ended
flexible approach to exploration and experimentation (which
includes de-bugging and learning the relationship between a
model’s logical behaviour and its aesthetic outcomes). A
more detailed study of working practices in creative com-
puting would reveal how this kind of methodology could be
developed more explicitly in creative domains.

3 FRAMEWORK DESIGN

In [3], I discuss a number of design requirements for a
framework for creative ecosystemic models:

• Analysing system behaviours (e.g., comparing many
different parameters)

• Integrating multi-agent and sound components in one
development environment

• Facilitating the design of live algorithms [2] using a
multi-agent approach

• Creating flexible agents and configurations for multi-
ple contexts

• Probing and editing models interactively

• Facilitating new forms of software extensibility, such
as being able to embed models inside other models.

A preliminary design for a framework is introduced in
[3], with an example of a sonic ecosystem. Here I discuss
how the framework aims to integrate multi-agent modelling
principles and a computer music library. The framework
also offers libraries for more specific ecosystemic and evo-
lutionary functionality like genetic variation, resource man-
agement, and handling dynamically changing populations.

One of the main practical considerations for exploring
new types of creative generative and evolutionary method-
ologies is for models to be easily adapted for multiple target
applications, such as batch processing for analysis, interac-
tive exploration and real-time performance. For this rea-
son, and for the goal of achieving useful extensibility, pop-
ular object oriented programming languages were seen as
providing the most power and flexibility. Java was chosen
for the current framework, primarily because of its greater

user-friendliness. Extendable general-purpose development
environments, such as Eclipse 6 , also provide core project
management functionality that is desirable for the kinds of
complex projects that are likely to be needed.

An audio library, Beads 7 , was developed by the author
in pure Java with this framework and a number of other
computer music applications, including live performance, in
mind. This audio library follows the principle of good inte-
gration; that is, it is advantageous to work in a single devel-
opment environment when working experimentally. Popu-
lar real-time music environments such as MaxMSP 8 , Su-
perCollider 9 and JSyn 10 , use separate formats for high-
level and low-level (digital signal processing or DSP) el-
ements, requiring users to skip between different environ-
ments. For example, users can write externals for MaxMSP,
but must compile them in a development environment and
then launch them in MaxMSP (at least in the case of na-
tive C externals). A complete integrated environment al-
lows developers to add DSP routines straight into their code.
With a multi-agent modelling environment and sound envi-
ronment closely integrated, it is also easy to have modelling
processes triggered by audio-rate processes, as well as vice-
versa.

The current instantiation of the ecosystems framework
focuses on the basic requirements listed above. A hierarchi-
cal scheduling mechanism provides the core configurability
and addresses the requirement of extensibility by allowing
schedulers to be easily chained together. Using an XML
configuration file, an arrangement of schedulers and listen-
ers can be set up, with a master scheduler at the root. In the
most basic multi-agent scenario, this would consist of one
scheduler and a population of agents that are updated by
the scheduler. Additional listeners, such as a visualiser or
sonifier or tools for collecting simulation data from the pop-
ulation, can be specified in the configuration file or added
interactively. Thus different configuration files can specify
different use cases such as batch processing and live installa-
tion. A scheduler can also take its timing from an audio-rate
clock instead of the master simulation scheduler, meaning
that audio rate processes and higher level scheduling pro-
cesses run in the same ratio under different circumstances
(this is useful in the case of running real-time systems of-
fline). As well as allowing different configurations, the hier-
archical structuring of schedulers also facilitates interesting
experiments in the extensibility of existing systems, such as
the integration of two populations of agents in a common
environment, or the embedding of agents and their environ-
ments as subsets of bigger environments.

6 http://www.eclipse.org
7 http://www.beadsproject.net
8 http://www.cycling74.com
9 http://www.audiosynth.com

10 http://www.softsynth.com/jsyn
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For logging data, a data logger class exists which uses
the Java Reflect API to probe agent classes. Thus if
agents have the field size, the logger can be told to log
the value “agent:size”. This will log all of the size val-
ues for all of the agents at each time step. This syntax
works for nested classes and data structures. If agent’s
have a field memory which in turn stores a variable length
array of known pitches, then telling the logger to log
“agent:memory:pitches” will log all of the pitches for each
agent at each time step, and so on. Loggers can be switched
on and off at different time steps. The logged data can
then be formatted to work with a plotting program such as
Gnuplot 11 or Mathematica 12 . No extra code has to be in-
serted into the agent except ‘getter’ methods for these fields,
which the data logger automatically discovers. For inter-
active probing of data, another class exists which unpacks
the entire configuration of schedulers and agents into a tree
view. The elements of the tree view can then be edited man-
ually (assuming the specified fields have ‘setter’ methods).
Alternatively, for any elements that are being visualsed, it
is easy to configure the system such that double clicking on
that element brings up a similar tree rooted at that element.

Such features are in an early stage of development and
the ultimate goal of this project is to develop the system and
its associated working methodology to the stage where the
framework can be used as a general purpose creative toolkit
for sonic ecosystems.

4 USING THE FRAMEWORK

An ecosystemic approach to evolutionary computer music
attempts to ground the design of an evolving artificial multi-
agent system in an environment that is intrinsically related
to the world of sound and music that we are familiar with.
As discussed in Section 2, this provides, at least in princi-
ple, a kind of coupling between the agents in the evolving
system and our experience, capable of guiding an artist’s
development of their work.

An ecosystem model typically consists of an environ-
ment containing resources (or also environmental condi-
tions), a population of evolvable agents, and a set of rules
defining the relationship between the resources and the
agents’ dynamics of survival and reproduction. This rela-
tionship is not the same as a specific fitness function for
individual isolated agents, typical of standard genetic algo-
rithms, since the population is involved in myriad interac-
tions amongst each other (directly, or via manipulation of
the environment), from which the exact conditions for sur-
vival emerge. This invites a variety of evolved relationships
of both co-operative and competitive natures. For example,
since parents and their offspring are closely related, their be-

11 http://www.gnuplot.info/
12 http://www.wolfram.com/

haviour, locality, and their dependence on resources is simi-
lar and can often be in conflict. Such emergent relationships
can be understood in terms of the theory of evolution, or
more specifically in terms of known artificial life models.
Often, models are unpredictable in the sense that the best
way to know what they will do is to run them. But it is pos-
sible to work out the underlying behaviour and adjust the
model accordingly (helped by the framework to the extent
that it satisfies the design requirements).

In order to embed the system in a sonic context, the
environmental resources should reflect acoustic features of
sound that is created or affected by the agents in the popu-
lation, but may also be mixed with sound coming into the
model from outside (there is no reason why this couldn’t be
done at a more abstract level, such as in a MIDI domain, but
sound is preferred as it makes fewer musical assumptions).
An example is to take a spectrogram of the sound and to
treat the level of each band as the literal quantity of a spe-
cific resource. Another is to take the amount of ‘space’ left
in each band (e.g., a max value minus the level of the band)
as the quantity of the resource, and rewarding health gains
to agents in proportion to the relative level of sound they
contributed to that band. In the latter case, the environment
becomes less inhabitable the more sound is being made, but
agents have to make sound to get fit. This contradiction in-
vites the possibility of an evolutionarily stable state or an
unstable dynamic process (see [3]).

Main : 
SCHEDULER

Agent World : 
SCHEDULER

Agent : 
SIM

Agent : 
SIM

Agent : 
SIM

Agent : 
SIM

Agent Visualiser : 
LISTENER

AudioIn

AudioOut

Interactive :
APP

Batch Proessing : 
APP

Realtime : 
APP

DATA_LOGGER : 
LISTENER

Figure 1. Different model configurations. In the real-time
configuration (contained by solid line), the simulation is run
with real-time audio and visualisation but no analysis. In the
batch processing configuration (contained by dashed line),
the simulation is run with non-real-time audio and analysis
but no visualisation.
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A basic sonic ecosystem is given by the structure in Fig-
ure 1. At the top, three different executable applications are
available, each of which sets up a master scheduler and runs
it. A configuration file specifying the set-up of the envi-
ronment and agents can be fed into one of the applications,
depending on the required context. The application reads
the configuration file and attaches the specified objects to
the master scheduler. In the batch processing case, addi-
tional configuration data is required (e.g., what parameters
to sweep over), but since the applications themselves are
only a few lines of code, it is easy to write dedicated appli-
cations for specific batch processes. Alternatively, a set of
configuration files, one for each parameter set, can be fed
into the batch processing application.

There are a number of ways that schedulers, agents and
scheduler listeners can be built to reflect the basic design
of environment and multi-agent population. In Figure 1,
this is achieved by making the environment itself a sched-
uler (labelled ‘agent world’), which sets up the audio con-
text, and then sets itself to be updated from an audio-rate
clock, instead of from the main scheduler (it is still con-

trolled from the main scheduler). That way we know that
environment and agents are always updated at the same ra-
tio with respect to the audio processing. When initialised,
the environment generates the initial population of agents
from the configuration file, and each agent is attached to
the environment’s scheduler, which triggers updates in the
agents. The scheduler can be configured to perform syn-
chronous or asynchronous updates of the population. After
the initial set-up, agents take care of automatically removing
themselves from the environment when they die, and adding
their offspring to the environment when they reproduce.

In the case of the region enclosed in the dotted line in
Figure 1, the population is run in a batch process without
real-time audio input and output (determined by the config-
uration file, but overridden by the batch processing applica-
tion). A data logger is also attached, which records infor-
mation about the agents. In the case of the region enclosed
in the solid line, the simulation is run in real-time with an
additional visualisation unit attached.

As constructed, the creative challenge for such models is
to work out how to manipulate aspects of the overall design,
such as the resource model, to achieve interesting dynami-
cal behaviour, and also satisfying sonic behaviour, without
letting one of these goals eclipse the other. It is assumed
that the dynamics of an evolutionary process could form
the basis for an interesting musical and harmonic structure:
one could construct a metaphor in which mass extinction
and adaptive radiation act as mechanisms of sudden change,
and gradual coevolution leads to complex and harmonic re-
lationships between components. Having glimpsed this pos-
sibility, the role of the framework is to facilitate the explo-
ration of the model’s behaviour with these combined goals
in mind. Since the environment of agents consists largely of

other agents, there is fair reason to assume that some vari-
ation of such a model exists in which the population con-
tinues to evolve over a long period of time, without settling
into a stable state, and perhaps even increasing in complex-
ity (this can be see as following a coevolution design pat-
tern).

I discuss an example of such a model, in the form of a
sonic installation artwork, in [3], which uses the ‘available
space’ resource model discussed above, and demonstrate an
example of running a parameter sweep across a number of
simulation settings in order to find configurations in which
the population of agents divides into two or more species
over time. Where such configurations were found, the spe-
ciation behaviour is also clear from the audio recording of
these runs. In other configurations it was common for sep-
arate species to emerge for brief periods, often collapsing
back to a single population. The ultimate victory of a sin-
gle population is a likely outcome of the ‘available space’
resource model, because agents gain fitness most easily by
being more noisy and hogging the audio spectrum: a species
that made the noisiest sound would ultimately out-compete
less noisy species. This still produced interesting dynamics
as the population evolved through various phases of noisi-
ness, often moving through a complex sequence of phases
before discovering the noise strategy.

5 SUMMARY

This paper begins by discussing the motivations behind de-
veloping new approaches to evolutionary computer music,
following an ecosystemic paradigm. Beyond the traditional
notion of aesthetic selection, I consider ways to integrate
tools from multi-agent evolutionary systems into creative
practices. I describe the design of a framework which ad-
dresses the design goals established by such an approach.
This framework integrates computer music and multi-agent
modelling tools into an existing development environment
and allows different model configurations to be interactively
explored and analysed in a flexible manner. Future work
will focus on explicitly formulating a stronger methodology
to back this kind of creative exploration, and continuing to
develop the framework with this in mind.
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ABSTRACT

This paper considers the problem of 3-D sound rendering
in the near field through a low-order HRTF model. Here
we concentrate on diffraction effects caused by the human
head which we model as a rigid sphere. For relatively close
source distances there already exists an algorithm that gives
a good approximation to analytical spherical HRTF curves;
yet, due to excessive computational cost, it turns out to be
impractical in a real-time dynamic context. For this reason
the adoption of a further approximation based on principal
component analysis, which can significantly speed up spher-
ical HRTF computation, is proposed. The model resulting
from such an approach is suitable for future integration in
a structural HRTF model and parameterization over anthro-
pometrical measurements of a wide range of subjects.

1 INTRODUCTION

The history of binaural 3-D sound rendering dates back to
Lord Rayleigh’s well known diffraction formula which ap-
proximates the behaviour of a sound wave produced by an
infinite point source around the listener’s head, thus provid-
ing a first crude sketch of what we today call a head-related
transfer function (HRTF). On the other hand, most of the
relevant issues in this field appeared only recently.

HRTF-based spatial audio rendering can be achieved in
multiple ways. Approximations based on low-order rational
functions (see e.g. [4]) and series expansions of HRTFs [5,
9] were proposed, resulting in simple yet valuable tools for
diffraction modeling. Nevertheless, significant computation
is required from both techniques when real-time constraints
are introduced, due to the complexity of filter coefficients
and weights respectively. This is why structural modeling [2]
seems nowadays to be an attractive alternative approach.
Within this framework, the contribution of the listener’s head,
ears and torso to the HRTF can be isolated in several sub-
components, each accounting for some well defined physi-
cal phenomenon. Due to linearity of all these effects, they
can be later combined meaningfully and realistically in an
additive fashion to result in a global HRTF. Such a decom-
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position yields a model which is both economical and well
suited to real-time implementations.

In this paper we will conceptually isolate the earless head
of the listener and treat it as a rigid sphere, trying to find
a suitable way to represent its contribution to the HRTF.
Henceforward we will relate to its transfer function by call-
ing it a spherical HRTF. Furthermore, we will concentrate
on sources located in the so-called near field – namely within
a few meters from the center of the head – for which real-
time computation of HRTFs turns to be more troublesome.
Section 2 briefly introduces the theory lying behind the prob-
lem. Then, Section 3 presents a PCA-based approach for
spherical HRTF modeling. Section 4 deals with the prob-
lem of efficient filter modeling. Finally, Section 5 concludes
with a discussion on the further work to be done in this di-
rection.

2 THE SPHERICAL HRTF

2.1 Analytical background

Within the assumption of an infinitely distant source from
the center of the head, we can describe the response related
to a fixed observation point on the sphere’s surface by means
of the following transfer function, based on Lord Rayleigh’s
diffraction formula 1 :

H(μ, θ) =
1
μ2

∞∑
m=0

(−i)m−1(2m + 1)Pm(cosθ)
h′

m(μ)
, (1)

where θ is the incidence angle, the angle between the ray
from the center of the sphere to the source and the ray to
the observation point, and μ is the normalized frequency,
defined as 2

μ = f
2πa

c
, (2)

which is directly proportional to the sphere radius a. Fig-
ure 1 shows the magnitude of the transfer function on a dB
scale against normalized frequency for 19 different values
of incidence angle. When we remove the assumption of
an infinitely distant source and consider source positions in

1 Here Pm and hm represent, respectively, the Legendre polynomial of
degree m and the mth-order spherical Hankel function. h′

m is the derivative
of hm with respect to its argument.

2 Parameter c is the ambient speed of sound.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 201



10−1 100 101 102
−20

−15

−10

−5

0

5

10
θ
0
80
90
100
110

120

130

140
150
160
170

180

μ (adim)

M
ag

ni
tu

de
 (d

B
)

Figure 1. Magnitude response for an infinitely distant
source.

the near field, the distance dependence can no longer be ig-
nored. Having defined the normalized distance to the source
ρ as the ratio between the absolute distance from the center
of the sphere and the sphere radius

ρ =
r

a
, (3)

the spherical HRTF can be evaluated by means of the fol-
lowing function [11]:

H(ρ, μ, θ) = − ρ

μ
e−iμρ

∞∑
m=0

(2m + 1)Pm(cosθ)
hm(μρ)
h′

m(μ)
,

(4)
for each ρ > 1. From the analysis of this function we can
state a fundamental characteristic of spherical HRTFs: as
the source approaches the sphere (ρ tends to 1) the response
on the ipsilateral side increases, while the response on the
contralateral side decreases [3]. A description of the evalu-
ation algorithm, based on recursion relations, can be found
in [8].

2.2 Real-time computation

Let us consider a scenario where the listener is free to move
his head with respect to the virtual source to be rendered,
and vice versa. It is clear that real-time computation of
HRTFs is needed in order to track these movements with
enough reactivity, possibly avoiding any discontinuity in the
resulting sound. Furthermore, we have to take into account
the possibility of having to simulate a complex acoustic en-
vironment that includes several independent sound sources,
and/or reflections coming from the environment.

Relatively simple HRTF filter structures for sources in
the far field have been proposed to date (e.g., Duda’s first-
order filter in [2]). These turn out to be impracticable in the

near field, having no parameterization on source distance.
Point-to-point real-time evaluation of Eq. (4) using the al-
gorithm in [8] is computationally still too expensive. More-
over, even if a suitable parameterized filter model is found
each source has to be processed with a separate filter. Thus
we need to introduce a proper HRTF approximation to speed
up the computation. In the next section we discuss such an
approximation, which makes use of Principal Component
Analysis (PCA) to represent a collection of sample analyti-
cal HRTFs.

3 A PCA-BASED APPROACH

3.1 Principal Component Analysis

Principal Component Analysis is used in a number of prob-
lems to reduce the dimensionality of an input data set. Its
main goal is to provide an efficient representation of a set of
correlated measures - in this instance, a set of vectors.

Without delving into deep technicalities (which can be
found in [7]), suffice it to say that given a set of n real-
valued vectors x1, . . . , xn, each of dimension d, and defining
its covariance matrix S as

S =
1
n

n∑
k=1

xkxt
k, (5)

it can be seen that the best p-dimensional representation
(with p ≤ d) of the data set is obtained by taking as ba-
sis vectors the p eigenvectors of S that correspond to the p
largest eigenvalues. 3 Each vector xk is then projected onto
the space defined by the basis vectors as follows:

ak = Ctxk, (6)

where C is a matrix, the columns of which are the basis
vectors. We call principal components the set of weights
{aki}, k = 1, . . . , n, associated to basis vector i. Now given
the set of p-dimensional vectors ak, k = 1, . . . , n, we can
reconstruct an estimate of each original data vector by the
inverse equation:

xk = Cak. (7)

Clearly, by increasing the dimension p of the representation
the approximation improves. Thus, when dealing with PCA,
the main design goal is to extrapolate the value p for which
the trade-off between accuracy and data dimensionality is
maximized.

PCA has already been used in previous works concern-
ing HRTF modeling [5, 9], with the vectors xk representing

3 An alternative formulation of PCA requires the mean of all vectors in
the data set to be subtracted from each one of them before constructing the
covariance matrix. However, as the data set we will take into considera-
tion is already well-centered, inclusion of the mean turns out to be quite
unnecessary.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 202



10
−2

10
0

0.04

0.06

0.08

0.1

0.12

0.14

μ (adim)

M
ag

ni
tu

de
 (d

B
)

BV−1

10
−2

10
0

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

μ (adim)

M
ag

ni
tu

de
 (d

B
)

BV−2

10
−2

10
0

−0.2

−0.1

0

0.1

0.2

μ (adim)

M
ag

ni
tu

de
 (d

B
)

BV−3

10
−2

10
0

−0.2

−0.1

0

0.1

0.2

0.3

μ (adim)

M
ag

ni
tu

de
 (d

B
)

BV−4

10
−2

10
0

−0.2

−0.1

0

0.1

0.2

0.3

μ (adim)

M
ag

ni
tu

de
 (d

B
)

BV−5

10
−2

10
0

−0.3

−0.2

−0.1

0

0.1

0.2

μ (adim)

M
ag

ni
tu

de
 (d

B
)

BV−6

Figure 2. The first six basis vectors (solid lines) and the corresponding least-squares fit 8-th order IIR filters (dashed lines).

magnitude responses of a set of measured HRTFs. How-
ever, instead of applying the technique to experimental data,
we will exploit it to approximate a collection of spherical
HRTF magnitudes sampled from Eq. (4) on a discrete set
of frequencies. We will show that, thanks to the decoupling
of spatial variables from frequency created by PCA, this ap-
proach provides significant computational and storage ad-
vantages in the modeling of spherical HRTFs.

3.2 Design choices

We choose to collect a set of spherical HRTFs for sound sor-
ces located at different distances and incidence angles with
respect to the ear canal. Being Eq. (4) dependent on only
two spatial parameters, in our polar coordinate system we do
not consider elevation and restrict these locations to points
lying on the horizontal plane. We conventionally assume θ
to be the incidence angle at the right ear canal. Therefore
θ = 0◦, θ = 90◦, and θ = 180◦ corresponds to a sound
source facing the right ear, in front of the head, and facing
the left ear, respectively. The set of spherical HRTFs is sam-
pled by fixing the head radius to the standard value a = 8.75
cm and varying the following parameters:

• 19 linearly spaced θ values, from 0◦ to 180◦, with 10◦

angle increments;

• 7 exponentially spaced distance values, ρ = 1.25, 1.5,
2, 4, 8, 16, 32 (with the last one approximating far field);

• 100 linearly spaced frequency points from 100Hz to
10 kHz, with 100 Hz increments.

We obtain a set of 19× 7 = 133 spherical HRTFs, of which
we consider only the dB magnitude responses. Indeed, the
HRTF for an ideal sphere appears to be minimum phase for
all ranges and incidence angles [8]. In addition, when con-
sidering interaural differences for binaural hearing, approx-
imated ITD models (e.g. the Woodworth’s formula) can be
used to simulate phase lag between right and left ear canal as
a simple delay line. Interaural Time Difference (ITD) effects
can therefore be cascaded to the HRTF synthesis process.

3.3 Application of PCA

At this point we apply PCA to the set of n = 133 real-
valued vectors x1,...,xn, each of dimension d = 100. The
first 6 basis vectors of the analysis are sketched in Figure
2. As we can see, after the first one which accounts for
the general slope of the majority of HRTFs (with a positive
weight for ipsilateral sources and a negative weight for con-
tralateral ones – see Figure 3), each successive basis vector
introduces more and more ripples in the frequency response,
starting from the most prominent at θ = 170◦.

By investigating the trend of principal components 2 to 6
with the varying of distance and incidence angle we obtain
a deeper insight of the analysis. As expected from the ob-
servations reported in Section 2.1, weights’ moduli are am-
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Figure 3. The first six principal components.

plified by decreasing distance; furthermore, Figure 3 shows
that each component emphasises its corresponding basis vec-
tor only for a limited range of incidence angles, regardless
of the distance. This means that the first basis vector retains
most of the common variation, while those from the sec-
ond onwards provide particularized description of the rip-
pled high-frequency behaviour of spherical HRTFs, which
varies according to the incidence angle.

3.4 Theoretical optimality

The number of principal components (parameter p) to be in-
cluded in our model is crucial: as a matter of fact, it denotes
the number of filters required to approximate the spherical
HRTF by means of the new representation. We need then
a proper principle to theoretically quantify the maximum
tolerable error, so to extract the minimum p that meets its
constraints.

Mills [10] presents a psychoacoustical result which can
be used to this purpose. In particular the Interaural Level
Difference (ILD) jnd curve as a function of frequency in
Figure 4 represents a safe upper bound on the approxima-
tion error, owing to insensibility of human hearing appa-
ratus to small changes in ILD (which remarkably denotes
the main feature for discriminating source location together
with ITD). After having checked that the absolute error be-
tween all ILDs derived from a complementary pair of orig-
inal HRTFs (same distance parameter and sum of incidence

Figure 4. ILD jnd as a function of frequency (figure repro-
duced from [10]).

angles equal to 180 degrees, assuming diametrically oppo-
site ear canals) and those reconstructed after PCA approxi-
mation turns out to lie under the jnd function, we can state
there is no significant information loss in our approximation.
Note that the jnd function has not been defined for very low
frequencies; nevertheless, the dominant localization feature
in this frequency range being ITD, ILD information appears
to be relevant just for detecting very close distances.

As we can see from Figure 5 the minimum value p for
which the total error introduced by the PCA approximation
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Figure 5. ILD error functions with p = 7.

remains below the jnd curve is p = 7. In Section 4.2 we will
repeat this kind of analysis by including errors due to filter
approximation of basis vectors.

4 FILTER REALIZATION

4.1 Filter modeling and interpolation

Each basis vector provides the magnitude response of a filter
that has to be realized numerically. Using the least-squares
fit procedure provided by the Yule-Walker approach, we de-
sign for each basis vector an IIR filter of a desired order,
such that it approximates the corresponding magnitude re-
sponse. In order for the function to work properly we assign
a fictional value for zero frequency (we choose this to be the
same value as f = 100 Hz, as the low-frequency magni-
tude response is essentially flat) and assume a 20 kHz sam-
pling rate (so that the Nyquist frequency coincides with our
10 kHz limit). Filter coefficients may later be rescaled in
case of different sampling rates and different head radii.

It can be seen from Figure 2 that eighth-order filters pro-
vide accurate matching of the target magnitude responses.
It has to be noted that procedure does not take into account
phase requirements. However the resulting filter structures
have poles and zeros all inside the unit circle, and are there-
fore minimum-phase filters.

Having HRTF frequency dependence (now incorporated
inside filters characterization) been decoupled from spatial
variables dependence, interpolation of spherical HRTFs over
spatial points which are not included in the analysis process
involves only interpolation of principal components in the
form of scalars. To this end, the components plotted in Fig. 3
can be interpolated over distance and incidence angle using
simple techniques, e.g 2-dimensional spline interpolation.
In particular, in this way any distance value can be rendered
(with the upper distance bound in the analysis ρ = 32 cor-

responding to the far field).
Frequency decoupling from spatial variables gives an-

other fundamental advantage. Specifically, the simulation
of N independent sound sources located at different posi-
tions around the listener head does not require N different
filter sets. Instead the set of filters derived above is used
for all the sources, with only the components ai varying for
each source. This can be seen in the following equation:

Y (μ) =
N∑

k=1

p∑
i=1

Hki(ρk, μ, θk)Xk(μ)

=
N∑

k=1

p∑
i=1

Hi(μ)ai(θk, ρk)Xk(μ)

=
p∑

i=1

Hi(μ)
N∑

k=1

ai(θk, ρk)Xk(μ),

(8)

where the N input signals, each with frequency response
Xk, are linearly combined through spatial coefficients ai

and filtered by the Hi’s, resulting in the output signal with
frequency response Y . This result, together with the in-
clusion of distance dependence and near-field effects in the
spherical HRTF, represents the main advantage of the pro-
posed approach with respect to the model described in [2].

4.2 Optimality considerations

The filter realization described in the previous section intro-
duces further error between the real-time model and analyti-
cal spherical HRTF curves. Hence, in addition to parameter
p, choosing the adequate filter orders o1, . . . , op turns out
to be pivotal. To this end, we reapply the ILD jnd criterion
in order to determine minimum parameters p and o1, . . . , op

that satisfy the forementioned psychoacoustical constraint.
The analysis must be targeted at finding a satisfactory

trade-off between accuracy and efficiency. By keeping the
minimum value p = 7 determined in Section 3.4, it is ver-
ified that eighth-order filters (o1 = . . . = op = 8) provide
an error which is still below the jnd curve, while seventh-
order filters cause 1 dB low-frequency errors. If p is in-
creased by one or more units, using filters of lower order
(e.g., 7) still results in errors which are above the psychoa-
coustical threshold. Intuitively, this circumstance can be ex-
plained as follows. Considering that the very first princi-
pal components capture the largest part of variance in the
data set and have the corresponding basis functions being
multiplied by a relatively high coefficient, adding new prin-
cipal components does not affect the accuracy of the rep-
resentation as much as properly designing the filters rep-
resenting each basis vector. Further inspection shows that,
since the magnitude responses Hi become increasingly rip-
pled as i grows, the psychoacustical threshold is satisfied
even by choosing filter orders that increase accordingly, i.e.
oi = i + 1 (i = 1 . . . 7).
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Figure 6. Analytical (top panel) and approximated (bottom
panel) spherical HRTF magnitude curves for p = 3, o1 =
o2 = o3 = 3, and ρ = 4.

4.3 A low-cost realization

The above discussion is based on purely theoretical assump-
tions which are very strict. Moreover, the realization pro-
posed in the previous section may have exceedingly high
computational costs for real-time applications. In light of
this, a more efficient approximation of the spherical HRTF
based on a lower number of components and lower-order
filters can still be usable even if it does not satisfy the psy-
choacustical criterion discussed above.

By choosing p = 3 and o1 = o2 = o3 = 3, the gross
magnitude characteristics of the spherical HRTF are still
matched, even though the ILD error can be as large as 3 dB
at low frequencies. This statement can be verified by look-
ing at Figure 6, which represents reconstructed spherical
HRTF magnitude responses for ρ = 4 and varying inci-
dence angle. Comparison of the top and bottom panels of
the figure confirms that three basis vectors represented with
third-order filters already provide a satisfactory approxima-
tion.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have presented a PCA-based approach for
approximating spherical HRTFs in the near field. We proved
that a description in terms of seven eighth-order filters and
a set of coefficients turns out to be psychoacustically robust.
Much work is still needed in this direction. First, we shall

reproduce the analysis in Subsection 3.4 for spatial points
that were not included in the synthesis step. Second, the
low-cost realization described in Subsection 4.3, possibly
along with alternative descriptions, needs to be experimen-
tally evaluated. Third, we need a strong criterion for the
personalization of HRTFs based on anthropometrical mea-
surements, analogously to the approach presented in [1]. Fi-
nally, we should take into consideration alternative and more
realistic head models, like the elliptical one [6].
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ABSTRACT 

The present study
1
 examines the question of a 

“natural” sonic feedback associated with keys of a 

numerical keyboard - in the context of use of an 

Automatic Teller Machine (ATM). “Natural” is 

defined here as an obvious sound feedback with 

regards to the action made by a user on a device.  

The aim is then to study how “naturalness” is 

related to the perceived usability and the perceived 

emotion of the sonic feedback before and after 

participants perform several tasks with the 

keyboard. Three levels of “naturalness” are defined: 

causal, iconic, and abstract. In addition, two levels 

of controlled usability of the system are used: a low 

level and a high one. Results show that pre-

experimental ratings of perceived “naturalness” and 

perceived usability were highly correlated. This 

relationship held after the participants interacted 

with the keyboard. “Naturalness” and emotional 

aspects were less dependant, revealing that 

“naturalness” and usability represent a special type 

of relation. However, results are affected by the 

level of controlled usability of the system. Indeed, 

the positive change at the high level of controlled 

usability for the iconic sounds (medium level of 

naturalness) obtained after the performance task 

failes at the low level of controlled usability.  

 

 1. INTRODUCTION 

 

Designing new artefacts that may be used in 

everyday life situations reveals several questions. 

One of those is related to the interaction between 

the user and the artefact: is a “natural” relation well 

appropriated to favour an interaction? By natural, it 

is meant a causal relation instead of an arbitrary one 

that tends to be perceived as an obvious display of 

the interaction based on our everyday experiences 

(referring to the ecological viewpoint by J.J. Gibson 

[1], a perceived “natural” interaction could be 

considered as a perceived affordance). In their 

recent study Rath et al. [2] defined a “natural” 

interaction as a ‘spontaneous understanding of 

interaction principles on the side of a user’. Within 

the framework of the present study, we specify the 

previous question by examining if a “natural” 

��������������������������������������������������������
������	�
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����������������	��������
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interaction favours the perceived usability of a 

device? An intuitive answer to this question is 

provided by D. Norman [3]: “I believe that our 

reliance on abstract representations and actions is a 

mistake and that people would be better served if 

we would return to control through physical 

objects, to real knobs, sliders, buttons, to simpler, 

more concrete objects and actions”. In the realm of 

sound perception, recent trends have focused on 

everyday listening [4, 5] engaging the cause of the 

sound event rather than selected specific aspects of 

the sound signal. Briefly, most of the common 

listeners focus on the cause of the sound, 

identifying properties of the source (like the size or 

the material) and the action made by or to the 

object. Based on the latter assumption, that we are 

good at identifying sound events, the design of 

sound for interactive devices has been proposed 

using a causal display, rather than abstract one. The 

hypothesis is that “natural” sonic interactions with 

virtual objects should be perceived as more 

intuitive. Thus the question in the present study is 

to test if a “natural” sonic feedback affects the 

degree of the perceived usability: 1) before 

interacting with a device, and 2) after users interact 

with it, in order to examine if the initial impression 

holds after a period during which the device is used. 

In addition, relation between “naturalness” and 

emotion will be examined. Natural sonic feedback 

was tested by comparison with designed and with 

arbitrary sonic feedback on a naturalness 

dimension. 

 

2. EXPERIMENT 

 

The procedure of the present experiment was partly 

based on the procedure proposed by Tractinsky et 

al. in [6]. The experiment was a one between-

subjects, one within-subjects full factorial design, 

with the naturalness as the within-subjects factor, 

and the level of controlled usability as the between-

subject factor. Factor 1 was the naturalness of the 

sonic feedback, with 3 levels (Low / Medium / 

High). Factor 2 was the controlled usability of the 

device, with two levels of usability: low and high. 

For the high level, the sonic feedback operated each 

time a key was pressed, and for the low level, the 

sonic feedback did not operate each time a key was 

pressed  
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Participants 
Two groups of 45 participants performed the main 

experiment. Their ages varied from 15 to 58 years 

old. Each group performed step 1 to 4 in one 

usability condition. No subject reported having any 

hearing problems. 

 

Apparatus 
The keyboard used was a Mobile Numeric USB 

Keyboard. 

 

Stimuli 
The sound corpus was calibrated along a perceptual 

scale defining three discrete levels of naturalness: i) 

high – causal – corresponded to various keyboard 

sound recordings ii) medium – iconic or designed -

corresponded to synthetic sounds having a causal 

morphological aspect (impacts) superimposed with 

non natural timbres iii) low – abstract – 

corresponded to sounds having no relationship with 

the action made on the keyboard (bicycle ring, 

piano chord, etc. …) 

 

Procedure 
Figure 1 presents the different steps of the present 

procedure. 

Step 0: eighty-one sounds were rated by 20 

participants on a scale between the labels “not 

natural at all” and “very natural” in terms of 

relation between the sound display and the action of 

pressing a key on a keyboard. Finally, 9 sounds 

were selected: three at high level, three at an 

intermediate one, and three at the lower level of 

naturalness (see details above) 

Step 1: the 9 selected sounds were rated on a nine-

points scale by two groups of 45 participants on 

five scales (Naturalness / N, Usability 1 / U1, 

Usability 2 / U2, Pleasantness / P and Stimulating / 

S). U1 and U2 were described to the participants as 

scales related to the a priori perceived usability of 

the sound (before using the keyboard in step 2). For 

example, for scale Usability 1 / U1, participants 

were asked to rate the assertion: “I find that the 

sound is well associated with the keys”. P and S 

were associated to the two usual emotional 

dimensions used in the realm of research in 

emotions [7]. For example, for scale Pleasantness / 

P, participants were asked to rate the assertion: “I 

find that the sound is pleasant”. For each scale, the 

mark 1 was associated with “I don’t agree at all” 

and the mark 9 with “I completely agree”. 

Step 2: based on their evaluations in step 1, each 

participant was assigned at one of the three level of 

“naturalness” (H/M/L), and then performed step 2 

using one sound that she/he evaluated at the 

corresponding level of “naturalness”. In step 2, 

using the numerical keyboard, different tasks were 

performed several times like withdrawing cash and 

transferring an amount of money between two bank 

accounts. 

Step 3: the sound used during the performance task 

was rated on the same five scales as in step 1.  

Step 4: participants were asked to rate directly if the 

sound was finally worse or better compared to their 

initial impression on each scale, which corresponds 

to the direct difference between post and pre-

experimental perception. For example, for the 

pleasantness, the assertion proposed was: “I find 

that the sound is more pleasant”. Evaluations were 

made on the scale [-4, +4]; a negative mark meant 

that the participant did not agree, and a positive one 

that she/he agreed. 

 

 
Figure 1. Step 0 to 4 of the experimental procedure 

 

3. RESULTS 

 

3.1 Manipulation check 

 

Figure 2.a and 2.b displays the pre-experimental 

mean ratings for the naturalness scale in order to 

check that the 9 sounds were correctly judged with 

the expected level of naturalness. The mean value 

for each sound corresponds to the average of the 45 

evaluations on this scale respectively for group 1 

and group 2. As it can be observed on figures 2.a 

and 2.b, pre-selected sounds from step 0 were 

judged in step 1 with the same level of naturalness 

as it was expected. On the figures, the first three 

sounds are labelled respectively H1, H2 and H3 as 

they were expected to be perceived with the highest 

level of naturalness, the three next sounds are 

labelled respectively M1, M2 and M3 for the 

medium level of naturalness, and the last three ones 

are labelled L1, L2 and L3 respectively for the 

lowest level of naturalness. A repeated-measures 

analysis of variance (ANOVA) was performed on 

pre-experimental ratings obtained on the 

naturalness scale with one within-subject factor, 

sound (9 levels), and with one between-subject 

factor, group of participants (2 levels). The analysis 

reveals a strong effect of the sound factor (F(8, 
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704)=167.8, p < 0.001) and no effect of the group 

factor, as well as no interaction between the two 

main factors which means that ratings did not 

depend on the group factor. As it was expected that 

the first three sounds [H1, H2, H3] will be judged 

with a higher level of naturalness compared to [M1, 

M2, M3] and [L1, L2, L3], and [M1, M2, M3] to be 

judged with a higher compared to [L1, L2, L3], 

contrast analyses were performed in order to test if 

perceived naturalness ratings were different 

between the three groups of sounds. Results showed 

that perceived naturalness was significantly 

different between [H1, H2, H3] and the two other 

groups of sounds (p<0.001), and between [M1, M2, 

M3] and [L1, L2, L3] (p<0.001)  
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Figure 2.a Naturalness pre-experimental mean 

ratings on 45 participants from Group 1 
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Figure 2.b Naturalness pre-experimental mean 

ratings on 45 participants from Group 2 

 

 

3.2 Analysis of the pre-experimental ratings 

 

 

3.2.1 Reliability 

 

For the two groups of subjects, the repetition (test 

and retest) factor is examined considering 

individual ratings on each of the five scales. Test-

retest reliability obtained is r=0.83, r=0.78, r=0.71, 

r=0.69 and r=0.60 (p < 0.001) respectively for the 

five scales (Naturalness / N, Usability 1 / U1, 

Usability 2 / U2, Pleasantness / P and Stimulating / 

S). Since the correlation values for several scales 

were not very high, even if they were statistically 

significant, datasets were not aggregated. In 

addition, participants reported to have been more 

confident in their second ratings. Based on 

participants’ comments, only the ratings from the 

second set were kept for further analysis. 

 

3.2.2 Results presentation 

 

Figure 3.a and 3.b displays the pre-experimental 

mean ratings of the five scales (Naturalness, 

Usability 1, Usability 2, Pleasantness, Stimulating) 

for respectively group 1 and 2 (high and low 

usability level). The mean values for each level of 

naturalness for the five scales are also presented in 

Table 1. 

H M L

1

3

5

7

9

Naturalness

H M L

1

3

5

7

9

Usability 1

H M L

1

3

5

7

9

Usability 2

H M L

1

3

5

7

9

Pleasantness

H M L

1

3

5

7

9

Stimulating

 
Figure 3.a Ratings on the five scales for the sounds 

assigned to one of the three level of naturalness 

(High, Medium, Low) and for the high level of the 

controlled usability. 
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Figure 3.b Ratings on the five scales for the sounds 

assigned to one of the three level of naturalness 

(High, Medium, Low) and for the low level of the 

controlled usability. 
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Naturalness 

level 

Pre-experimental 

scale 

Controlled 

Usability 

  High Low 

High Naturalness 7.08 

(1.76) 

7.97 

(1.01)  

 Usability 1 6.95 

(1.93) 

7.88 

(1.11) 

 Usability 2 7.02 

(1.80) 

7.37 

(1.35) 

 Pleasantness 4.86 

(2.45) 

6.73 

(1.60) 

 Stimulation  5.73 

(2.11) 

6.33 

(1.89) 

 N 15 15 

Medium Naturalness 5.15 

(1.77) 

4.73 

(1.82) 

 Usability 1 5.26 

(1.95) 

5.57 

(1.38) 

 Usability 2 5.24 

(1.93) 

5.73 

(1.77) 

 Pleasantness 4.82 

(2.34) 

4.86 

(1.54) 

 Stimulation  5.44 

(1.92) 

5.33 

(1.77) 

 N 15 15 

Low Naturalness 1.66 

(1.27) 

1.73 

(1.54) 

 Usability 1 1.64 

(1.24) 

1.71 

(1.07) 

 Usability 2 2.08 

(1.53) 

3.33 

(2.53) 

 Pleasantness 2.77 

(2.10) 

3.44 

(2.55) 

 Stimulation  4.17 

(2.69) 

4.73 

(2.50) 

 N 15 15 

Table 1. Pre-experimental mean ratings (standard 

deviations in brackets) on the five scales and for 

both level of usability 

 

Results show clearly that the degree of perceived 

usability U1 and U2 decreased with the same 

amount as the perceived naturalness N, whereas the 

amount of change of the perceived pleasantness P is 

slightly less important. Finally, the level of 

stimulation (S) seems independent of the three level 

of naturalness. This result indicates that participants 

perceived a stronger relation between naturalness 

and usability rather than between naturalness and 

emotional aspects. 

 

3.2.3 Analysis of variance 

 

A multivariate analysis of variance (MANOVA) 

with repeated measures was conducted on the five 

dependent variables (Naturalness, Usability 1, 

Usability 2, Pleasantness, Stimulating), using a full-

factorial design, with the following two between-

subject factors: level of naturalness (3 levels, H, M 

and L) and group of participants (2 levels, G1 and 

G2). A MANOVA was performed instead of an 

ANOVA to take into account correlations between 

ratings on similar scales such as U1 (Usability 1) 

and U2 (Usability 2), for example. 

The main interest here is to determine whether the 

naturalness factor has had a global effect on ratings 

for the five scales. Results show, as it was expected, 

that the factor group neither had an effect on ratings 

nor interacted with the factor naturalness. On the 

other hand, the multivariate analysis of variance 

(MANOVA) reveals an overall significant effect of 

the naturalness factor (Wilks' lambda value, 

F=32.0, p<0.001). One-way ANOVAs show that 

the effect is significant for each scale. The 

percentage of total variance accounted for by each 

effect is indicated by the R
2
 coefficient. The main 

effect of naturalness accounts for about 81, 58, 32 

and only 15% of the total variance respectively for 

scales U1, U2, P, and S. Thus the strongest effect of 

the naturalness factor is obtained for ratings on U1 

and U2. This result corroborates descriptions 

provided in the previous section.  

 

3.3 Comparison between Pre and Post-

experimental ratings 

 

3.3.1 Correlation analysis 

 

Inter-correlations among the perceived measures 

are presented in table 2.a and 2.b. Pre experimental 

ratings of perceived Naturalness and perceived 

Usability 1&2 were highly correlated (respectively 

r=0.9 and r=0.8). The same results were obtained 

for Post experimental ratings (respectively r=0.85 

and r=0.71) meaning that the correlations between 

perceived Naturalness and Usability 1&2 remained 

high even after the performance task. On the other 

hand, Pre-experimental ratings of perceived 

Naturalness were less correlated with the scale 

Pleasantness (r=0.62) and weakly with the scale 

Stimulating (r=0.44). The weakest correlations 

were obtained for ratings on the Stimulating scale 

and the other scales for both Pre and Post 

experimental ratings (respectively 0.44 � r � 0.56 

and 0.36 � r � 0.42).  This indicates that the level of 

correlation with the Naturalness scale depends on 

the type of scale. Pre and Post-experimental 

correlations of Naturalness were relatively high 

(r=0.78), and Pre and Post-experimental correlation 

of perceived Usability 1&2 were lower 

(respectively r=0.65 and r=0.55), as well as Pre and 

Post-experimental correlation for scales 

Pleasantness and Stimulating (respectively r=0.34 

and r=0.41). There was a slightly difference 

between the two usability groups related to the 

perceived Pleasantness; the Pre and Post-

experimental correlation were 0.39 and 0.29 

respectively for the high and low-usability groups. 
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 Pre-U1 Pre-U2 Post-N Post-

U1 

Post-

U2 

Pre-N 0.90*** 0.80*** 0.78*** 0.69*** 0.54*** 

Pre-U1  0.79*** 0.72*** 0.65*** 0.52*** 

Pre-U2   0.65*** 0.59*** 0.55*** 

Post-N    0.85*** 0.71*** 

Post-

U1 

    0.71*** 

Table 2.a Correlation matrix of pre and post-

experimental measures (N=90) for the Naturalness 

(N), the Usability 1 (U1) and the Usability 2 (U2) 

scales (***p<0.0001, **p<0.005, *p<0.05) 

 

 Pre-P Pre-S Post-N Post-P Post-S 

Pre-N 0.62*** 0.44*** 0.78*** 0.54*** 0.32** 

Pre-P  0.56*** 0.47*** 0.34** 0.28** 

Pre-S   0.28* 0.23* 0.41** 

Pots-N    0.72*** 0.36** 

Post-P     0.42*** 

Table 2.b Correlation matrix of pre and post-

experimental measures (N=90) for the Naturalness 

(N), Pleasantness (P) and Stimulating (S) scales 

(***p<0.0001, **p<0.005, *p<0.05) 

 

 

3.3.2 Results presentation 

 

Figure 4.a and 4.b display the average ratings for 

the two groups of participants (respectively the two 

levels of usability) obtained in step 4 showing how 

each level of naturalness was perceived on the five 

scales before and after interacting with the 

keyboard in step 2. A positive value indicates that 

positive change in ratings between before and after 

the performance task. 
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Figure 4. Direct estimation of the difference 

between post and pre-experimental perception on 

the five scales and for both level of usability 

 

Analysis of variance 

A multivariate analysis of variance (MANOVA) 

with repeated measures was conducted on the direct 

estimation of the difference between post and pre-

experimental perception on the five scales. The 

main interest here is to compare ratings obtained for 

the two usability levels in order to examine effect 

of the controlled usability on perceptive ratings. 

Thus, the main null hypothesis tested is: "the 

experimental condition, controlled usability, does 

not have any effect on perceptive ratings". The 

MANOVA reveals an overall significant effect of 

the naturalness factor (Wilks' lambda value, 

F=4.42, p<0.001) but no effect of the controlled 

usability factor. On the other hand, the analysis 

reveals a significant interaction between these two 

factors. It thus appears that the effect of the 

controlled usability (between-subjects factor) is 

present but it varies as a function of naturalness 

(within-subjects factor). One-way ANOVAs reveal 

that the naturalness factor is significant for all the 

scales except for the scale Stimulating. In addition, 

the analyses reveal that the significant interaction is 

obtained only for perceived Usability 1&2 (F(2, 

84)=15.7, p<0.001 and F(2, 84)=7.8, p<0.001, 

respectively) and for Pleasantness (F(2, 84)=6.64, 

p<0.01). Contrast analyses show that the 

interactions obtained for these three scales are 

based on significant difference only for the medium 

level (M) of Naturalness, while there is no 

significant difference between the two other levels 

of Naturalness. These analyses reveal that the 

controlled usability affect only the medium level of 

naturalness that corresponds to the iconic 

(designed) sounds. As it can be seen in figure 4, for 

the low level of controlled usability (L Usability), 

iconic sounds were judged after the performance 

task to be less usable and pleasant.  

 

4. CONCLUSION 

 

This study examined whether a “natural” sonic 

feedback affects the degree of the perceived 

usability and emotion in a simple interaction. 

Results show that: 

- the naturalness scale related to the three groups of 

sounds was perceived as expected in the context of 

use of the keyboard. 

- initial impression of naturalness affects the initial 

impression of usability and holds after participants 

interact with the keyboard. On the other hand, 

ratings on the emotional scales are less affected. 

- the level of controlled usability interacts mainly 

with the medium level of naturalness. Sounds at 

this level were designed sounds (synthetic impact 

sounds), well perceived prior to the performance 

task (pre-judgment) and finally perceived to be 

more useful in a high level of usability, but this 

impression failed in the low usability condition. 

$� whatever the situation, an abstract sound, 

corresponding to a low level of naturalness, is not 

perceived to be useful and pleasant, and even worse 

after performing with the keyboard. 

To summarize the major findings of this study, the 

results suggest that it looks like the acceptance of 

an iconic (designed) sound is weaker when the 

sound is not efficient for the expected feedback 

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 211



(dysfunctioning system). However, a causal sound 

is still accepted when the system does not work 

correctly. 
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ABSTRACT

This paper reports on the analysis of a free classification
of vocal imitations of everyday sounds. The goal is to high-
light the acoustical properties that have allowed the listeners
to classify these imitations into categories that are closely
related to the categories of the imitated sound sources. We
present several specific techniques that have been developed
to this end. First, the descriptions provided by the partici-
pants suggest that they have used different kinds of similari-
ties to group together the imitations. A method to assess the
individual strategies is therefore proposed and allows to de-
tect an outlier participant. Second, the participants’ classi-
fications are submitted to a hierarchical clustering analysis,
and clusters are created using the inconsistency coefficient,
rather than the height of fusion. The relevance of the clus-
ters is discussed and seven of them are chosen for further
analysis. These clusters are predicted perfectly with a few
pertinent acoustic descriptors, and using very simple binary
decision rules. This suggests that the acoustic similarities
overlap with the similarities used by the participants to per-
form the classification. However, several issues need to be
considered to extend these results to the imitated sounds.

1 INTRODUCTION

1.1 Framework

Vocal imitations are very commonly and spontaneously used
in everyday conversations when trying to describe a sound.
Two kinds of imitations have to be distinguished: standard-
ized imitations (i.e. onomatopoeias) and non-standardized
ones. Onomatopoeias are words, the spelling of which is
conventional, and the meaning shared by a given population.
“Cock-a-doodle-doo” is an example of onomatopoeia in En-
glish: every English listener knows that this word labels
the cry of a rooster, but its pronunciation might be some-
how different from the rooster’s cry. On the contrary, non-
standardized imitations occur when a speaker tries to imitate
a sound with any means of vocal production, without us-
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ing standardized words. Whereas there is a finite number of
onomatopoeias in a language, the variety of vocal imitations
potentially occurring in conversations is virtually infinite.

The study reported here focuses on non-standardized vo-
cal imitations. The assumption is made that such imitations
are simplifications of the imitated sounds, which still allow
the recognition of what has been imitated. Therefore, the
production of vocal imitations is believed to provide a rele-
vant paradigm for the study of how human listeners identify
sound sources. Sound source identification and the percep-
tion of everyday sounds have become an important domain
of research since the 90’s [6, 7], the potential applications
of which are manyfold in audio content analysis or sound
synthesis. More specifically, studying sound source identi-
fication and vocal imitations is expected to inform the de-
velopment of cartoonification, a particular method of sound
synthesis that consists in exaggerating some acoustic fea-
tures while discarding some others [18]. The advantages of
such a technique are that it renders the information clearer,
more effective, while reducing the computational cost.

1.2 State-of-the-art

Vocal imitations have been studied from different perspec-
tives. Laas et al. [11,12] showed that listeners could identify
fairly well human-imitated animal sounds, and that the iden-
tification performances were sometimes even better with im-
itations than with real animal sounds. Nevertheless, the au-
thors do not explicitly mention whether participants listened
to the sounds to imitate or were given the names of the ani-
mals to imitate, and whether they could used onomatopoeias
or not. Therefore, the successful identification might be ac-
counted for the conventionality and symbolism in the imita-
tions. Other studies have reported systematic patterns of as-
sociations between phonetic properties of the imitations and
acoustical properties of the imitated sounds [2,4,21,22]. For
example, plosives are very commonly used to imitate short
sounds or sounds with brutal onsets, such as impacts, explo-
sions. Fricatives are used to imitate sounds with smooth
onsets, such as the wind, a breath. The length of imita-
tions is related to the duration of the sounds, or to the num-
ber of distinct elements composing the sounds. This shows
that vocal imitations can mimic various temporal aspects
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of sounds. However, there are always imitations that do
not verify these rules, and some imitations are better than
others. Other studies were interested in vocal imitations of
tabla drumming sounds [15], strange machine sounds [14,
20], impulse sounds [8, 9], various sounds [10], flue organ
pipe sounds [17], sounds of laser printers and copy ma-
chines [19]. They show that many spectro-temporal proper-
ties of the sounds are reproduced in the imitations: duration,
range of frequency, spectral centroid, transients, etc.

Overall, this review of the literature points out several
issues. Not all imitations allow perfect identification. The
quality of an imitation can be related to the capacities of the
vocal apparatus, the performance of the imitators, the diffi-
culty to imitate a given sound. The degree of convention-
ality and symbolism of the imitations is variable. This can
be linked with the nature of the imitations (onomatopoeias,
non-word phonetic imitations or non-phonetic imitations).

1.3 Outlines of the study

The analysis reported in this article is based on the results
of an experimental study described in [3]. This study pro-
vides a set of vocal imitations of everyday sounds that have
been categorized by a group of listeners. These imitations
are non-standardized, and some of them are even difficult
to transcribe phonetically. The goal of this paper is to high-
light the acoustical properties that have allowed the listeners
to classify the imitations into categories that are closely re-
lated to the categories of the imitated sound sources. This
paper reports on the specific techniques that have been de-
veloped to this end, as well as the results of the analyses.

The experimental study is reported in Section 2. The par-
ticipants’ strategies are analyzed in Section 3, with a specific
technique to detect the outliers, using the RV coefficient.
The categories provided by the participants are analyzed in
Section 4, with hierarchical clustering and the inconsistency
coefficient. The acoustical properties accounting for the cat-
egories of imitations are finally highlighted in Section 5.

2 FREE CLASSIFICATION OF IMITATIONS

2.1 Recordings

Vocal imitations were recorded for a set of environmental
sounds. The imitated sounds were selected from a corpus
of sounds recorded in a kitchen. These sounds had already
been used in other experimental studies reported in [13].
Particularly, they had been used in a free classification task.
Therefore, the perceptual organization of these sounds into
categories of sound sources is available (the 4 main cate-
gories are liquid, solid, gas, electric). During the recording
session, the participants listened to each sound to imitate
and had three trials to record an imitation. They were ex-
plicitly asked not to use words, in particular onomatopoeias.

2.2 Method

Twelve sounds were chosen: 3 liquid sounds L1, L2, L3,
3 solid sounds S1, S2, S3, 3 gas sounds G1, G2, G3, and
3 electric sounds E1, E2, E3. Six imitators were chosen:
3 women W1, W2, W3, and 3 men M1, M2, M3. The 6
imitations of each of the 12 sounds gave a corpus of n = 72
vocal imitations that were used in a free classification ex-
periment. Participants had first to group together the imita-
tions so as to form different classes. They could create as
many classes as they wished, and did not receive any spe-
cific instruction on how to form the classes. Then, they had
to freely describe each class they had made. For each par-
ticipant p, the results of the classification were encoded in a
n × n matrix Dp, called distance matrix, such that:

d
(p)
ij =

{
0 if sounds i and j were grouped together;
1 else.

(1)

3 THE PARTICIPANTS’ STRATEGIES

3.1 Descriptions of the categories

The descriptions of the categories provided by the partic-
ipants are not systematically analyzed here. They suggest
however that the participants have used different kinds of
similarities to group together the sounds (according to the
typology defined in [13]). Indeed, most of the descriptions
mention causal and semantic similarities (i.e. the cause and
the meaning associated with the identified sources). But
other similarities were also used: acoustical properties of
the sounds, feelings (called here hedonic properties), means
of vocal production (see Table 1). For some participants,
the description of a given class sometimes mentions several
kinds of similarities (e.g. “Continuous sounds, with a kind
of vibration, with the lips, the throat, there is something
spinning, noises of machines”). Furthermore the descrip-
tions provided by a participant suggest that he made classes
in a rather random fashion.

Similarity Examples of descriptions
“Mechanical actions of slicing”

Causal / Semantic “Water dripping”
“All kinds of drilling machines, food processors”
“Loud and rhythmic sounds”

Acoustic “Repeated, percussive sounds”
“Continuous sounds”
“Very aggressive, catches attention”

Hedonic “Suffering”
“Mentions the comfort”
“Throat noises”

Vocal production “Expiration with a whistle on the tongue”
“With the lips”

Table 1. Examples of descriptions given by the participants,
sorted into different kinds of similarities.
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3.2 Individual classifications

The descriptions of the classes suggest different strategies
across the participants, and even an outlier behaving ran-
domly. There is however no widespread method to ana-
lyze individual differences in classification experiments. We
used here a method inspired from [1]. It consists in comput-
ing a measure of pairwise similarity between the individual
classifications. It is also possible to add random individual
classifications in order to detect potential outliers.

3.2.1 A measure of pairwise similarity

The RV coefficient [5] is a measure of similarity between
two symmetric matrices X and Y and is given by:

RV (X,Y) =
trace(XYT )√

trace(XXT ) trace(YYT )
(2)

Therefore, it can be used as a measure of pairwise similarity
between individual classifications. Following [1], the RV

coefficient is not computed here directly between the dis-
tance matrices, but between the individual normalized (with
respect to the spectral radius) cross-product matrices. The
cross-product matrix S̃p for participant p is given by:

S̃p = −1
2

CDpCT (3)

where Dp is the distance matrix of participant p. The n× n
matrix C is called a centering matrix and is given by:

C = I − 1 · mT (4)

where I is the n × n identity matrix, 1 is a column vec-
tor of length n filled with ones, and m a column vector of
length n called mass vector and composed of positive num-
bers whose sum is equal to 1. Here, all observations are of
equal importance so we set each element of m equal to 1

n .

3.2.2 Distances between participants

The between-participant similarity matrix RV, whose coef-
ficients [RV]ij = RV (Si,Sj) are the RV coefficients be-
tween the normalized cross-product matrices Si and Sj , is
then constructed. A principal component analysis (PCA)
is applied on RV and is represented in Figure 1 using the
two principal components. In this map, a kind of distance
between the participants is represented since the proximity
between two points reflects their similarity. We also added
random normalized cross product matrices in order to sim-
ulate random individual results. The participant P13 that we
suspected to be an outlier is closer to the random participants
than the other real participants. He was therefore excluded
for the rest of the analysis. However, the presented tech-
nique did not allow to highlight different strategies across
the participants, even when using more dimensions and re-
moving the random individual results.
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Figure 1. Representation of the distances between the par-
ticipants using the two principal components of the PCA ap-
plied on the between-participant similarity matrix RV, with
the real participants (P) and random participants (R).

4 ANALYSIS OF THE CLASSIFICATION

4.1 Hierarchical clustering

The average distance matrix D across the individual ma-
trices Dp was submitted to a hierarchical clustering analy-
sis, which represents the average distances in D with a tree
called dendrogram. In this tree, the distance between two
items (here vocal imitations) is represented by their height

of fusion (i.e. the height of the node linking the two items).
To identify significant clusters of items, the dendrogram

is usually cut at a given height of fusion. As an alternative
clustering method, we propose here to use a threshold of
inconsistency. The advantage of the inconsistency is to em-
phasize compact subclasses that would not be revealed using
the height of fusion. The inconsistency coefficient charac-
terizes a given node by comparing its height of fusion with
the respective heights of fusion of its non-leaf subnodes:

inconsistency =
height of fusion − μd

σd
(5)

where μd and σd are respectively the mean and the standard
deviation of the height of fusion of the d highest non-leaf
subnodes. The depth d specifies the maximum number of
non-leaf subnodes to include in the calculation. The maxi-
mum number is used if there are enough non-leaf subnodes,
otherwise all non-leaf subnodes are included. The inconsis-
tency coefficient of a given node is positive, having a value
set to 0 for leaf nodes, and increasing with the inner dissim-
ilarity of the objects merged by that node.
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Figure 2. Dendrogram of the vocal imitations (labeled using the imitator’s label followed by the label of the imitated sound).

4.2 Dendrogram of the vocal imitations

The dendrogram of the imitations is represented in Figure 2
(using the unweighted average linkage method). We created
the clusters with a threshold of inconsistency equal to 1.45
(using a maximal depth so that for each node, all its non-leaf
subnodes are included in the calculation). We chose this
threshold by decreasing the inconsistency, and so increas-
ing the number of clusters, until the created clusters did not
seem coherent to us anymore. It is important to note that
the 6 imitations of a given sound are not systematically in
the same cluster — in fact, only the sounds G1 and L2 have
their 6 imitations clustered together. Our hypothesis is that
it is related to the quality of the vocal imitations of a given
sound, or at least to the agreement between participants on
the way to imitate a given sound. As we want to highlight
common acoustic invariants in the imitated sounds, we fo-
cused on 7 clusters that seemed relevant to us:

(1) G1 made up of 6 imitations of the gas G1;

(2) G2 made up of 5 imitations of the gas G2;

(3) G3 made up of 5 imitations of the gas G3;

(4) E made up of 12 imitations of electric sounds;

(5) L2 made up of 6 imitations of the liquid L2;

(6) S made up of 8 imitations of solids;

(7) S ′ made up of 5 imitations of solids.

We rejected X because it contains 2 imitations of a liquid
and 1 imitation of two gases. We also rejected Y because
although it contains 4 imitations of the same liquid L1, it
also contains 2 imitations of another liquid and 2 imitations
of an electric sound, and because its node of fusion is quite
high. Finally, we did not consider the clusters with 1 or 2
imitations (the other clusters gather at least 4 imitations).

5 ACOUSTIC PROPERTIES OF THE IMITATIONS

The goal of the analysis reported in this section is to predict
the classification of the 7 clusters described above from the
acoustical properties of the sounds. We used binary decision
trees with a few relevant acoustic descriptors. The descrip-
tors were computed with the IrcamDescriptor toolbox [16].

5.1 First level of the hierarchy

As a first step, we considered the first 3 classes in term of
height of fusion: G composed of G1, G2 and G3, E as de-
scribed previously, and R composed of L2, S and S ′. To ex-
plain these classes, we chose 2 descriptors: (MA) the mod-
ulation amplitude of the energy envelope to discriminate be-
tween the sounds with a repetitive pattern in R and the one-
block sounds in G and E , and (MSC) the loudness weighted
mean of the perceptual spectral centroid to discriminate be-
tween the unvoiced imitations with a high-frequency noisy
part in G and the voiced imitations with a relatively low fun-
damental frequency in E . The classes are perfectly discrim-
inated (see Figure 3) with the following rules:

(1) G : MA < 0.301208 and MSC ≥ −0.0697998;

(2) E : MA < 0.301208 and MSC < −0.0697998;

(3) R : MA ≥ 0.301208.

One may wonder if these rules generalize well if consider-
ing the first 3 classes with the 72 imitations, instead of the
first 3 classes with the 47 imitations of the 7 clusters. The
answer is rather positive even if there are 7 errors of classi-
fication (see Figure 4). These errors are in part due to the
fact that 2 of the 3 classes have imitations with a repetitive
pattern, whereas only R has such imitations within the 7
clusters considered. Thus MA is not sufficient anymore to
discriminate between 2 of the 3 classes.
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decision rules and a few relevant acoustic descriptors.
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Figure 4. Generalization of the binary decision rules for the
discrimination between G, E and R, to the discrimination
between the first 3 classes with the 72 vocal imitations.

5.2 Second level of the hierarchy

We then focused on G and explained the 3 subclasses G1,
G2 and G3 with 2 descriptors: (TI) the temporal increase of
the energy envelope, and (ED) the effective duration of the
energy envelope, because we remarked that the sounds in
G1 are short with a brutal attack, the sounds in G2 are long
with a smooth attack, and the sounds in G3 are long with a
brutal attack. The classes are perfectly discriminated (see
Figure 3) with the following rules:

(1) G1 : ED < 1.85578;

(2) G2 : ED ≥ 1.85578 and TI < 9.57589;

(3) G3 : ED ≥ 1.85578 and TI ≥ 9.57589.

We also focused on R and explained the 3 subclasses L2,
S and S ′ with 2 descriptors: (SDSC) the loudness weighted
standard deviation of the perceptual spectral centroid to dis-
criminate between the sounds with a varying timbre in L2

and S and the sounds with a constant timbre in S ′, and
(ZCR) the loudness weighted mean of the zero-crossing rate
to discriminate between the sounds with a quite low pitch in
L2 and the sounds with a higher pitch and some kind of

noise and roughness in S. The classes are perfectly discrim-
inated (see Figure 3) with the following rules:

(1) L2 : SDSC ≥ 0.0231424 and ZCR < 4692.32;

(2) S : SDSC ≥ 0.0231424 and ZCR ≥ 4692.32;

(3) S ′ : SDSC < 0.0231424.

6 DISCUSSION AND PERSPECTIVES

This paper reports on the analysis of a free classification
experiment with vocal imitations of environmental sounds.
The descriptions provided by the participants suggest that
they used different kinds of similarities to group together
the imitations: causal, semantic, acoustic, hedonic, types of
vocal production. We have therefore proposed a method to
assess the individual strategies. Using the RV coefficient,
we computed a measure of pairwise similarity between the
participants. Although we detected an outlier, we were not
able to highlight different strategies. This may be due to the
method, or to the fact that the different kinds of similari-
ties might actually overlap. This method must therefore be
tested on synthetic data and other results from classification
experiments to assess its robustness and reliability. Other
measures of pairwise similarity could alternatively be used.

The participants’ classifications were submitted to a hi-
erarchical clustering analysis. We created clusters using the
inconsistency coefficient, instead of the height of fusion. We
chose a relevant threshold of inconsistency and created 7
clusters, which seemed interesting for finding acoustic in-
variants involved in the recognition of the imitated sources.
However, a more systematic method to select the threshold
of inconsistency may be preferred. A potential technique
based on bootstrap is currently being developed.

It was finally possible to predict the 7 clusters by us-
ing binary decision rules with a few acoustic descriptors.
With only 6 relevant descriptors, we discriminated the clus-
ters perfectly. This suggests that the acoustic similarities

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 217



overlap with the similarities used by the participants to per-
form the classification. Several issues need to be considered
to extend these results to the imitated sounds. We worked
with non-onomatopoeic imitations so as to emphasize their
acoustic properties, and we chose clusters with respect to
their relative quality. But we should now assess the quality
of the imitations and their symbolic aspect, to ensure that
the acoustic invariants found in the imitations can be gener-
alized to the real sounds. Indeed, the imitations may allow
the discrimination between the perceptual categories but not
the recognition of these classes. Further experiments are re-
quired to address this issue.
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ABSTRACT

We propose a multi-layer structure to mediate essential com-
ponents in sound spatialization. This approach will facilitate
artistic work with spatialization systems, a process which
currently lacks structure, flexibility, and interoperability.

1 INTRODUCTION

The improvements in computer and audio equipment in
recent years make it possible to experiment more freely
with resource-demanding sound synthesis techniques such
as spatial sound synthesis, also known as spatialization. For
seeking new means of expression, different spatialization
applications should be readily combined and accessible for
both programmatic and user interfaces. Furthermore, quan-
titative studies on spatial music (e.g. [12]) remind us that
there are great individual and context-related differences in
the compositional use of spatialization and that there is no
one spatialization system that could satisfy every artist. In
an interactive art installation, the real-time quality of a spa-
tial rendering system in combination with the possibility to
control spatial processes through a multi-touch screen can
be of great importance. In contrast, the paramount fea-
tures in a performance of a fixed-media composition may
be multichannel playback and the compensation of non-
equidistant loudspeakers (in terms of sound pressure and
time delays). Additional scenarios may require binaural
rendering for headphone listening, multichannel recording,
up and down mixing, or a visual representation of a sound
scene. Moreover, even during the creation of one spatial
art work, the importance of these requirements may change
throughout different stages of the creative processes.

Guaranteeing efficient workflow for sound spatialization
requires structure, flexibility, and interoperability across all
involved components. As reviewed in the following section,
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common spatialization systems too often give no considera-
tion to these requirements.

2 REVIEW OF CURRENT PARADIGMS

2.1 Digital Audio Workstations - DAW

Many composers and sound designers use DAWs for de-
signing their sound spatialization primarily in the context
of fixed media, tape-music, and consumer media produc-
tion. A number of DAWs are mature and offer a systematic
user interface, good project and sound file management, and
extendability through plug-ins to fulfill different needs.

DAWs mainly work with common consumer channel
configurations; mono, stereo and 5.1. However, through
focusing on consumer media products, multichannel capa-
bilities are limited. ITU 5.1 [6], a surround sound format
with equidistant loudspeakers around an ideal located lis-
tener, is the most common multichannel format. Its artistic
use may be limited because 5.1 favors the frontal direction
and has reduced capabilities for localizing virtual sources
from the sides and back. Recent extensions up to 10.2 are
available 1 , but are insufficient for emerging reproduction
techniques such as Wave Field Synthesis or Higher Order
Ambisonics. Also, in art installations or concert hall envi-
ronments, non-standard loudspeaker setups are common due
to artistic or practical reasons, varying in number and ar-
rangements of loudspeakers. These configurations are typi-
cally unaccounted in DAWs and therefore often difficult to
use.

DAW surround panners often comprise a parameter
named blur, divergence, or spread that controls the appar-
ent source width through modifying the distributed sound
energy among loudspeakers. Although this parameter en-
riches the creative possibilities, it is often either missing or
only indirectly accessible, e.g. through changing the dis-
tance of the sound source.

1 A comparison of DAWs concerning their multichannel audio capabili-
ties can be seen on http://acousmodules.free.fr/hosts.htm.
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2.2 Media programming environments

Various media programming environments exist that are ca-
pable of spatial sound synthesis, e.g. SuperCollider, Pure
Data, OpenMusic, and Max/MSP. In order to support in-
dividual approaches and to meet the specific needs of com-
puter music and mixed media art, these environments enable
the user to combine music making with computer program-
ming. While aspiring to complete flexibility, they end up
lacking structured solutions for the specific requirements of
spatial music as outlined in section 1. Consequently, nu-
merous self-contained spatialization libraries and toolboxes
have been created by artists and researchers to generate vir-
tual sound sources and artificial spaces, such as Space Unit
Generator [26], Spatialisateur [7], or ViMiC [3]. Also tool-
boxes dedicated to sound diffusion practice has been devel-
oped, e.g. BEASTmulch System 2 , ICAST [1]. Each tool,
however, may only provide solutions for a subset of com-
positional viewpoints. The development of new aesthetics
through combining these tools is difficult or limited due to
their specific designs.

2.3 Stand-alone Applications

A variety of powerful stand-alone spatialization systems are
in development, ranging from directional based spatializa-
tion frameworks, e.g. SSR [4], Zirkonium [19], and Audi-
tory Virtual Environments (AVE), e.g. tinyAVE [2] to sound
diffusion and particle oriented approaches, e.g. Scatter [9].
Although these applications usually promote their graphical
user interfaces as the primary method to access their em-
bedded DSP-algorithms, a few strategies to allow commu-
nication from outside through self-contained XML, MIDI or
OSC [25] protocols can be found.

3 A STRATIFIED APPROACH TO THE
SPATIALIZATION WORKFLOW

When dealing with spatialization in electroacoustic com-
position or linear sound editing, the workflow comprises a
number of steps in order to construct, shape and realize the
spatial qualities of the work. The creative workflow might
appear to be different when working on audio installations
or interactive/multimedia work. Still, we identified underly-
ing common elements when spatialization is used. For this
reason a stratified approach, where the required processes
are organized according to levels of abstraction is proposed.

This model is inspired by the Open Systems Interconnec-
tion network model (OSI) 3 , which is an abstract descrip-
tion for layered communications and computer network pro-
tocol design. OSI divides network architecture into seven

2 http://www.beast.bham.ac.uk/research
3 http://en.wikipedia.org/wiki/OSI_model

layers that range from top to bottom between the Applica-
tion and Physical Layers. Each OSI-layer contains a col-
lection of conceptually similar functionalities that provide
services to the layer above it and receives services from the
layer below it.

As depicted in Figure 1, six layers have been defined in
our model.

Authoring

Communication 
Streams

Decoded Audio Stream

Encoded Audio Stream

Render Instructions

Processing 
Layers

Scene Description

P

Encoding

Decoding

Hardware Abstraction

Scene Control Data

2

3

4

5

6

B

C

D

E

Sce5

Physical Devices1

Audio Data A

Figure 1. Layers and streams in sound spatialization

3.1 Physical Device Layer

The major functionality of this layer is to establish the
acoustical connection between computer and listener. It de-
fines the electrical and physical specifications of devices that
create the acoustical signals, such as soundcards, amplifiers,
loudspeakers, and headphones.

3.2 Hardware Abstraction Layer

This layer contains the audio services that run in the back-
ground of a computer OS and manages multichannel audio
data between the physical devices and higher layers. Ex-
amples are Core Audio, ALSA, or PortAudio. Extensions
such as JACK, Soundflower, Rewire and networked audio
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streaming can be used for more complex distributions of au-
dio signals among different audio clients.

3.3 Encoding and Decoding Layers

In the proposed model the spatial rendering is considered
to consist of two layers. The Encoding Layer produces en-
coded signals containing spatial information while remain-
ing independent of and unaware of the speaker layout. The
Decoding Layer interprets the encoded signal and decodes
it for the speaker layout at hand. According to [24, p. 99]
this makes the creative process and the created piece more
portable and future-proof because different speaker layouts
can be used as long as a decoder is available. Examples
of such hierarchical rendering methods are Ambisonics B-
Format, Higher Order Ambisonics, DIRAC [18], MPEG
Surround, AC-3, or DTS.

Not every rendering technique generates intermediate en-
coded signals, but instead can be considered to encapsulate
the Encoding and Decoding Layers in one process. Some
examples of such renderers are VBAP [16], DBAP [8],
ViMiC [3] and Ambisonics equivalent panning [11]. Pro-
cessing of sources to create an impression of distance, such
as Doppler effect, gain attenuation and air absorption filters,
are considered to belong to the Encoding Layer, as does
the synthesis of early reflections and reverberation, i.e. as
demonstrated by surround effects that employ B-format im-
pulse responses convolution.

3.4 Scene Description Layer

This layer mediates between the Authoring Layer above and
the Decoding Layer below through an abstract and indepen-
dent description about the spatial scene. This description
can range from a simple static scene with one virtual sound
source up to complex dynamic audio scenes including multi-
ple virtual spaces. This data could also be stored to recreate
spatial scenes in a different context. Specific (lower-level)
render instructions are communicated to the Encoding Layer
beneath. Examples are ASDF [4], OpenAL [5] or SpatDIF
[13].

3.5 Authoring Layer

This layer contains all software tools for the end-user to cre-
ate spatial audio content without the need to directly control
underlying processes. Although these tools may remarkably
differ from each other through functionality and interface
design to serve the requirements for varicolored approaches
to spatialization, the communication to the Scene Descrip-
tion Layer must be standardized. Examples are symbolic
authoring tools, generative algorithms, and simulations of
emergent behaviors (swarms or flock-of-birds); or, more
specifically as discussed below, Holo-Edit, and ambimon-
itor/ambicontrol.

3.6 Concluding remarks

OSI provided the idea that each layer has a particular role
to play. The stratified model does not enforce one particu-
lar method for each layer; rather, a layer offers a collection
of conceptually similar functions. This is analogue to how
the TCP and UDP are alternative protocols working at the
Transport Layer of the OSI model.

Spatialization processes should be modularized accord-
ing to the layered model when feasible. With standardized
communication to and from the layers, one method for a
layer can easily be substituted for another, enhancing a flex-
ible workflow that can rapidly adapt to varying practical sit-
uations and needs.

4 STRATIFIED TOOLS

Following, the authors discus several of their developments
which strive to establish and evaluate the proposed stratified
concept.

4.1 SpatDIF

The goal of the Spatial Sound Description Interchange For-
mat (SpatDIF) is to develop a system-independent language
for describing spatial audio [13] that can be applied around
the Scene Description Layer to communicate between au-
thoring tools down to the Encoding/Decoding Layers.

Formats that integrate spatial audio descriptors, such as
MPEG-4 [23] or OpenAL, did not fully succeed in the mu-
sic or fine arts community because they are primarily tai-
lored to multimedia or gaming applications and don’t nec-
essarily consider the special requirements of spatial music,
performances in concert venues, and site-specific media in-
stallations. To account for these specific requirements, the
SpatDIF development is consequently a collaborative effort
that jointly involves researchers and artists.

A database 4 has been created to gather information
about syntax and functionalities of common spatialization
tools and to identify the lowest common denominator, the
“Auditory Spatial Gist”, for describing spatialized sound.
Beside these essential Core Descriptors, a number of exten-
sions have been proposed to systematically account for en-
hanced features, e.g. the Directivity Extension, which deals
with directivity information of a virtual sound source; the
Acoustic Spaces Extension that contains acoustical prop-
erties of virtual rooms, or the Ambisonics Extension that
handles ambisonics-only parameters. The latter is an exam-
ple where SpatDIF mediates between the processing layers,
starting from Layer 3 to Layer 6.

Although SpatDIF does not imply a specific communica-
tion protocol or storing format, at present, OSC for stream-
ing and SDIF [22] as a storing solution are used for piloting.

4 http://redmine.spatdif.org/wiki/spatdif/SpatBASE
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4.2 ICST Ambisonics

The ICST Ambisonics Tools is a set of externals for
Max/MSP [21]. The DSP externals ambiencode∼ and
ambidecode∼ generate and decode Higher Order Ambison-
ics and are part of the Encoding and Decoding Layer.

Ambimonitor and ambicontrol complete the set as con-
trol tools for the Authoring Layer. Ambimonitor generates
coordinate information for the DSP objects, presents the
user with a GUI displaying point sources in an abstract 2D
or 3D space and is equipped with various key commands,
snapshot and file I/O capabilities. Ambicontrol provides a
number of methods that control motion of points in the am-
bimonitor’s dataset. Automated motions, such as rotation
or random motion, optionally constrained in bounding vol-
umes and user defined trajectories can be applied to single
or grouped points. Trajectories and state snapshots can be
imported/exported as an XML file, which will be replaced
by a SpatDIF compliant formatting in a next release.

A novel panning algorithm [11] was derived from in-
phase ambisonics decoding and implemented as a Max/MSP
external entitled ambipanning∼. It encapsulates the En-
coding and Decoding Layer by transcoding a set of mono
sources in one process onto an ideally circular speaker setup
with an arbitrary number of speakers. The algorithm works
with a continuous order factor, permitting the use of indi-
vidually varying directivity responses.

4.3 Jamoma

Jamoma 5 is a framework [14] for structuring and control-
ling modules in Max/MSP. Work on spatialization has been
of strong interest to several of the developers, and solutions
for spatialization in Jamoma have a stratified approach in
accordance with the proposed model.

The Max/MSP signal processing chain only passes mono
signals, and for multichannel spatial processing the patch
has to be tailored to the number of sources and speakers.
If Max/MSP is considered a programming environment and
the patch is the program, a change in the number of sources
or speakers requires a rewrite of the program, not just a
change to one or more configuration parameters. Jamoma
addresses this by introducing multichannel audio signals
between modules with all channels wrapped onto a single
patch cord. Jamoma Multicore 6 is being developed as a
more robust solution than the current approach for handling
multichannel signals which are also used between the En-
coding, Decoding and Hardware Abstraction Layers.

Jamoma modules have been developed to convert multi-
channel signals, play and record multichannel sound files,
perform level metering and pass multichannel signals on to
the sound card or virtual auxiliary bus. These are supple-

5 http://www.jamoma.org
6 http://code.google.com/p/jamulticore/

mented by modules compensating for sound-pressure and
time-delay differences in non-equidistant loudspeaker ar-
rangements.

Ambisonics is the only spatialization method imple-
mented in Jamoma that separates spatial encoding and de-
coding. 1st to 3rd order B-format encoding of mono sources
is implemented using the ICST externals[21]. Other mod-
ules are available to encode recordings made with the Zoom
H2 and to encode UHJ signals. Encoded signals can be ma-
nipulated, i.e. the balance between the encoded channels
can be adjusted, or the encoded signal can be rotated, tilted
and tumbled. The decoding module for up to 3rd order B-
format signals uses the ICST externals while a module for
binaural decoding uses Spatialisateur [7]. B-format signals
can also be decoded to UHJ.

Several other popular spatialization algorithms are avail-
able as Jamoma modules: VBAP [17], ViMiC [3] and
DBAP [8]. Consequently, one rendering technique can eas-
ily be substituted for another, or several rendering tech-
niques might be used in tandem for a variety of spatial ex-
pressions, analogues to how an artist will use many different
brushes in one artwork.

Prior to rendering, additional modules offer Doppler, air
absorption and distance attenuation source pre-prosessing.
All modules operating at the Encoding Layer are SpatDIF-
compliant and hence provide the same interface to control-
ling modules operating at higher layers.

At the Scene Description Layer, a module provides a sim-
ple interface for defining the position of sources. The same
module can be used to set loudspeaker positions for the De-
coding Layer.

At present, two modules operate at the Authoring Layer;
Boids simulation of co-ordinated animal motion and a scene
manipulator allows geometric transformations (e.g. scaling,
skewing, rotation) and stochastically driven manipulations
of the whole scene in three dimensions. In addition, Jamoma
can be bridged to Holo-Edit as discussed in the next section.

4.4 GMEM Holo-Edit

Initiated by L. Pottier [15], Holo-Edit is part of the GMEM
Holophon project and conceptualized as an authoring tool
for spatialization.

This standalone application uses the timeline paradigm
found in traditional DAWs to record, edit, and play back
control data. The data is manipulated in the form of trajec-
tories or sequences of time-tagged points in a 3D space, and
the trajectories can be generated or modified by a set of tools
allowing specific spatial and temporal behaviors including
symmetry, proportion, translation, acceleration, and local
exaggeration. Different scene representation windows allow
the user to modify data from different (compositional) view-
points: Room shows a top view of the virtual space, the Time

Editor shows the traditional DAW automation curve view
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and, finally, the Score Window represents the whole compo-
sition in a multi-track block-based view. Holo-Edit’s space
and time representations are generic and can be adapted to
any renderer at the Encoding Layer. To allow precise align-
ment of sound cues to desired spatial movements, waveform
representations of sounds and associated trajectories are dis-
played and can be edited together.

Holo-Edit uses OSC for communicating with the desired
spatial sound renderer. Here, the main challenge is to adapt
and format the data stream that fits the specific rendering al-
gorithm syntax (e.g. coordinate system, dimensions, units).
To overcome this challenge, a Holo-Edit communication in-
terface that handles sound file playback and position data
of loudspeakers and sound sources through its standardized
OSC-namespace was developed for the Jamoma environ-
ment. Therefore, Holo-Edit can be used as the main author-
ing tool for spatialization, while all DSP audio processes
are executed in Jamoma (Figure 2). The communication be-
tween Holo-Edit and Jamoma is full-duplex, thus also en-
ables the recording of trajectories in Holo-Edit from any
real-time control interface addressable through Jamoma.

5 DISCUSSION & CONCLUSION

The examples from the previous section illustrate that a
stratified model can be fruitful for development within me-
dia programming environments. The modular framework
TANGA [20] for interactive audio applications reveals a re-
lated separation of tasks.

A few stand-alone applications are designed with a sim-
ilar layered approach that allows control of different spatial
rendering algorithms from one common interface, e.g. [4].
Artists and researchers would benefit greatly if all these “lo-
cal solutions” could be accessed by any desired authoring
tool and integrated into existing environments.

After an ICMC 2008 panel discussion on interchange
formats for spatial audio scenes 7 and informal discussion
showed that adequate spatialization tools for working in
DAWs are missing, but strongly desired. The proposed
stratified approach would be more flexible than the cur-
rent DAW architecture where tools for spatialization are
tied to a number of consumer channel configurations. The
object oriented mixer approach proposed in [10] suggests
that stratification can be employed in DAWs. A potential
limitation might be imposed by the fact that automation in
DAWs generally is represented as time-tagged streams of
one-dimensional values while spatial information is gener-
ally multi-dimensional.

One keystone may be to define and agree on a meaningful
communication format for spatialization. Therefore Spat-
DIF needs to be further developed which will culminates in
an API that easily integrates in any spatialization software.

7 http://redmine.spatdif.org/wiki/spatdif/Belfast_2008
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ABSTRACT

This paper proposes a pattern classification approach to de-

tecting the pitches of multiple simultaneous sounds. In or-

der to deal with the octave ambiguity in pitch estimation, a

statistical classifier is trained which observes the value of a

detection function both at the position of a candidate pitch

period and at its integer multiples and submultiples, in order

to decide whether the candidate period should be accepted

or rejected. The method improved significantly over a refer-

ence method in simulations.

1 INTRODUCTION

A fundamental problem of basically all pitch detection func-

tions (such as the autocorrelation function) is that they do

not show a peak only at the position of the true pitch, but

also at twice and half the correct pitch, and often at all mul-

tiples and submultiples of it. This ambiguity is particu-

larly challenging in multipitch detection where the detection

function easily becomes congested with spurious peaks due

to the ambiguity associated with each component sound.

To tackle the problem, multipitch estimation methods typ-

ically search for a set of pitch frequencies that best explain

all the peaks in the detection function. Both joint estimation

of multiple pitches and iterative detection and cancellation

have been proposed (see [1, 2] for a review). A limitation

of many of these techniques is that they produce a discrete

set of detected pitch values, not a continuous function which

would show the likelihoods of all pitch candidates within a

given range. The latter would be more desirable for feature

extraction purposes, where the actual detection stage is post-

poned to processes that look at a larger time scale and may

include musicological constraints.

In this paper, we investigate a classification approach to

pitch analysis. This approach has been previously investi-

gated by Ellis and Poliner in [3], but they considered the

multipitch analysis for a specific instrument (piano) and the

applied technique was different from the present one.
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Figure 1. Overview of the method. See text for details.

2 METHOD

Figure 1 shows an overview of the proposed method. The

first two steps, spectral whitening and harmonic transform,

can be seen as preprocessing to distill information that is rel-

evant for pitch detection. The steps are similar to the front-

end used in [4] and produce a pitch salience function s(τ)
where peaks indicate potential pitch periods in the input.

The latter two steps, feature extraction and classification,

constitute the core of the method proposed here. They pro-

duce an enhanced salience function z(τ), where the peaks

that correspond to correct periods are emphasized and ex-

traneous ones are suppressed.

2.1 Level normalization and spectral whitening

The input audio signal x(n) is blocked into 93 ms anal-

ysis frames that are processed independently. The signal

within each frame is Hamming windowed, level-normalized

to unity variance, zero-padded to twice its length, and then

discrete Fourier transformed to obtain spectrum X(k).
Spectral whitening, or flattening, is applied on X(k) in

order to suppress timbral information and thereby make the

subsequent pitch analysis more robust to various sound sources.

This is achieved by calculating power σ2
c of the signal within

critical-band subbands c and by scaling the signal within

each band by γc = σν−1
c , where ν = 0.16 is a parameter de-

termining the amount of whitening. The resulting whitened

magnitude spectrum is denoted by Y (k).

2.2 Harmonic transform

A harmonic transform is applied on the spectrum Y (k) in

order to calculate the saliences s(τ) of pitch period candi-
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dates τ :

s(τ) =
H∑

h=1

g(τ, h) max
k∈κτ,h

Y (k), (1)

where the set κτ,h defines a range of frequency bins in the

vicinity of the h:th overtone partial of the pitch candidate

fs/τ (fs denoting the sampling rate) and H = 20. More ex-

actly, κτ,h = {�hK/(τ + Δτ/2)� , . . . , �hK/(τ − Δτ/2)�} ,
where �·� denotes rounding to the nearest integer, K is the

length of the Fourier transform, and Δτ = 0.5 denotes the

spacing between successive period candidates τ .

The weights g(τ, h) are defined after [4] and are of the

form g(τ, h) = (fs/τ+ε1)/(hfs/τ+ε2), where ε1 = 52 Hz

and ε2 = 320 Hz. Note that the weights reduce to 1/h if the

moderation terms ε1 and ε2 are omitted.

2.3 Feature extraction

Peaks in the salience function s(τ) are useful for indicating

potential fundamental frequencies in the input signal. How-

ever, a pitched sound in the input does not only produce a

peak at the corresponding pitch period τ , but also at multi-

ples and submultiples of τ , complicating the pitch detection.

In order to do the detection more robustly, we observe

s(τ) at the candidate period τ , but also at its multiples and

submultiples. Let us define a vector aτ :

aτ = [1, s(τ), s(2τ), . . . , s(Jτ), s(τ/2), s(τ/3), . . . , s(τ/J)]T

where J = 5 is the maximum (sub)multiple of τ considered.

The length of aτ is 2J . We then form a feature vector

vτ =

⎡
⎢⎢⎢⎣

b0(τ)aτ

b1(τ)aτ

.

.

.

bM−1(τ)aτ

⎤
⎥⎥⎥⎦

where bm(τ) = [log(τ + 1)]m, m = 1, . . . , M , are basis

functions that depend on the period τ and allow the subse-

quent statistical model to treat short and long periods differ-

ently. The length of vτ is 2JM .

From here on, we consider data from different analysis

frames and use vi,τ to denote the feature vector correspond-

ing to period candidate τ in frame i. For the purpose of

training, we collect vi,τ corresponding to the true periods in

each frame, plus those corresponding to the 20 next-highest

“false” peaks in s(τ). The vectors vi,τ in different frames

and for different τ are stored as columns in a large matrix

V. The matrix is then processed by removing the uppermost

row which is b0(τ) · 1 ≡ 1 at all columns. The rest of the

rows are normalized to zero mean and unity variance. The

resulting normalized matrix is denoted by W. The columns

of W correspond to individual feature vectors, wi,τ .

Finally, a linear transform is employed to decorrelate the

features and to reduce their dimensionality. We tested prin-

cipal component analysis (PCA) and linear discriminant anal-

ysis (LDA) for this purpose. They both produce a transform

matrix A of size ((2JM−1)×D). The transformed feature

vectors ui,τ with dimensionality D are obtained by

ui,τ = ATwi,τ . (2)

2.4 Classification

Gaussian mixture models (GMMs) are used to classify the

peaks in s(τ) either as “true” or “false” pitch periods. A

GMM is defined as

p(ui,τ |θ) =
J∑

j=1

βjN (ui,τ ;μj ,Σj), (3)

where N (u;μ,Σ) denotes Gaussian distribution with mean

μ and covariance Σ. The shorthand θ = {βj , μj ,Σj} is

used to refer to all the parameters of a GMM.

Two GMM models are trained, using the feature vec-

tors corresponding to the “true” and “false” periods, respec-

tively. The resulting model parameters are denoted by θT

and θF, respectively.

Enhanced salience zi(τ) of period candidate τ in frame i
is then defined as

zi(τ) = log p(ui,τ |θT) − log p(ui,τ |θF). (4)

The above formula calculates salience as the difference of

the log-likelihoods for the two models. It is important to use

the model for the false peaks as a “background” model in

(4): including only the first term on the right-hand side of (4)

would give a low salience for an exceptionally strong peak

since it does not fit ideally to the model of true peaks. Calcu-

lating the salience as the difference between the two models

corrects this problem, since these exceptionally strong cases

are even less likely in the background model.

3 RESULTS

The proposed method was tested on mixtures of 1, 2, 4, and

6 simultaneous sounds, randomly mixing sounds from 32

different musical instruments. Half of the data was contam-

inated with random drum sounds using 0 dB SNR. The mod-

els were trained using 2600 sound mixtures and tested using

a set of 1300 different mixtures. The results are averaged

over the test cases.

Instrument samples were obtained from the McGill Uni-

versity Master Samples collection, the University of Iowa

website, IRCAM Studio Online, and by making indepen-

dent recordings for the acoustic guitar. Instruments repre-

sented are the piano, the guitar, mallet percussions (marimba,

vibraphone), brass and reed instruments, strings, and flutes.
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Figure 2. The left panel shows precision and recall for the

proposed method with LDA (solid line), with PCA (dotted

line) and for the baseline method (dashed line). The right

panel shows F-measure as a function of precision.
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Figure 3. Recall and F-measure as a function of precision

for the proposed method with LDA. The four curves from

top to down correspond to polyphonies 1, 2, 4, and 6.

Figure 2 shows precision, recall, and F-measure for the

proposed enhanced salience function z(τ) and, for compar-

ison, for the raw salience function s(τ) used in [4] (here

the iterative pitch detection and cancellation was not em-

ployed). The results were obtained by fixing a threshold

value T , picking all the peaks above the threshold from all

the frames, and then calculating the resulting precision π,

recall ρ, and F-measure ϕ = 2πρ/(π + ρ). As can be seen,

the proposed method improves significantly over the base-

line method.

Figure 3 shows how the recall and F-measure behave

in different polyphonies, varying the number of concurrent

sounds from 1 to 6. The number of concurrent sounds in

the mixtures was not given, but a single threshold value was

again used (common to all polyphonies) and peaks above the

threshold were picked from the enhanced salience function.

4 CONCLUSIONS

The proposed method for calculating pitch salience improved

significantly over the baseline method in simulations. Fur-

thermore, LDA reduces the feature vector dimensionality to

one and does not require more than one Gaussian in the

GMM. This means that the proposed method is computa-

tionally efficient and can be applied at all points of the raw

salience function s(τ), not only at the positions of the main

peaks. This is particularly useful for smooth pitch content

visualization and feature extraction purposes.
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ABSTRACT

This  paper  presents  the  sonified  music  stand,  a  novel 
interface  for  musicians  that  provides  real-time feedback 
for professional musicians in an auditory form by means 
of  interactive  sonification.  Sonifications  convey 
information  by  using  non-speech  sound  and  are  a 
promising means for musicians  since they (a)  leave the 
visual sense unoccupied, (b) address the sense of hearing 
which is already used and in this way further trained, (c) 
allow to relate feedback information in the same acoustic 
medium  as  the  musical  output,  so  that  dependencies 
between  action  and  reaction  can  be  better  understood. 
This  paper  presents  a  prototype  system  together  with 
demonstrations  of  applications  that  support  violinists 
during  musical  instrument  learning.  For  that  a  pair  of 
portable  active  loudspeaker  has  been  designed  for  the 
music  stand  and  a  small  motion  sensor  box  has  been 
developed to be attached to the bow, hand or hand wrist. 
The data are sonified in real-time according to different 
training objectives.  We sketch several  sonification ideas 
with sound examples and give a qualitative description of 
using the system.

1. INTRODUCTION

Musical  instrument  learning  is  a  complex  multi-modal 
real-time activity that involves processes from low-level 
coordinated  motor  control,  auditory  perception  up  to 
automation  and  complex  cognitive  processes  such  as 
understanding  and  learning.  It  is  representative  for  the 
larger  class  of  human  activity  where  expression  and 
behavior  shape  and  develop  during  practice  towards  a 
specific  goal,  such  as  in  dance  and  sports.  Due  to  its 

richness  and 
complexity,  novices 
tend  to  allocate  their 
attention  on  the 
closed-loop 
interaction  so  that 

they comply with a coarse level of control, for example to 
produce the accurate frequency or to generate the accurate 
rhythm,  and  this  strong  focus  on  primary  objectives 
induces a neglecting of other important aspects such as a 
good body posture and alike that become relevant at later 
stages.  Particularly,  wrong coordination and posture can 
even cause physical problems for musicians and lead to a 
lot of effort to be relearned. Therefore techniques that can 
actively  shift  the  player's  focus  of  attention  during 
practice in a early learning phase are highly motivated. As 
second aspect, the training of the hearing abilities and the 
reaction to acoustic events is one of the core abilities in 
learning  musical  instruments  and  singing.  Sonification 
supports learning, by providing additional information in 
real-time acoustically  and helps the students to use and 
train their ears  with less visual  distraction, compared to 
visual feedback.

In  this  paper  we  present  an  approach  that  uses 
sonification1,  the  non-speech  auditory  display  of 
information  as  real-time  feedback  for  the  musician. 
Sonification,  as  described  in  [1] addresses  our  highly 
developed yet often neglected sense of listening. Indeed, 
compared to visual  display,  sound does not demand the 
user to visually attend a specific display location, sound is 
processed over a larger range of frequencies (typically the 
useful pitch range 50Hz to 5000Hz exceeds the visual 'one 
octave' from red to blue, and in the range from 0.1 to 10 
Hz we perceive  temporal  structure  and  rhythm),  and  is 
highly capable  to  direct  and  alter  the  human's  focus  of 
attention. Furthermore, we are capable to attend to even 
subtle  cues  in  complex  sounds  simultaneously  and 
perceive  the  sound  as  a  whole  at  the  same  time. 
Concerning coordinated rhythmical  activity,  by listening 
we  are  capable  of  discovering  even  faint  changes  in 
rhythm as well as coordination problems. 
With this motivation, the idea is to measure the player's 
motor activity and to reflect specific properties of his/her 

1See www.sonification.de/main-def.shtml for a definition.
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performance  as  an  task-specific  and  unobtrusive 
interactive  sonification,  so  that  on  the  one  hand,  the 
musician  can  still  focus  on  the  musical  sounds  but, 
without change of media, receives additional information 
to  keep  awareness  on  relevant  aspects  of  the  physical 
execution. To be successful, a careful selection of sensing 
technology,  an  appropriate  and  well-defined  task,  a 
suitable  feature  extraction  process  by  means  of  data 
mining  techniques  and  a  sonification  design  which 
combines  well  with  the  musical  signal  need  to  come 
together, so that a system will be acceptable to musicians 
and helpful for long-term use.

The sonified music stand is our approach to integrate the 
essential  technology  into  a  tool  that  is  typically  in  use 
anyway  for  musicians.  It  represents  a  first  principled 
approach towards better closed-loop auditory interaction 
systems, here developed and optimized for a specific user 
group and application, but conceptually reaching beyond 
this  case  towards  general  sonification-based  interaction 
support. The paper continues with a description of design 
aspects  and  a  presentation  of  the  technology.  This  is 
followed by a section on the selection of movements and 
requirements  for  the  application  of  violin  learning 
support. In turn, sensor data of bow strokes are shown and 
features  are  extracted.  Section  5  presents  our  first 
interactive  sonifications  implemented  in  SuperCollider 
and  projected  via  the  sonified  music  stand.  Finally  we 
discuss  our  first  experiences  and  our  plans  for 
continuation of this research. 

2. THE SONIFIED MUSIC STAND – IDEA, 
OBJECTIVES AND DESIGN

The  closed-loop  audio  feedback  supports  students  in 
learning  and  performing  situations,  similar  to  the 
AcouMotion  system  in  [2].  Complex  movements  are 
divided into several simple ones. Audio feedback supports 
the active learning phase by significant acoustic events for 
instruction in real-time. In this paper, scenarios of violin 
learning and teaching are shown, but other possibilities in 
the area of instrumental teaching in general and learning 
of movements, gestures and postures are possible.
A pair of self-made and developed three-cornered active 
stereo speakers is assembled on the left and right side of a 
conventional music stand. It is connected with the audio 
out of a laptop computer. The computer receives data from 
a 5 DOF sensor and generates audio out via SuperCollider. 
The  sensor  data  are  processed  and  several  levels  of 
difficulty allow user-adapted feedback, new experimental 
learning  scenarios  and  a  controlled  learning  effect.  The 
evaluation  process  includes  sensor-based  motion 

capturing,  evaluated  on music  instrument  learning  based 
scenarios and audio feedback.

2.1. Sensor Hardware

Similar  to the carbon K-Bow form Keith McMillen  [3] 
and the used technologies from [4] and [5], acceleration 
and gyroscope sensor data were measured.
In  our  exemplary  use  cases,  5  degrees  of  freedom, 
acceleration  sensors  for  x-,  y-,  and  z-axis  and  2 
gyroscopes  are  analyzed.  The  data  from the  sensor  are 
transmitted via radio frequency. A small Lithium polymer 
(Lipo) battery is directly attached for power supply. This 
small and light-weight, about 20 gr. sensor-module can be 
used as a standalone tool, just for movement learning or 
clipped to a bow of a string instrument.

2.1.1. The Gyroscope 

A IDG-300 dual-axis angular rate sensor from InvenSense 
is used. This allows the measurement of the rotation of the 
x- and y-axis of the bow stroke (see fig. 2). The x-axis 
rotation is an additional compensating motion for e.g. soft 
bowing  starts.  The  y-axis  rotation  is  besides  other 
functions relevant for pressure transfer onto the bow and 
to balance and change articulation and volume.

Figure 1. The sonified music stand
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2.1.2. The Accelerometer

The ADXL330 from InvenSense sensor is used, a small, 
thin,  low  power,  complete  x-,  y-,  and  z-axis 
accelerometer.  According  to  the  description  of  the  test 
cases in Sec. 3.1, every axis is important and has it's own 
defined  plane,  in  which  the  movement  is  performed. 
Thinking in planes and rotations helps to learn complex 
movements,  especially  when  the  movement  takes  place 
beside  your  body  and  you  the  player  hardly  see  it  or 
control it visually.

 

2.2. Loudspeaker Design

For the sonified music stand, we developed a new design 
of an active loudspeaker, which offers many advantages:
the new developed active loudspeaker is easy to use and 
can  be  attached  very  flexible  to  manifold  things  and 
surfaces.  The exceptional  shape,  the good sounding and 
energy-efficient  amplifier  allows  many  other  uses.  The 
introduced  cases  below  will  show  simple  sonification 

methods, where the loudspeaker can be used fixed to the 
music stand or stand-alone on a table or other surface.

2.2.1. The Three-Cornered Design

The side  view of  the  speaker  shows the  three-cornered 
shape.  It  allows  an  45°  angular,  right  angular  and  a 
parallel mounting of the loudspeakers. In the case of just 
putting them on a table, the sound 45° propagation is easy 
adaptable  to  the  listener's  ears  for  best  audio  quality 
results. In the other case of mounting them parallel to a 
screen or the music stand, the sound propagation is right-
angled and in the direction of the user sitting or standing 
in front of a monitor or the music stand.
The  three-cornered  design  diminishes  standing  waves 
compared to quadratic boxes because of the non-parallel 
walls. Furthermore, the robust construction of the cabinet 
reduces  the  transmission  of  the  inter-casing  wave 
propagation and vibration. These two advantages, besides 
the integrated amplifier, lead to good sound quality. The 
practical form-factor allows safe transportation of speaker 
pairs  in  cube-form  putting  them  together  membrane  to 
membrane.

2.2.2. Amplification, Low Energy Consumption and Battery

The active loudspeaker design allows simple usage with 
all  audio  sources  such  as  laptop  computers  and  mp3 
players.  For  amplification,  a  digital  chip is  used,  which 
provides high energy-efficiency and good sound quality. 

Figure 4. Loudspeaker without lateral housing

Figure 2. X-axis (left)  and y-axis (right) rotation of the 
hand

Figure 3. Motion coordinate system, x-, y-, and z-axis
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The mounting of the loudspeaker is done with clamps or 
hook-and-loop  fasteners,  depending  on  the  surface  and 
thickness of the music stand, monitors or other surfaces. 
Only a power and stereo cable is attached to the stereo 
amplifier  housed  in  one  loudspeaker,  the  other  one  is 
directly powered via one cable. This design allows the use 
of only one power cable for two speakers.

3. PERFORMANCE ASPECTS IN VIOLIN 
PLAYING

3.1. Methodical  and  systematical  learning  scenarios  for 
complex motor skills 

The following scenarios are basic extractions of beginners' 
violin  lessons.  Depending  on  the  age  of  the  pupil  or 
student,  different  approaches  exist.  One  of  these  is  the 
breakdown and fragmentation of a movement into several 
simpler action units, based on the ideas of Conrad von der 
Goltz  [6]  .  In  our  scenarios,  a  simple  bow-stroke  is 
decomposed  in  4  cases,  where  the  last  one  is  the 
“recomposition”  of  the  stroke.  This  is  not  only  a 
beginner's problem, this is even trained from time to time 
by advanced students  and professionals  to develop their 
skills  and  physical  awareness.  The sensor  and  the  real-
time  sonification  gives  us  the  possibility  to  train  these 
simplified movements and adding step by step more and 
more  complexity.  In  other  words,  this  means  the 
combination  of  simplified  movements  to  more  complex 
ones.  The  single  and  combined  movements  in  the 
following  cases  can  be  performed  simultaneously  or 
successively, with or without instrument.

Case 1: 
Problem: Movement of the hand in the x/y-plane (see fig. 
4), with zero deviation in the z-axis. 
Pedagogical  aspect:  Understanding  the different  planes 
of the bowing movement.
Idea: Drawing a line on a plane, for example on a virtual 
table. The pencil would draw a curve, accelerating in the 
x- and y-axis, but  the plane surface of the table gives a 
constant zero-acceleration of the z-axis. The x-plane itself 
has  different  horizontal  angles,  but  they  don't  change 
during one stroke. This is the so-called “string-plane”, the 
elbow and upper arm don't change their height,  just the 
forearm and hand move sidewards.
Result: The student gets an idea of the arm movement in 
one plane and the so-called “string-planes”.

Case 2: 
Problem:  Adding a second plane, the y-plane with zero 
deviation of the y-axis to the exercise, drawing a virtual 
straight line.
Pedagogical  aspect: Understanding  the “virtual  straight 
line” of bowing movement.
Idea: If you move your hand exactly along one direction 
so that  you  draw a perfect  line into the air beside your 
body, complex compensating movements of the hands and 
arms are necessary.  If you try this with a pupil the first 
time,  it  is  not  only  hard  to  understand  the  movement 
without  seeing your hands,  also practicing in front of a 
mirror is difficult,  because every change has to be side-
inverted. 
Result:  Students  learn  to  move  the  hand  on  defined 
straight lines, without looking to it.

Case 3: 
Problem:  Starting the movement of case  2 with a short 
acceleration  phase,  followed  by  constant  speed  without 
any  acceleration  and  deceleration  at  the  end  of  the 
movement.
Pedagogical aspect: The recognition of a constant low or 
high acceleration  and  constant  speed  of  a  movement  in 
3d-space is very difficult. 
Idea:.  Acceleration,  the  constant  moving  speed  and 
deceleration  in  one single move influence  the produced 
sound.  These  three  aspects  are  realized,  learned  and 
trained in this exercise, supported by sonification. 
Result: The student gets an idea of the 3 phases of a bow 
stroke  and  its'  influence  to  sound  generation,  the 
acceleration phase, the constant bow speed phase and the 
deceleration phase. 

Case 4: 
Problem:  Adding a defined rotation of some degrees at 
the beginning of the movement, as described in the cases 
before to the x-axis.
Pedagogical  aspect:  Learning  and  understanding  the 
movement  according  to  playing in reality  with more  or 
less bow-hairs influencing the attack and volume.
Idea: The data from the gyroscope and sonification allow 
an easier evaluation of this matter. Practicing in front of a 
mirror  is  difficult,  because  the  posture  and  movement 
changes  are  very  small  and  hard  to  see.  The fine  grain 
solution  of  the  sensors  allows  detecting  them  and 
augmenting them for rendering sonified feedback.
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3.2. Sonification for short- and long-term monitoring

Sonification  allows  short  and  long-term  unobtrusive 
monitoring  and  feedback  of  many  parameters  to  the 
musical  instrument  player  in  real-time.  The  above 
described  cases  1  -  4  demonstrate  a  short-term 
observation. But long-term use allows the recognition of 
mistakes  or  symptoms  of  fatigue  while  exercising  a 
completely other problem or playing a long piece en bloc. 
In these cases, attention is concentrated to other demands 
and sometimes even basic skills are neglected and cause a 
significant  loss  in  sound  or  performance  quality.  The 
sonified music stand is easy to set up and on this account 
it can support students in every day practicing.

4. FEATURE EXTRACTION FOR BOW 
MOVEMENT SONIFICATION

There  are  many  sonification  designs  that  use  the  raw 
measured  sensor  readings  for  mapping  sonification. 
Sometimes (see for example [7] and [8]) also the audio 
signal of the instrument, played by the musician is used to 
render and calculate the audio-feedback and visualization 
with defined audio descriptors. In this paper, we use the 
sensor data for the sonifications, which allows a flexible 
set-up and learning scenarios with and without a musical 
instrument.  However,  we  believe  that  sonification  can 
profit  a  lot  from the definition  of  task-oriented  defined 
features  which  emphasize  the  movement  structure  of 
interest. For that we here present our first steps towards 
using  data  mining  techniques  as  plug-in  for  mapping-

based  sonification.  Since,  however,  the  described  cases 
are  already  quite  straight-forward  characterized  by  the 
cartesian  axes  of  the  sensors,  a  mixture  of  such  raw 
sensors and derived features comes ideally to application. 
We depict  the sensor readings and a Takens-embedding 
(plot of y(t) against y(t-k)) for the case 2 in fig. 5. It can 
be seen that the correct execution is a circle-shaped figure, 
so that the deviation of that circle radian as well as the 
phase  are  promising  features  to  be  used  for  parameter 
mapping sonification.

5. INTERACTIVE SONIFICATION DESIGN AND 
EXAMPLES

The sonifications are programmed in SuperCollider.  For 
the first versions, the sensor data are mapped to different 
acoustic synthesis parameters and used to create acoustic 
events, as explained in the following. This 4 cases can all 
be exercised with and without instrument and bow and are 
at  beginners'  level.  An  example  video  can  be  seen  at: 
http://www.sonification.de/publications/GrosshauserHerm
ann2009-TSM/ . The first video shows 4 strokes of a bow, 
where the first two are executions within the x/y-plane, so 
that only the violin sound can be heard, in the following 
two strokes a salient noise sound can be heard that is the 
result  of  the  deviation  from  the  ideal  movement. 
Obviously,  the  noisy  sonification  does  not  or  only 
marginally  interfere  with  the  perception  of  the  musical 
sound signal, yet it efficiently keeps the player's attention 
aligned to the task.

Concerning  case  1,  the  frequency  of  a  certain  tone 
changes according to the deviation of the z-plane. If the 
deviation  is  bigger  than  a  given  gain,  a  second  sound 
appears, according to the contact of another string in real 
life scenarios.

In  the  2.  case,  first,  the  spatial  panning  in  the  stereo 
position changes according to the deviation of the given y-
plane. Then the panorama and a second sound is played, 
the latter according to the deviation of the z-plane. 

In the 3. case,  more or less attack or crunchiness of the 
sound is rendered according to different high acceleration 
changes.  Changes  in  the  “constant  speed”  phase  are 
augmented  with  overdone  volume  changes.  Also  the 
ending  of  the  bow,  the  deceleration  phase  is  overdone 
with  abrupt  volume decrease  or  even  combined  with  a 
crunchiness  sound,  to  point  out  the  importance  of  this 
matter. 

Figure  5. Left  column  incorrect  bowing,  right  column 
correct bowing, time series of accelerations along the , x-, 
y-,  z-axis  and  below  Takens  embedding,  plotting 
accelerations against their delayed values.
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Simple  ticking  sounds  point  to  a  missing or  too strong 
rotation of the hand. In a certain range of rotation, similar 
to the 1. case, the volume is raised or reduced. 

6. DISCUSSION

The possibilities of sonification will show in an intuitive 
way,  that  every  change  of  the  movement  induces  and 
influences  a  sound or  changes  certain  parameters  of  an 
existing sound. This helps to understand intuitively, how a 
special movement, in this case the bowing on a stringed 
instrument  works.  The  closed-loop  auditory  feedback 
supports  the  learning  and  the  optimization  of  the 
movement, only by hearing. Hearing, the most important 
feedback channel for musicians, can't  be trained enough 
by music students and pupils.
Our  first  impression  is  that  the  continuous  mapping 
sonifications described above for case 1 and 2 work great 
and are quite efficient to direct the attention to improper 
executions. A comparison of strategies in their ability to 
induce  better  execution  needs  psychophysical  studies. 
Also the age-related  reactions  and adapted  sonifications 
are tested.

7. CONCLUSION AND NEXT STEPS

This paper  has introduced the  sonified music stand as a 
portable,  integrated,  versatile,  interactive  sonification 
system  for  musicians.  The  system  combines  sensor 
technology,  real-time  sonification,  and  new  ideas  on 
integrating multi-channel audio projection into a standard 
music stand into a usable every day system. The presented 
application has been specifically  selected and optimized 
for  the  task  of  violin  learning  and  the  sonification 
examples  demonstrate  that  the  sound  conveys  useful 
information. This prototype system is still in a quite early 
state and we plan to conduct long-term user studies after 
we  arrived  at  a  couple  of  competitive  and  useful 
sonification approaches. We hope that our sonified music 
stand can make a positive contribution to better pedagogic 
approaches  and  methodical  understanding,  exercising-
productivity  rising  methods  and  ultimately  to  the 
development of more healthy practices for musicians.
Future scenarios provide a highly compact multi-channel 
loudspeaker  array,  which  can  also  be  fixed  to  other 
displays such as computer monitors or other surfaces.
The next step is the development of a at least 8 + 1channel 
portable speaker setup for better sound localization in 3D 
sound  scenarios  and  for  complete  loudspeaker  arrays 
around  surfaces,  monitors,  displays  etc..  A  high-power 

battery  supply  for  off-the-line  usage  and  several 
attachment features allow simple usage and fixing on and 
beside nearly every surface, monitors, stands, walls etc.. 
Also  audio  radio  frequency  transmission  from  the 
computer to the speaker is considered. 

Finally, we are very convinced that we can easily adapt 
the system to other musical instrument playing problems 
and  even  to  other  fields  such  as  movement  training  in 
sports  and  dance,  where  sonification  can  help  to  better 
learn and perform complex movements.
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ABSTRACT

With groove we mean the subjective experience of wanting 

to move rhythmically when listening to music. Previous 

research has indicated that physical properties of the sound 

signal contribute to groove - as opposed to mere 

association due to previous exposure, for example. Here, a 

number of quantitative descriptors of rhythmic and 

temporal properties were derived from the audio signal by 

means of computational modeling methods. The music 

examples were 100 samples from 5 distinct music styles, 

which were all unfamiliar to the listeners. Listeners’ ratings 

of groove were correlated with aspects of rhythmic 

patterning for Greek, Indian, Samba, and West African 

music. Microtiming was positively correlated with groove 

for Samba and negatively correlated with groove for 

Greek, but had very small unique contributions in addition 

to the rhythmical properties. For Jazz, none of the 

measured properties had any significant contributions to 

groove ratings. 

1. INTRODUCTION

People often find themselves spontaneously nodding or 

tapping their feet when they hear music, and much music is 

indeed intended for synchronised movement in the form of 

dance, drill, and ritual behaviours. There are indications 

that the connection between movement and the rhythmic 

component of music is biologically determined [1,2]. In 

order to examine these potential connections, it is 

important to find out which physical properties in the 

musical signal - if any - are correlated with listeners’ 

experience of wanting to move to the music. 

Music features several forms of temporal structure. A 

priori, one could assume that two of these are particularly 

relevant for groove: rhythmic patterning and systematic 

microtiming. Rhythmic patterning is the assignment of 

different sound events to certain canonical time values, i.e. 

to certain positions in the metrical grid. It seems likely that 

the degree of repetitive rhythmical patterning may be 

related to the experience of groove. Microtiming refers to 

deviations from canonical time values that are often found 

in real music performances. Systematic microtiming 

patterns are those that covary, either within [3] or across 

performers [4].

Here, we examine the correlation between ratings of 

groove and numerical descriptors of the sound signal that 

correspond to (a) the salience of periodic events close to 

preferred tempo; the relative salience of sound events that 

are faster than the beat level, both (b) those that repeatedly 

occur at small-integer (metrical) subdivisions of the beat 

level and (c) those that do not; and (d) recurrent micro-

timing structuring of events. In addition to this, we also 

considered (e) unsystematic micro-timing [5]. 

2. METHODS

Nineteen non-musicians, ranged from 19 to 32 years in 

age, were paid for acting as listeners. Twenty music 

examples (ME) were selected by the authors as 

representative of each of five traditional folk music 

traditions from a certain region, here referred to as Greek, 

Indian, Jazz, Samba, and West African. The 100 MEs were 

copied from commercially available CDs and were copied 

from any position within the original sound track that 

constituted a representative and musically meaningful 

example of that track, containing at least one rhythmic 

phrase with a prominent steady beat. MEs were 9.06-14.55 

s in duration, were adjusted to equal amplitude, and their 

tempi ranged from 81 to 181 BPM. The dependent variable 

was the participants’ experience of Groove, defined as 

“evokes the sensation of wanting to move some part of the 

body” and rated on an 11-point scale. The scale appeared 

as a horizontal line anchored “not at all appropriate” (0) 

and “very appropriate” (10). Each session began with 10 

MEs, two from each of the five styles but different from 

the experimental MEs, whose purpose was to orient 

participants about the range of properties to rate in the 

experiment. Ratings from the first block were not included 

in the analysis. The sound descriptors measured the 

magnitude of rhythmical and temporal properties 

corresponding to the psychological properties outlined in 
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the introduction, namely Event density, Beat salience, Fast 

metrical levels, Systematic microtiming (MT), and 

Unsystematic MT. Details of the computational approach 

are the object of a forthcoming paper. 

3. RESULTS AND DISCUSSION

The strongest correlations between Groove and the 

descriptors were found for Beat Salience and Event 

Density, and these correlations were also stronger among 

the Greek, Indian, and Samba styles than among West 

African and Jazz. Jazz exhibited very small correlations 

overall. Rhythmical descriptors seem to play a substantially 

greater role than do microtiming descriptors across all 

styles, and they also generally exhibit larger correlations 

within each style. There was also an interaction between 

descriptor property and music style, in that Systematic MT 

seems to play no role at all for Indian, Jazz, and West 

African, but a substantial role for Samba. Finally, 

Unsystematic MT seems not to play any role for groove. It 

is likely that the descriptors are to some extent intrinsically 

dependent and that the measured properties in the music 

examples covary to some extent. To assess the unique 

contributions of each descriptor, a stepwise multiple 

regression was performed for each style and for all styles 

together, the results of which are summarised in Fig. 1. 

Figure 1. Changes in explained variance according to 

stepwise linear regression of groove ratings on the five 

descriptors. Note. *** = p < .001, ** = p < .01, * = p < 

.05.

Only one descriptor passed the entry criterion (F > 1.0) for 

Jazz and West African, respectively, and these are 

therefore not shown in the figure. Removing Fast Metrical 

Levels from the model subtracted 6.43 percent of the total 

explained variance by all descriptors (14.2%) for Jazz, and 

removing Beat Salience likewise subtracted 25.65 percent 

from the total 28.8 percent for West African. The changes 

in explained variance for Greek (total R
2

= 0.709; df = 5, 

14), Indian (0.631), Samba (0.841), and for all styles 

pooled (0.537; df = 5, 94) are shown in the figure. 

Jazz is commonly associated with expressive 

performance. In particular has groove been attributed to the 

swing ratio, the relative duration of the two “swung” notes 

in the rhythmic ostinato so characteristic for much classical 

jazz music. Not all jazz features swing in this sense, but 15 

of the present Jazz examples did. Yet did not the variation 

in the swing ratio, nor any other microtiming pattern, 

exhibit even a tendency for being related to groove. 

Although contrary to popular belief, this corresponds 

perfectly with the finding that the swing ratio is trivially 

related to tempo [6], suggesting that its purpose is merely 

to make the two intervals discriminable, in effect to 

maintain a rhythmical pattern. Samba was characterised by 

high correlations with no less than four descriptors, which 

naturally proved to be highly redundant. This suggests that 

Samba employs all possible means to induce groove, as 

might be expected by music dedicated to dancing, 

including a strongly accentuated and continuously repeated 

beat provided by the surdo and accentuated Fast Metrical 

Levels by the pandeiro.

In conclusion, these results indicate a ubiquitous 

relation between the rhythmical descriptors and groove for 

all styles but Jazz, whereas relations with microtiming are 

in fact negative whenever they remain significant (for 

Greek and Indian). This provides further empirical 

evidence that periodicity is a key component for movement 

induction trhough music, and strengthens the position of 

groove as a perceptually salient dimension of music.
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ABSTRACT

Musical video games are best sellers games. One of their
selling point is based on the improvement of players’ mu-
sical abilities. But interviews made with gamers and musi-
cians show that if the former feel enough freedom in musical
expression, the latter are more sceptical and feel more lim-
ited in the possibility of express themselves when they are
playing. In parallel with the games development, some re-
search works propose to improve control and meta-control
on music to allow expressive performance without the user
being a virtuoso. The goal of this article is first to present
interviews made for knowing users opinions. Some research
works about improving musical expressive performance are
then presented. Finally, we propose games enhancing the
expressive and technical musical performance, linking cur-
rent game-play with current research.

1 INTRODUCTION

For more than ten years, Bemani 1 has developed rhythm
video games. In the beginning, this unusual game-play at-
tracted very few players, mainly in Japan. But the gener-
alization of intuitive interfaces, e.g. the Wii Remote, and
the appearance of musical games with Western soundtrack-
lists, make this game-play now attractive to a wide audi-
ence. More and more editors therefore propose some musi-
cal video games, and Guitar Hero or Singstar are nowadays
best-selling games.

Like the famous Brain Age game 2 , basing all its selling
point on the improvement of extra game capacities (players’
intelligence and memorization), these games are partially
basing their selling point on the improvement of player’s
musical abilities. A Guitar Center Survey 3 indicates that

This work is part of the SCRIME project (Studio de Création
et de Recherche en Informatique et Musique électroacoustique:
http://scrime.labri.fr), funded by the DMDTS of the French Culture Min-
istry, the Aquitaine Regional Council. It is also a part of SIMBALS
project (JC07-188930) and VIRAGE project (07 AM 011 01), funded by
the French National Research Agency.

1 http://www.konami.jp/bemani/
2 http://www.brainage.com/
3 http://www.1up.com/do/newsStory?cId=3171507
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67 percent of rhythm gamers will certainly buy a real instru-
ment in mid-term. So playing musical video games could
make players wanted to play real instruments. But do they
really learn music playing this kind of game? Do they have
enough freedom to express themselves musically? And what
about the sensation of playing as a band when several play-
ers are allowed?

This article starts with the description of musical video
games main characteristics in section 2. Section 3 presents
the main categories of musical video games with some fa-
mous examples. Interviews with different gamers and mu-
sicians illustrate the main assets and limits of this kind of
games in section 4. We then present in section 5 some hard-
ware and software developed in a computer music research
environment. A way of pooling musical video games and
this research in innovative games is finally proposed in sec-
tion 6.

2 PROPERTIES OF MUSICAL VIDEO GAMES

We distinguish two main components of the musical per-
formance in the games: physical-technical and expressive
parts [8]. The physical element is the gamer morphology in-
fluence and the contr oller shape used for the performance.
The technical element is the gamer technical level influence,
considering the interaction quality between the gamer and
the controller to reach an given objective. We will group
these two elements together in the technique description.
The expressive element is defined by what is neither phys-
ical, nor technical. It can be considered as the intentional
deviations from a reference, i.e. deviation in rhythm, artic-
ulation, dynamics or the adding of effects such as vibrato or
timbre changes.

2.1 Technique

We propose to evaluate musical game technique as the dif-
ficulty to reach the proposed goal, or a certain level, with
a given controller. We can distinguish two technical parts:
the musical technique, e.g. the capacity to play in rhythm,
and the controller technique, i.e. the capacity to control the
hardware.

The main technical characteristic of a musical video games
is linked to the specific hardware. It can be a joystick, or
it can more or less imitate a real instrument. Hardware can
induce some latency in the game for the sound production.
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The accessibility of the game is then an interesting param-
eter. Depending on the controller, the game may be tiring,
e.g. with a drum controller. The technical difficulty may be
appreciated considering the time needed to pass a level or
to end the game. It could be broken down into the difficulty
of controlling the hardware and the difficulty relative to the
musical technique.

2.2 Evaluation

The evaluation is the feedback provided to the gamer. It may
be global, with a rank for the whole performance, semi-
global with a rank for each part of the music, e.g. verse1,
chorus, verse2. The feedback may be more precise, local,
to indicate the wrong notes played or the value of a time
deviation. It may also be given in real-time, with a video
environment changing with real-time evaluation during the
performance.

Most of the time an absolute evaluation is provided, e.g.
the percentage of matching notes. The player could also
be evaluated considering another performance, from another
player: it is a relative evaluation. Some games propose a
self-evaluation: the gamer evaluates his own performance.

The relevance of the feedback is a very interesting game
parameter. Is the evaluation useful to improve the perfor-
mance or to reach a level of the game ? Is the feedback
more precise according to the technical level played ?

2.3 Immersion

The environment is very important in musical video games.
A game can be boring or exciting regarding to the chance
to reach the next level .The quality of the soundtracks or
the sound synthesis is also relevant. Editors pay a particular
attention in the 3D-environment and 3D-effects for recent
games, e.g. including virtual avatars. The controller shape
may be fun too, e.g. by imitate famous guitars.

2.4 Expressiveness

The expressiveness is allowed in certain games by giving
musical freedom, e.g. playing notes when no match is
proposed or changing the music tempo in real-time. The
level of control indicates the elements controlled by the
player during the game: it may be simply the notes pro-
duction but also the phrasing or the global tempo. When a
multi-players mode is available, the degree of interaction
between the players is a expressiveness parameter of a mu-
sical game.

3 MUSICAL VIDEO GAMES

This section presents best-selling games considering their
main goal.

3.1 Scrolling score games

These games, e.g. Pop’N’Music 4 ,Guitar HeroWorld Tour 5

orRock Band 6 are based on theBemani game-play: a scrolling
score is displayed and every time a note crosses a line lo-
cated at the bottom of the screen, the player must hit the
matching buttons (by color and position) on his controller.
ForPop’N’Music, the controller is specifically designed, and
do not look like any real instrument nor joystick. ForGuitar
Hero and Rock Band, controllers looks like real instruments,
but are significantly simplified since the guitar cords are re-
placed by buttons for example. After each song played, a
rank is given. For Pop’N’Music, it is a number between 0
and 100000. For Guitar Hero and Rock Band, it is a per-
centage of matching notes.

3.2 Karaoke games

These games, e.g. Singstar 7 , are based on singing perfor-
mance. A pitch-score is displayed with lyrics, and the player
knows in real-time if he sings correctly. Rank is given after
each song, e.g. a grade between “casserole” to “singstar” in
Singstar.

3.3 Performance games

Wii Music - Conductor Game 8 : this game puts the user in
the position of a conductor. By moving the Wii remote,
players give the tempo to the orchestra. The nuance and the
articulation of the synthesized music are in accordance with
moves speed and amplitude. At the end of the performance,
a rank between 0 and 100 is given.
Wii Music - Performance Game: this game offers the

ability to play music by moving the Wii remote. After the
selection of a song and an instrument, the player gener-
ates sound by reproducing a gesture associated with the cor-
responding instrument using the Wii remote. A reference
score is displayed, but the player can add or remove notes,
but he can not change the tempo. At the end of the perfor-
mance, the player must evaluate himself.

3.4 Memory games

These games, for example Space Channel 5 9 , are based on
the Simon electronic game: the player must repeat a pro-
posed sequence of notes, in rhythm, with a joystick. A rank
is given after each level, and the environment is more and
more consistent as the player succeed.

4 INTERVIEWS

We interviewed the DDR Bordeaux Association 10 . Its aim
is to present musical video games to general public as well

4 http://www.konami.jp/bemani/popn/
5 http://worldtour.guitarhero.com/
6 http://www.rockband.com/
7 http://www.singstargame.com/
8 http://www.wiimusic.com/
9 http://www.mobygames.com/game/space-channel-5

10 http://www.ddrbordeaux.com/
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as gathering some gamers for practicing. We also inter-
viewed musicians who accepted to give their impressions
after a first contact with this kind of games.

4.1 Gamers

Several gamers from the association accepted to give us their
opinion on their favorite musical video games.

Technique
All presented video games are really accessible. If the main
goal is to perfectly read score like in scrolling score games,
many levels of difficulties exist to please beginners and ex-
pert. If the main goal is more focus on the musical perfor-
mance, like in Wii Music or Singstar, levels of difficulties
are nonexistent or not really pertinent.

Because scrolling score games are hard over a certain
level of difficulties, a practice mode is provided. For Guitar
Hero or Rock Band, the most difficult level could be reached
after some months ; after some years for Pop’N’Music. To
find his technical level in a game, a player will often try a
hard level at first, and if he failed, he will try levels that are
more and more easy, until he succeeds.

When players are used to scrolling score, the difficulty is
mainly because of the hardware. While asking them if they
would like to play using real instruments with captors, they
say that it is a possibility, but only if this will not decrease
the fun of the game.

Evaluation
Every game provides an evaluation. For Singstar, the re-
mark was done that this game is not made to be more and
more skilled, but for having fun. So the global evaluation
is funny but not very precise. For Pop’N’Music and Rock
Band, the evaluation is global too. For Guitar Hero, the
evaluation is semi-global, based on verses and chorus, and
the public reaction in the game helps to know the player
level in real-time. For Space Channel 5, the evaluation is
in real-time too, based on the environment more and more
dense if the player succeeds. Wii Music - Conductor Game
is the only game to propose a relative evaluation: the second
player must follow the first one to have a good rank. Wii Mu-
sic - Performance Game is really specific because the player
must provide a self-evaluation: he choose a rank between 0
and 100, according to the pleasure he takes listening his own
performance.

Immersion
All interviewees insist on the importance of extra-musical
environment. It gives a style to games, e.g. in Pop’M’Music
where colored graphics puts gamers in a happy mood. It is
also a way for immersing players, e.g. inGuitar Herowhere
players could create avatars that look like them. They also
like having specialized controller, because they add origi-
nality to the game.

About the sound quality, it is noteworthy that when more
freedom is given in music performance, it is often at the
expense of sound quality. And this quality is important,
some players buy Original SoundTrack (OST) of games. All
games are considered exciting to play, notably because play-
ers want to unlock the next song. The only ones that are

physically difficult to play are Rock Band and Guitar Hero
with the drums hardware that emulates the real instrument.

Performance
Except for Wii Music, a little freedom is given for the user
to express musically. Scrolling score games impose to fol-
low the score, without any agogic modification, i.e. dates
modification of notes beginning and ending. Pop’N’Music
allows adding notes even if it is not advised,Guitar Hero al-
lows vibrato with guitar and Rock Band allows some drums
improvisation parts. However, none of the interviewees tell
that they lack freedom for these games. They are accus-
tomed to Bemaniway of playing, and they have competence
in it.

They confide that scrolling games give them reading com-
petences but no real musical competences. More surprising,
they say that it is possible to play muting music, but it is
impossible to play without graphics. It is noteworthy that
game with more musical interest, like Wii Music or Space
Channel 5, could be played without watching screen, but
they seem less attractive to hardcore gamers.

Gamers tell that the multi-players mode is a value-added
for games, but they often play in the same way as when they
are alone. The interest is more in being one another instru-
mentalist or avatar than playing interactively with others.

4.2 Musicians

We asked musicians who have learned music for 10 to 20
years to give an opinion on musical video games after a
first experience, and many criticisms were made about per-
formance limits. In Rock Band or Guitar Hero, the multi-
players mode has no real interest because players do not
really play with others, and so they do not listen to them.
The hardware is really restrictive, except some drums con-
trollers. They had trouble when playing easy mode, because
they habitually trend to add notes. Since the scrolling score
manages the time, they have the feeling of being too con-
strained. Contrary to hardcore gamers, they are more com-
fortable with the games from Wii Music, because they have
more space to express themselves.

When they are playing musical video games, gamers would
appreciate to learn music or a particular instrument, and mu-
sicians would be delighted by more musical freedom. Some
researches on musical performance could certainly provide
such characteristics to this kind of games.

5 RESEARCH ON MUSICAL PERFORMANCE

This section presents existing hardware and software that
help the technical element abstraction to focus more on ex-
pressiveness, by decreasing the human action frequency. They
give the possibility for the user to be expressive without
being a virtuoso, by offering controls and meta-controls.
Works on music similarity show that a pertinent feedback
on the performance could be provided.
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5.1 Meta-Control Instruments

The BAO PAO is an electronic instrument developed by Jean
Schmutz in collaboration with Jean Haury at the La Puce
A L’Oreille association 11 . This instrument was firstly de-
signed for handicapped people. The user does not directly
produce sound neither the pitch: all is generated by a com-
puter linked to the BAOPAO.A score is loaded into the com-
puter, and the user could move in it note by note by cutting
a laser beam with a stick. If stick speed is fast, the sound
is forte. If the speed is slow, the sound is piano. This de-
vice allows musician to focus on expressive interpretation.
It also permits a group of handicapped to play together. It
is now used as an instrument in many secondary schools for
music education.

TheMeta Piano 12 [4] is an instrument developed by Jean
Haury which mainly inspired the BAO PAO. It looks like a
simplified piano, with just 9 notes. The mechanism is simi-
lar to the BAO PAO. A score is loaded into a computer, and
the user could move in the score by pressing any note on the
Meta Piano. It proposes more freedom in the performance
than the BAO PAO thanks to its several notes: the musi-
cian could make expressive performance, because it allows
working on rhythm, duration, articulation, intensity, phrased
and all agogic deformations.

5.2 The Continuator

TheContinuator [7] is a MIDI device, developed by François
Pachet, which listens to MIDI events, and proposes to the
musician new notes to follow the sequence by analyzing the
previous ones played by the user. In real time, the system
can determine the performance style. The continuator is a
powerful device that pleases to confirmed musicians and as
well as young children. It is mostly used in improvisation,
but the way it computes the next notes to be played could be
useful for guiding musician in their performance.

5.3 I-Score

I-Score [1] is a system for composing and interpreting inter-
active scores. It relies on a formal musical scores represen-
tation which includes the way a performer can interact with
them. The possibilities of interaction with a score are based
on an interpretation formalisation of instrumental pieces of
music. In the current version of I-Score, these possibilities
consist of interactively triggering some discrete events of
the score (beginnings and endings of notes) during the per-
formance. This liberty for the performer comes with the
possibility for the composer to define temporal constraints
on the events to fix a partial order between them.

During the execution, the performer is allowed to trig-
ger an interactive event only when the events of the score
that must appear before him (according to the temporal con-
straints) have occurred. Symmetrically, if the performer
triggers an interactive event at a different date from the date

11 http://lapucealoreille.free.fr/
12 http://dept-info.labri.u-bordeaux.fr/˜marczak/

MetaPiano/

written in the score, the system will automatically adapt the
date of the events that must appear after it, to respect the
order imposed by the constraints.

The ability of the system to automatically adapt the rest
of the score according to the triggering of an interactive
event, makes sure that the execution will reach the end of
the score and respect the limits wanted by the composer.
As a consequence, the performer can give his own interpre-
tation of the musical piece while he is guaranteed that the
score will be played until its end.

5.4 Classification overview
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Figure 1. Classification Overview

Figure 1 makes an overview and attempts a classification
by technique and expressiveness.

Memory games, even if they permit musical learning,
do not gives freedom for expressiveness. The pattern must
be perfectly repeated. They require technique because prac-
tice is needed to correctly memorize and play in rhythm.
Karaoke games are very accessible, but the singer must al-
ways sing respecting the original pitch. For scrolling score
games, the technique required could be variable, thanks to
multiple control levels. Guitar Hero has a “novice” mode
that allows the musician to play by pressing any note on
time, and Pop’N’Music required years of practice to suc-
ceeded the higher level. The expressiveness is limited in
theses games, but each one gives a little freedom in differ-
ent manner. Performance games required practice to un-
derstand the link between the controller and generated mu-
sic. They give freedom, but it is either on tempo or on notes
addition, not both.

Real instruments like guitar, drums, bass. . . are the
most expressive, but also the most technique. The BAO
PAO is very simple to use, notably by handicapped peo-
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ple and young children, and allow agogic deformation. The
Meta-Piano is more expressive, notably by allowing ex-
pressiveness on transition, but it requires some habit for
playing notes. The Continuator is very accessible, and the
expressiveness depends on the expressiveness given by the
musician. Finally, I-Score allows any levels of expressive-
ness with any level of technique (depending on the number
of trigger points, and on the controls or meta-controls given
to the musician).

5.5 Musical Similarity

Estimating the similarity between musical performances is a
difficult open problem. From a computational point of view,
it consists in determining algorithms calculating a measure
which indicates the degree of similarity between two musi-
cal segments. Each musical segment may be represented by
a sequence of symbols, related to musical properties such as
timbre, rhythm, melody, etc. Several techniques for evalu-
ating similarities between symbolically encoded music have
been introduced during the last few years. Geometric al-
gorithms consider geometric representations and compute
the distance between these objects [5]. Algorithms adapted
from string matching domain and based on N-grams tech-
niques are proposed in [11].

Other methods, generally applied in computational biol-
ogy, compute a similarity measure between two strings of
symbols as the maximum score sequence of elementary op-
erations (insertion, deletion, substitution, etc.) needed to
transform one of the strings into the other. For example,
local alignment algorithm finds and extracts a pair of re-
gions, one from each of the two given strings, that exhibits
high similarity [10]. Applications to the estimation of the
musical similarity show that such approaches are very ac-
curate [6], since adaptations specific to the musical context
have been proposed [3].

6 PROPOSITION OF GAMES ENHANCING
TECHNICAL OR EXPRESSIVE PERFORMANCE

The main goal of this section is to link current research with
musical video games, by proposing a timing improvement
and two video games that enhanced respectively technical
and expressive performance.

6.1 Improvement for timing

In music, time must never be completely delegated to com-
puter. The principal risk is to have gestures precipitated
and not felt. In order to have a personal expressive perfor-
mance, the player must operate following his own internal
rhythm. Then, the player could express himself by chang-
ing the speed of the gesture. When a score is presented as
a notes scrolling, the player looses his thinking and feeling
because he totally focuses on the current note.

Thanks to presented research (section 5), a player can
have the freedom to modify the tempo of the music. In-
stead of giving him note onset, a score can be made with

Figure 2. Example of local feedback. The upper line is the
score to perform. Below, the performance contains green
matching notes, red notes which have been inserted and yel-
low notes with the bad pitch.

bounds in which he could play the note. Using the Contin-
uator mechanism (subsection 5.2), the score would propose
bounds more and more restrictive and precise to respect
the player way of performing.

We can also imagine a behavior like BAO PAO, Meta Pi-
ano (subsection 5.1) or I-Score (subsection 5.3): the score
stops as long as players do not hit the good note. It would
give time to players to understand how to make this note.
This is a good improvement for practicing a difficult score.

6.2 Learning game

We make here propositions for a learning game, ı.e. a mu-
sical video game that makes the player progress in musical
technique. First, if the player wants to acquire the technique
of a particular instrument, the controller must be this in-
strument, or a very good copy of it, like some existing
drums controllers for example. The choice of a controller
is important since the player acquire naturally a technique
depending on the controller he used. MIDI instruments are
particularly well adapted, but we can imagine to use real
monophonic instrument with sound analysis, like with ex-
isting voice games.

A very important point is also to propose a pertinent
evaluation to the player. If he knows exactly what was
wrong, and if the feedback is adapted to his level, he would
know how to perform better. One application from researches
in music similarity is presented by figure 2. Integrating this
kind of feedback could provide for a musical game player a
local evaluation: he would know where he was not in tune,
or where the vibrato was not regular. He can identify his
weakest points and can choose to focus on particular tech-
nical exercises that could be provided in a practice mode.

Another point is to propose a relative evaluation by com-
paring different performances thanks to similarity methods
again. A player could be evaluated by comparing his perfor-
mance to a score, but also to his last performance, or to the
performance of a professional musician or other players[9].
If the data are centralized on a server, a player could then
evaluate himself to a particular group of people, with the
same age or from a conservatory of music for example.
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6.3 Band game

This parts is a game proposition that would enhance the im-
pression of playing as a band.

Controllers would look like real instruments. Works
with handicapped people point out the importance of “so-
cial instruments”. Moreover, the sensation of playing real
instrument is a key point to enhance the motivation.

Concerning the evaluation, the final rank would mostly
take into account relative evaluation. The drummer would
influence the tempo of the performance (subsection 6.1),
and the evaluation would be based on how other players re-
spect drummer’s tempo. Because the tempo could be dif-
ferent from the original, a similarity test (subsection 5.5)
would be made on the drummer performance. Since abso-
lute evaluation is important for hardcore gamers, it must also
be provided, but it would have a minor influence on ranking.

This game must give the impression to play together, as a
band. Firstly, watching other players instead of the screen
is primordial. For this, two modes would be available: film-
ing players (e.g. with web-cams) and displaying them on
the screen with the scores; or using augmented reality[2],
and displaying scores on other players or their instruments.

Then, this game would be based on patterns, i.e. macro-
structure of notes, instead of single notes. Working with
children show that is more effective to talk about gestures
or patterns rather than notes. A musician-player could then
focus more on expressiveness. For enhancing band play, a
player would also have an action over other players’ score.
This would be done using I-Score (subsection 5.3) in which
scenarios could send information to other scenarios for trig-
gering an interactive event. Thanks to this, if a player has
difficulty to make a pattern, the game will give him more
time by repeating other players’ patterns as long as he does
not succeed. When he succeeds, an action on others players
scores would unlock the next pattern. If all players are lost,
a trick could be used to again synchronize all scores.

Finally, a good way to play together is to learn the score.
The video game would then propose a mode in which the
score slowly disappear if the player succeed. It is important
for this mode to be a real part of the game, because hardcore
gamers like trying to reach high score in difficult modes.
If a player knows the score, he could play together without
being distracted by the screen, and can focus on the inter-
pretation. Another mode proposed would be a dialog mode,
like in Space Channel 5, but in multi-players: a player plays
a parts, and the other player try to repeat it.

7 CONCLUSION AND PERSPECTIVES

Nowadays, gamers get a strong enthusiasm from musical
video games, but these games do not give significant free-
dom for expressive and technical performance.

By applying current research, developed in the commu-
nity of computer music, both parts could take benefits. Games
would became more expressive and technique, and research
could use games for analysing feedback, e.g., to evaluate the
relevance of a ranking algorithm.

In relation with the games proposed in this paper, we
could consider the following perspective. Because sound
quality is a key point for enhancing motivation, we would
like to use original versions of songs. When significant free-
dom is given, music is mainly synthesized to allow effect
application, e.g. time-stretched or repetition. To use orig-
inal versions of songs, we must apply high-quality audio
transformations [12].
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ABSTRACT

We describe two musical experiments that are designed for

the interaction with a new tangible interface named by us

Tangisense, based on a set of antennas and RFIDs. These

experiments (classification, game of) use different kind of

time schedule, and are now simulated using Max-Msp and

Java programs and common computer-human interfaces.

They are developed in such a way that they can be ported

on a specific tangible interface using RFID tags in its

heart. Details about this portage are given. These

experiments will in the future serve as user-centered

applications of this interactive table, be it for musical

practice or sonic interaction design.

1. INTRODUCTION

We will in this article do a prospective plunge in the use

of a tangible interface in the artistic or pedagogic domain.

We will try as far as possible to bring a framework rather

than just experiences. Our study is sound oriented rather

than device oriented, which means that the goal of this

interaction is the sound. Levels of interaction depend

upon the making of the sound, and we will see that the

timing itself of the sound production (out of real time,

events and curves in real time) drives the interaction style.

Touchable and tangible tables are now largely used in

music production. Touchable devices (including touch

screens) are popularized by the Ipod and Iphone series, but

belong to a long tradition, which includes multitouch

tables. Tangible interfaces by definition use objects, and

are also named graspable. Links can be found on this

topic [1]. Musical applications have been popularized by

the Reactable (see [2] for an overview on this subject),

which uses special tags named “fiducials”, and NIME

conferences  (New Interfaces for Musical Expression) are

full of articles and demos on such subjects
1

.

1

     http://www.nime.org    

2. TANGISENSE, A TANGIBLE AND

TRACEABLE TABLE

Figure 1. the first protoptype of the Tangisense table

Our Tangisense table is part of a user-centered interface,

named Tangisense in the TTT project (Interactive table

with tangible and traceable object). The hardware itself can

be described as a retina of antennas, which can track RFID

tags (Figure 1). The table is composed of 25 tiles, each of

them containing 64 antennas. Each tile contains a DSP

processor that reads the antennas, an antenna multiplexer,

and a communication processor. The table is connected

via a control interface to the host computer by an Ethernet

bus.  From the computer point of view, every time a tag

is detected one gets its specific identification number and

coordinates. This Tangisense table is part of a French

national project named TTT, which involves two

laboratories ((LAMIH, LIG) and two companies (CEA,

RFIdées). It is now in a prototype stage, and the

definitive version should be available mid-2009.

More than the hardware itself, the software structure is an

important feature of this table. An architecture in 3 layers

has been defined (Figure 2). These layers are written in

Java.
SMC 2009, July 23-25, Porto, Portugal
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1-the capture and interface layer handles tangible objects

with tags (one or may per object) and creates Java objects

associated to forms.

2-.the traceability layer handles events associated to these

objects. It communicates the information to the next

layer, but also traces the information and can be asked

information about these objects-moves

3- the applicative layer is the one where the specific use of

the table is done, in our case the musical experiments.

We usually design this musical application layer in two

parts: one, written in Java, communicates with the capture

and traceability levels, gathering information and

transforming it into events or curves; the second one

activates the sound. Communication between these two

parts use a bidirectional OSC protocol (using the Java-

OSC library).This second part is most of the time a Max-

Msp patch, specific for each experiment.

Figure 2. Software layers

Some musical experiments will now be described, with the

final goal of having them working on the Tangisense

Table. These experiments have been devised in two steps:

a simulation one, where tags are simulated as objects on a

computer window, and moved by mouse or tablet

interaction. They serve as prototypes (hence the title of the

article) for an implementation on Tangisense. The

feasibility of the implementation of musical experiments

with Tangisense is done, however as the definitive version

of this table is not yet available, experiments have been

conducted with individual tiles but large scale

experimentation of the musical content and moreover

evaluation of the sonic interaction design is definitely out

of the scope of this article.

Two experiments clearly illustrate different ways where

interaction with sounds may happen and are described in

the core of this article, A third one is only evoked in the

future directions section:

1 the first application is a classification of sounds using

“baskets”. Depending upon the judgment of different users,

a map can be made which corresponds to evaluated

distances between sounds. The goal here is to provide

navigation or selection spaces where a musician can get

oriented palettes of sounds. It is especially intended for the

use of textures, a musical domain hard to map.

2 the second experiment is a “MIDI-oriented” application

where a cellular automata, activated by a metronome is

made audible by triggering events linked to its cells.

3. ORIENTING A SONIC SPACE: THE BASKET

TECHNIQUE AND ITS IMPLICATIONS.

The goal here is to provide a user interface that can help

the musician in the navigation of sounds.

Two main approaches can be followed when dealing with

the classification of musical sounds. The first one, referred

as Music Information Retrieval (MIR), relies on an

objective description of the sound based on a series of

features computed on the audio signal [3][4]. The MIR

community has been rapidly growing for a tens of years

and a number of MIR tools are now available for

experimentation
2

.

The second strategy, which we adopt here, is that sound

classification can be a perception-based approach. In this

case, the classification does not rely anymore on

mathematical descriptors but rather on results of

psychoacoustic experiments. Typically in such

experiments human listeners are asked to evaluate

similarity between pair of sounds, group sounds in

categories or assess distance between several groups of

sounds [5][6]. These two complementary approaches for

sound classification aims at addressing specific questions

and give slightly different results.

3.1. baskets

Among the many possibilities of classifying sounds, there

exist a technique that really fits a tangible paradigm: the

basket  (or packets) style which can be described as this:

given n samples to be classified, one ask to m

experimenters to separate them in different packets. The

metaphor clearly is here to separate a set of objects (cards

for example) in different packets. The main goal is to be

able to create an estimated distance between pairs of

objects, so that a multidimensional or cluster analysis can

be applied.

                                                
2

Marsyas       http://marsyas.sness.net   

CLAM     http://clam-project.org    

MirToolbox     http://www.jyu.fi/hum/laitokset/musiikki/en/res    

earch/coe/materials/mirtoolbox    

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 248



For one experimenter, one can say that the estimated

distance is zero if 2 objects are put in the same basket,

and one if put in different packets. If we use many

experimenters we can sum up these individual

experiments this way: we build a matrix where each cell

represents the number of times objects have been put in

different baskets (divided by the number of experimenters.

This is the estimated mean distance between two objects.

MDS analysis is sometimes defined as a way to retrieve a

geographical map from estimated distances. It is a

dimension reduction very often used in sociological

issues. The input is a matrix of dissimilarity; the output

is a N-dimensional map that gives information on the

proximity of these samples. We have used this technique

to provide a classification of 10 sonic textures (textures

can be defined as such: their long term appearance is

uniform, while their short term revelation can be quite

different according to time)., but the technique is the same

for images, such as visual textures or even psychological

cards. The goal is to find a classification where no a priori

statement on the nature of the textures has been done.

3.2. The simulation

First we have devised a simulation written in Java, where

a set of circles represent a sonic texture, and three spaces

where the user has the task to put similar textures (Figure

3). There is a surrounding space, which can be considered

as a place of uncertainty. The application is built in such a

way that it is mouse-driven: when the mouse goes over a

circle, this one turns from green to blue. When clicked

this circle gets red and can be moved anywhere on the

graphic plane. A last circle when moved indicates the end

of the user session and a file is created which indicates for

each circle its belonging to a box (1-3) or a free one (0).

Figure 3. The computer screen as it appears to the user. Green

circles become blue when browsed and red when clicked and

dragged. Three baskets are symbolized by squares.

A Matlab program has been written that takes all the files

corresponding to different users, and builds the

dissemblance matrix by summing individual matrix, and

then performs a multidimensional analysis (MDS). A

MDS analysis requires the choice of the dimension of the

reduction. Two is an obvious choice for a graphical

representation but there are different techniques in

exploration of data, which allow to estimate the best order

[7]. The output of such a program (Figure 4) is a valuable

representation of a set of sounds, especially when it comes

to navigation in a sonic database. Moreover it can be used

in performance, using Max patches similar to the SYTER

interpolator), see references on the subject of 2D mapping

in Bencina  [8].

Figure 4. A map resulting to the reduction of data in a 2D

space of a sonic texture database.

Another way to analyze dissemblance matrixes is cluster

analysis: this way sounds are separated according to

branches, giving place to clusters.

Figure 5. A tree resulting from a cluster analysis and

the associated garland of sounds

To do this, we use a classical algorithm issued from the

Mathworks Statistics toolbox, but we complement it by a

special presentation of the results written by ourselves: for

each branch of the clustering, we draw grapes of sounds
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corresponding to this branch (Figure 5). This way we have

a clickable presentation of a sonic database where one can

explore different branches, for example to select in an

auditory way the best representatives of each category.

3.3. The tangible experiment

An obvious interest of tangible interfaces is to make the

computer (and its mouse/screen components) disappear.

We have put on the table pads that symbolise sounds

(throwing them on the table in random order) plus one

which gives the end signal and ask users to put them in

three baskets, with the possibility for them not to use

ones too hard to classify. As every object has a personal

RFID, including the ultimate pad that when moved gives

the signal for the end of one classification, the program is

straightforward: instead of being mouse-driven, virtual

objects are driven by the tags position and the program

stays the same for what matters the writing of the file

with positions, the MDS, cluster analysis and the garland

of sounds.

One difference between the simulation and the tangible

experience is the fact that we need to find a situation for

actuating the sound that is represented by the pad. We

have chosen the strategy of the sonic wall, or alternatively

the sonic pillar: whenever we approach the pad near a

wall, or inside a circle (the pillar) the object reveals its

sound. Another way we are thinking of is to add another

RFID on the pad, which can be activated by a switch. The

“click” metaphor is back, but integrated in a “graspable”

object.

Figure 6. The Tangisense table with objects and baskets

4. INTERACTING WITH THE GAME OF LIFE.

We have previously seen a musical situation that can be

considered as “out of real time”. But most musical

interactions, especially the art of performance are

concerned with real-time experiments. One subset of it is

the event driven musical flow, popularised by MIDI

synthesisers and note oriented music.

We have decided to find an experiment that can be a good

example of “user centred” application, which in our terms

means that the computer is disappearing: here we will

have a table with blinking lamps, and will bring the

metaphor of a “sonic stethoscope” to drive a percussion

generator. This is in the vein of cellular automata music

[9][10], with a specific sonic interaction design flavour.

4.1. the parts

the game of life algorithm: this is a classical in “artificial

life intelligence”: typing “game of life” on a browser will

give thousands of links, one of them being the original

article from Gardner. [11] Many implementations are also

available, but we have programmed an easy Java program

for our own purpose.

Starting from an arbitrary (or not) matrix of ones and

zeros (Figure 7), we consider an evolution process where

the rules are taken from Conway. Conway’s genetic laws

are simple. First note that each cell of the checkerboard

(assumed to be an infinite plane) has eight neighbouring

cells, four adjacent orthogonally, four adjacent diagonally.

The rules are:

1.Survivals. Every counter with two or three neighbouring

counters survives for the next generation.

2. Deaths. Each counter with four or more neighbours dies

(is removed) from overpopulation. Every counter with one

neighbour or none dies from isolation.

 3. Births. Each empty cell adjacent to exactly three

neighbours is a birth cell.

This way we have an evolution process, where

populations live, grows and eventually die (which is

normally the end of the game). The interesting part is that

depending upon the initial configuration, we may find

gliders, oscillators with different rates possible, quasi-

fractal patterns, and so on. Though not particularly new,

this game is still exciting generations of students,

mathematicians and curious people.

Figure 7. An instant in the game of life

The stethoscope:  in this experiment every point of the

game can be checked by a stethoscope-akin pad (Figure 8)

and whenever a cell is activated, we will trigger a sound.

As this process develops sounds related to an evolving

data set, it is related to data sonification (the sonic

equivalent of data visualisation). Obviously we may have

two strategies: only use one trigger only when going from

zero to one, or retriggering events when cells continue to

light.
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Figure 8. the “game of life”screen with the virtual pads

The sonic process: rhythm boxes are widely used, with

samples or synthetic sounds, and clearly show us a path

for a polyphonic stethoscope, where the individual sounds

would refer to a specific pad number. Many Max patches

can be used for this purpose. We particularly like the

CNMAT implementations of modal synthesis
3

.

4.2. The simulation.

On one part, we have a musical generator including a

metronome and a sonic polyphonic generator. This is

written in Max-Msp. The metronome part is indeed a

basic one, while the polyphonic generator must take care

that retriggering can occur. The communication between

the musical process and the interaction one is

bidirectional: as soon as one metronome tick is coming,

an OSC message is sent, and the interaction scheme

immediately sends OSC messages corresponding to note

triggering.

The game of life itself is written in Java, and is an engine

that runs for every click of the metronome. It must be

initially given a size for the matrix, as well as the

definition of the initial cells.

We have devised some tags, be them virtual or real, which

must first inherit from some sonic properties. Hence we

have to assign to each of the tags a sonic identity. This

can be done in two ways: either we name the tags, and put

an icon on them, or let them free of any assignment, in

which case we must at some points get to a place where

they are ”recharged” with a sound.

Then we can freely move these tags in places where cell

will “pulse” the sonic material. This is of course a game,

where many participants can play. It is also a big way to

study the process of creativity, because each of these tags

are traceable, so it is not only the result that is important,

but also the process itself.

                                                
3

Musical Applications of New Filter Extensions to Max/MSP

http://web.media.mit.edu/~tristan/Papers/ICMC99_MaxFilter   

s.pdf   

4.3. The tangible experiment

The main point about using a tangible and traceable table

is to establish a link between what the user’s action and

what he gets as sounds. Basically the metaphor that is

used is really important, especially if a visual feedback is

provided. As leds are part of the TT Tangisense table, the

game of life really takes its manifestation with light and

the coordination with sound events is easy to draw

(Figure 9).

Tags are put on table and the resulting sound corresponds

to the lighting of a particular cell in a way similar to the

simulation. Two domains are concerned by this

experiment.

- Human-computer interaction. As an example the

addition of LEDs on the table immediately connects the

user on the experience itself: rather than having a

displaced display, here we have a direct interconnection

between one what sees and what one does and hear.

- Human-human interaction through technology. When

computers disappear, the human being becomes free to

share with others: this is a collaborative experience and

the musical result, and its evolution greatly depends upon

the “presence” of the performers, their reactivity, the sense

of surprise they can bring: in a word they are musical

performers.

Figure 9. four ticks of the metronome drive 4 successive

instants in the game of life on the Tangisense table.

5. FUTURE DIRECTIONS.

As we did see, it is possible to prepare musical

experiments that can take benefit from the tangible and

traceable aspect of our table. Nevertheless, musical

performance largely uses gestures that are rapid, and it is

interesting to see how far we can go with fast gestures.

We did modify a set of Max-Msp patches devised by

Arfib et al [12] for the interactive use with graphical

tablets, in order to make them controllable by a tag on the

Tangisense interactive table.
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We have chosen as a start to use a synthesis reminiscent

to the photosonic one, where the X axis is mapped on a

digital mixing of specific waves. In a way, it is

navigation in a database, except that sounds are synthetic

and governed by a single low frequency pitch. The Y axis

is mapped on the coefficients of three filters, thereby

providing a subtractive filtering to the preceding sound

source. As an example filters vary from “i” to “oo’

depending upon the Y axis.

With one tag we are able to drive this synthesis in real

time, and delays are quite short and not noticeable. Of

course the resolution of the table is less than the one of a

Wacom tablet, but this works fine if one smoothes a little

bit the flow of coordinates. The problem that remains is

the way to trigger sounds without removing the tags, an

easy game with graphic pen, an ergonomic question with

RFIDs. We will in the future try many different

experiments on that style of interaction.

The main future direction is the one of usability and we

know this can lead to a vast discussion [13]. As stated in

the article, we have demonstrated the feasibility of sonic

interaction with a tangible and traceable table, but also

situated the early stage of the experiments in a musical

situation. These “user-centered” experiments and

evaluation will follow, with a main concern on two

things: the ergonomic aspect of the objects put on the

table (until now this table has been used by the authors in

an intuitive way, every experiment will have its own

design, instructions and procedure); the evaluation aspect

will be taken in account to measure the usability and

improve the design and use of such a combination of

software and hardware.

6. CONCLUSION

Many tangible tables rely on a video system and tags that

are drawn on the surface of objects. Here we have a totally

different technology, and a table initially not devoted to

sonic applications. We have seen that it is possible to

prototype musical experiments that can be linked to this

table and make them run. More research has to follow to

make comparisons with existing systems, but we also feel

that our way of thinking sound, for example creating

maps that can help the navigation or even the performance

are innovative and can be a good framework for a

community of musicians wanting to try the tangible and

traceable aspect of interaction.
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SOUND SEARCH BY CONTENT-BASED NAVIGATION IN LARGE DATABASES
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ABSTRACT

We propose to apply the principle of interactive real-time
corpus-based concatenative synthesis to search in effects or
instrument sound databases, which becomes content-based
navigation in a space of descriptors and categories. This sur-
passes existing approaches of presenting the sound database
first in a hierarchy given by metadata, and then letting the
user listen to the remaining list of responses. It is based on
three scalable algorithms and novel concepts for efficient vi-
sualisation and interaction: Fast similarity-based search by
a kD-tree in the high-dimensional descriptor space, a mass–
spring model for layout, efficient dimensionality reduction
for visualisation by hybrid multi-dimensional scaling, and
novel modes for interaction in a 2D representation of the
descriptor space such as filtering, tiling, and fluent naviga-
tion by zoom and pan, supported by an efficient 3-tier visu-
alisation architecture. The algorithms are implemented and
tested as C-libraries and Max/MSP externals within a proto-
type sound exploration application.

1 INTRODUCTION

For sound design, film and multi-media production, and mu-
sical creation, databases with instrumental or environmental
sounds and sound effects are a vital resource. The number
and size of commercially available sound effects databases,
such as Hollywood Edge, Sound Ideas, loops collections,
or community-driven on-line collections like freesound are
growing steadily, 1 with rising network bandwith, growing
harddisk capacity, and falling prices for storage and distri-
bution media accelerating this growth even further.

From a certain scale onwards, the practical problem in
the exploitation of these databases is no longer the question
if a specific sound exists in the database, but how to find
it. In a user survey conducted within the SampleOrchestra-

tor project, professional film sound designers reported about
their practice of collecting the soundtracks of the rushes, i.e.
the raw, unedited footage shot during the making of a film,
to augment their collection of ambiences, reaching the mark
of 1 TB of sound data, and their difficulty of finding one spe-
cial event in many long recordings with tools not adapted to
such large sizes. They get by with the disciplined use of
manually edited metadata, and orient themselves by the au-
dio waveform displayed in a sound browsing application.

Our contribution to alleviating the problems of finding
the right sound in a mass of unstructured recordings is inter-
active navigation with immediate audio feedback in a space
of sound descriptors populated by sound segments. This ap-
proach greatly speeds up the usual workflow of hierarchical
menu or search mask, result list, and play/stop buttons that
put many mouseclicks between the user’s idea of the sound
and listening to appropriate contents of the database.

We propose to replace the menu- and list-driven interface
with a 2D representation of a sound and category space.
While navigating through the space, the sound segments
close to the current position are immediately played. Play-
ing is layered if movement is fast, so that large parts of the
sound space can be explored rapidly. The strong interactiv-
ity enables the user to quickly understand the dimensions
and areas of the presented space by probing sound snippets
that are played as they are passed by.

This principle of navigation poses tougher requirements
on the efficiency of the underlying algorithms, and on their
scalability to very large databases. An accompanying ar-
ticle [18] concentrates on fast similarity-based search and
the efficiency of low-dimensional embedding of the high-
dimensional descriptor and category space with special at-
tention to scalability. There, we chose and improved three
algorithms that are also briefly described in section 3: the
kD-tree search algorithm, the simulation of a mass–spring–
damper (MSD) system, and the hybrid multi-dimensional
scaling algorithm for dimensionality reduction.

We will then treat the aspects of efficient visualisation
and novel methods of interaction with large sound data-
bases for sound search by navigation, based on these im-
provements. To allow an efficient exploration of the space
of sounds defined by the sound descriptors, we developed
an architecture of the graphic model based on three coordi-
nate spaces (model, world, device coordinate spaces) and
on affine transformations or non-linear mapping between
spaces (section 4.1). This architecture allows an easy inte-
gration of functionalities like zoom & pan and a novel mode
tile formed by the subdivision of display according to cate-
gorial descriptors (section 4.2).

The algorithms and visualisation components are imple-
mented and tested as C-libraries and Max/MSP patches de-

1 . Since its start in 2005, http://freesound.org almost doubled every
year to 62701 sounds, 681 hours, 252 GB in Februray 2009.
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scribed in section 5. The 229 sound descriptors used in the
prototype application are analysed by an external program
[9, 10] and loaded from SDIF files [2]. A limited subset of
24 descriptors can also be analysed in the prototype system
itself, as described in [17].

2 RELATED WORK

The navigational approach to sound search has been inspired
by interactive real-time corpus-based concatenative synthe-

sis for musical creation [15] [13, 15, 14] as implemented in
the CATART system [16, 17]. This recent method permits
to create music by selecting snippets of a large database of
pre-recorded sound by navigating through a two- or higher-
dimensional space where each snippet takes up a place ac-
cording to its sonic character, such as pitch, loudness, bril-
liance. This allows to use a corpus of sounds as an instru-
ment, or to compose the path through the corpus, or to resyn-
thesise an audio file or live input with the source sounds, and
thus to create novel harmonic, melodic and timbral struc-
tures. The selected units are concatenated and played, after
possibly some transformations. The method can be seen as a
content-based extension to granular synthesis providing di-
rect access to specific sound characteristics.

Evidently, the high interactivity of the corpus as an in-
strument to create music could be immediately applied to
the exploration of the sounds in the corpus with the aim of
searching sounds. The existing 2D interface had to be ex-
tended to allow zoom&pan, and categories and class hierar-
chies had to be represented.

Related work in Music Information Retrieval start to
apply spatial interfaces to content-based audio searches
[3, 21], inspired by our work [16, 17], or independently
[5, 6], or are concerned with the efficiency of nearest neigh-
bour search [11] or the recent method of locality-sensitive

hashing (LSH) [20].

3 SCALABLE ALGORITHMS

In order to optimize the exploration of large effects or instru-
ment sound databases, the three algorithms briefly presented
here solve recurrent problems in retrieval and visualisation
in an efficient and scalable manner. Their functioning, im-
provements over the state of the art, and evaluation are de-
scribed in detail in [18].

3.1 Efficient Nearest Neighbour Search with kD-Trees

While navigating the database, the problem of finding the
sound segment closest to a target point xt in the multi-
dimensional descriptor space is solved efficiently by a
branch and bound search algorithm based on the tree-
structured index provided by the kD-tree.

The kD-tree represents a hierarchical decomposition of
the descriptor space, and during search, whole subtrees are
discarded from the search, by application of an elimination
rule based on the farthest neighbour found so far. This re-
moves a large amount of the distance calculations between
vectors, resulting in a sublinear time complexity. Several
variants of the algorithm are compared in [4], and it is ar-
gued that the best decomposition is along the hyperplanes
orthogonal to the principal components, since it maximises
the distance among the points in different subtrees and thus
the probability that a subtree can be pruned.

The elimination of nodes is achieved by calculating the
split plane of a node n defined by an orthogonal vector sn

and going through a point μn that is the mean of the node’s
elements. This plane is used in the vector-to-node distance
function based on the dot product:

distV 2N(x,n) = (x−μn)/σ · sn (1)

Ideally, sn is the principal component vector of the node,
but choosing it orthogonal to the axis of the dimension with
the greatest variability results in an almost equally efficient
search with less overhead for the decomposition.

The search algorithm uses a stack of nodes to be visited
and the distance d of the target point xt to the node’s split
plane in order for the elimination rule to prune child nodes
when no vector closer than the current nearest neighbours
can be found. An additional radius parameter r limits the
returned nearest neighbours to lie within distance r from xt .
If r = ∞ all k nearest neighbours are returned. Note that both
distance functions distV 2N and the vector-to-vector distance

distV 2V (x,y) = (x− y)/σ (2)

can include per-descriptor-weights in σ that balance the in-
fluence of each dimension in the search, even after the tree
index is built.

The performance measurements in [18] show the log-
arithmic time complexity of search, linear complexity for
building the tree, and the exponential influence of the num-
ber of dimensions. However, the highest single search time
is just 2.2 ms for a database size of 106 10-dimensional
points, and an initial overhead over linear search is quickly
passed by with data sizes over 100. What’s more, using
PCA-based decomposition would reduce the dimensional-
ity to the intrinsic number of dimensions, i.e. linearly de-
pendent dimensions would not contribute to the complexity
of the search.

3.2 Mass–Spring–Damper–Repulsion Model

Turning to the visualisation of sounds as points in a graphi-
cal interface, a useful model is the simulation of a system of
masses connected by springs (or, more generally, by links).
This model is the heart of the dimensionality reduction algo-
rithm explained in section 3.3, but it can already be applied
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to an existing projection on two or three dimensions of a
sound database for two purposes: First, it allows to inter-
actively move displayed sounds with neighbouring sounds
following, in order to organise the sound space. Second, the
repulsion force that has been added in our implementation
avoids overlapping points by pushing them apart.

The model is following MSD [7], implemented for
MAX/MSP and PUREDATA. We chose an inert model for
faster convergence and to avoid self-oscillating systems of
masses. For the differential equations of the physics model
and their implicit discretisation, see [7].

The available parameters are the nominal length of the
links L, the stiffness parameter K, friction damping η , and
viscosity damping μ . Repulsion takes place when the mass
distance is lower than a threshold LR and rises linearly up to
R. Its effect can be seen in figure 1, where a cluster of over-
lapping points is distributed in space to reveal all sounds.

Figure 1. Effect of repulsion (right) on a cluster (left).

3.3 Hybrid Multi-Dimensional Scaling

For the low-dimensional visualisation of a high-dimensional
space, the Chalmers algorithm [8] uses a mass–spring model,
where the nominal spring lengths are given by the distance
in the high-dimensional data space. The basic assumption
is that the final minimal stress configuration, that the model
will converge to, corresponds to a good layout, where points
that are close in data space are also close in layout space. An
additional advantage is that the algorithm is iterative such
that the current configuration can be displayed to the user
while the system converges.

Our improved hybrid algorithm first lays out a random
sample of ns =

√
N points with a fully-connected mass–

spring model to provide a good starting layout for faster
convergence, then places the remaining points around their
nearest neighbour from data space, taking advantage of the
kD-tree, and finally lays all points out by running a mass–
spring model with constant numbers of links to the nearest
neighbours, and random links that change at each iteration.

The choice of ns means that each iteration in the ini-
tialisation phase is linear, since a fully connected system
takes O(n2

s ) = O(N), while the placement is of complexity
O(N logN) and the final iterations constant. Only few itera-
tions are necessary until the total stress reaches a minimum.

4 INTERFACE

The search and musical synthesis of sounds from a large da-
tabase of sounds and descriptors is similar to the exploration
of data manipulating a graphical representation. This task is
well described and much research on it has been done in the
field of information visualization. Shneiderman and Plaisant
[19] define the mantra of information visualization as:

Overview, Zoom and Filter, Details on Demand.

Interactive navigation in multi-dimensional data spaces
requires either an exploration of individual descriptor di-
mensions, or a reduction of dimensionality to two or three
to allow them being displayed: Methods of dimensionality
reduction such as multi-dimensional scaling (MDS), princi-
pal component analysis (PCA) with the interactive integra-
tion of weights per dimension, linear mapping-by-example,
and, if class labels are available, linear discriminant anal-
ysis (LDA), can all help to make high dimensional spaces
available for interactive navigation.

We will concentrate in the following on new strategies
for visualisation of sound databases for efficient search, in-
cluding the integration of MDS and PCA, zoom & pan, a
new display mode tile, and filtering options for categories.
All these improvements rely on an efficient visualisation ar-
chitecture that will be described first:

4.1 Visualisation Architecture

The graphics model implements a 3-tier architecture us-
ing three separate coordinate spaces (model, world, and
device coordinates) and mappings and transformations be-
tween them as explained in the following:

4.1.1 Tier 1: Model Coordinates

The model coordinate space is the N-dimensional space of
the descriptor data in raw descriptor coordinates (units like
Hz, dB, linear amplitude, etc), populated by M units. The
choice of D descriptors to use for display takes place in this
space, as well as a preselection or inclusion/exclusion of U

units to draw.
The model is thus represented as a matrix model(U,D)

which is a subset of the original unit data matrix ud(M,N).

4.1.2 Tier 2: World Coordinates

The world coordinate space consists of the descriptor data
projected to 2D (or 3D) and a colour scale index, normalised
to [0,1]. It is represented as the matrix world(U,D) and lists
of labels for symbolic descriptors.

The selection of the unit to play being closest to the
mouse pointer position takes place in world coordinates, and
not in the full descriptor space of model.
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Figure 2. Screenshot of the sound navigator prototype in full view (left), the display canvas in tile mode (middle), and tile zoom

(right), where the tile under the mouse is zoomed in fully.

4.1.3 Tier 3: Device Coordinates

This space is constituted of the raw coordinates of the output
device in device(U,D), i.e. screen canvas pixels and RGB
colour values, or OpenGL screen coordinates, or other 3D
space coordinates.

4.1.4 Mapping A: Model → World

Mapping A is only applied when the descriptor choice or the
data changes. Usually, this mapping is a simple projection
to the two selected descriptors. More advanced methods of
dimensionality reduction, like PCA or MDS can be applied
here. The inverse mapping A−1 converts a world coordinate
p(px, py) back into model coordinates, i.e. descriptor val-
ues.

The different modes of mapping A listed in the following,
allow the transformation of the model space to the world
coordinate space, or the inclusion of additional dimensions
in the visualisation.

Standard Projection
Projection to two descriptor axes dx,dy of model and a
colour scale dc.

Transformed Projection
Dimensionality reduction by MDS or PCA from a mix
of descriptors, dx = principal component, dy = secondary
component, dc = tertiary. However, any axis can also be
a descriptor.

Tiled View
Can be used to display a view tiled into columns, rows,
or cells by a categorical descriptor dc such as class ID,
sound set. Within each cell, a displacement descriptor
dd , scaled to [0,1] is added to the category coordinate.

Pivot View (not yet implemented)

Pivot view uses one marked unit as the pivot p, which
adds the distance between p and ud as an additional de-

scriptor to choose from. The distance can be derived as
a linear combination of descriptor distances, or be given
by a distance matrix defined for a categorical descriptor.
A further possibility is to place the pivot in the center
of the plot, and display the remaining units in polar co-
ordinates, with the distance mapped to the radius, and a
selectable descriptor mapped to angle.

4.1.5 Mapping B: World → Device

The mapping from world to device coordinates produces the
matrices in device coordinates (pixels and RGB colour val-
ues), label positions and colours.

The world-to-device mapping B keeps track of the cur-
rent view: the rectangle v(llx, lly,urx,ury) in world coordi-
nates that is displayed (default: v = (0,0,1,1)), which is
converted to a transformation matrix B including a scale fac-
tor s and a displacement vector t(tx, ty), such that device =
world ·BT , or:

⎛
⎜⎝

x′1 y′1 1
...

...
...

x′n y′n 1

⎞
⎟⎠ =

⎛
⎜⎝

x1 y1 1
...

...
...

xn yn 1

⎞
⎟⎠

⎛
⎝ s 0 0

0 s 0
tx ty 1

⎞
⎠ (3)

This results, however, in 7 unused multiplications and 4 un-
used additions per point p(x,y), and the additional memory
for the expansion of the coordinate matrix by one column,
so that the direct form is more efficient.

Mapping B provides the following functions that mod-
ify the 2D layout of the data points to ease browsing and
inspection :

Zoom & Pan: Scaling and moving in the world coordinate
space by changing the view v.

Magnifying glass using a sigmoid function mapping which
is steepest around the current position.
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The inverse mapping B−1 maps the input from controllers
from device coordinates (pixel position of the mouse pointer)
back to world coordinates (taking into account the current
view), in order to perform selection.

4.2 Presentation and Interaction

The interface supporting sound search by navigation is
shown in figure 2 (left). It allows to choose the descriptors
used for the X- and Y-axes of the 2D space, which descrip-
tor is displayed as a label for each sound or group of sounds,
and the colour scale of the points representing a sound seg-
ment and the labels. Presets exist for the most useful settings
of these choices. When moving the mouse pointer through
the space, the sound segment close to the current position
is immediately played. Playing is layered if movement is
fast, so that large parts of the sound space can be explored
rapidly. Because the input sounds would typically be seg-
mented in rather short snippets (200–500 ms), the played
sounds stop quickly, and thus also long recordings can be
inspected by navigation. Other trigger modes exist that con-
tinue playing the segments of a given sound when the mouse
does not move, in order to hear a recording entirely. Note
that the time of a segment in the recording is also part of the
selectable descriptors, allowing time-based browsing.

This strong interactivity enables the user to quickly un-
derstand the dimensions and areas of the presented space by
an initial traversal, probing sound snippets that are played
as they are passed by. Zooming in and out of the space and
moving the view, together with the layout improvements of
the MSDR model (section 3.2), allows to inspect the sound
space of continuous descriptors in detail.

In order to explore the category descriptors and classes
resulting from automatic classification, or groups of sounds
defined by the user, two methods have been implemented:
tile mode and the category browser.

Figure 2 (middle) shows the display tiled by two cate-
gories along the axes. Each tile contains a scaled version of
the original descriptor space, but only with the units that are
members of both of the two categories. The user can jump
between the overall view and the view of a tile zoomed in
fully, as illustrated in figure 2 (right).

The category browser (figure 3) allows to choose which
units are active. To keep the overview of the whole sound
distribution, inactive units are still displayed but are greyed
out and not selectable. Combinations of categories can ei-
ther be muted or soloed.

5 IMPLEMENTATION

The algorithms and interfaces described here are imple-
mented as C-libraries and as externals within the FTM&CO
extension library [12] at http://ftm.ircam.fr for MAX/MSP
and PUREDATA, taking advantage of FTM&CO’s advanced

Figure 3. Category Browser: choose categories to view.

data structures such as matrices and dictionaries, and the
algebraic, mapping, and statistical operators that work on
these [1]. This allowed the rapid building of the prototype
application to test the search-by-interaction paradigm.

Differing from the CATART system for real-time corpus-
based concatenative sound synthesis [17], the sound ex-
plorer prototype does not need, and indeed can not keep all
the sounds in memory. Instead, they are played back directly
from disk, with a latency of about 15 ms for the harddisk ac-
cess, which does not perturb navigation.

6 CONCLUSION

We described a system for efficient interactive sound search
by navigation in databases of sounds and descriptors, based
on three algorithms that are crucial for scalability to large
databases, their improvements, performance and implemen-
tation, and novel concepts and methods for efficient visu-
alisation and interaction in a 2D interface. First, the effi-
cient logarithmic-time kD-tree search algorithm, where we
added the limitation to a search radius, and weights for the
descriptors. Second, the mass–spring–damper model for in-
tuitive layout optimisation of points in a 2D interface, where
we added repulsion. Third, the hybrid multi-dimensional
scaling algorithm for dimensionality reduction for visuali-
sation, based on the MSD model, where the use of the kD-
tree speeds up the initialisation, allows more precise pre-
placement, and thus faster convergence.

All three algorithms together make the paradigm of in-
teractive sound search by navigation scalable to very large
sound databases.

Then, we described a prototype application based on
these algorithms and an efficient visualisation architecture,
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that allowed us to experiment a number of innovations and
facilities in the user interface, such as class filters and a
multi-grid visualisation, to organise search by navigation in
large databases.
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D. Schwarz, “Using the SDIF sound description inter-
change format for audio features,” in Proceedings of

the International Symposium on Music Information Re-

trieval (ISMIR), Philadelphia, USA, 2008.

[3] G. Coleman, “Mused: Navigating the personal sample
library,” in Proc. ICMC, Copenhagen, Denmark, 2007.

[4] W. D’haes, D. van Dyck, and X. Rodet, “PCA-based
branch and bound search algorithms for computing K

nearest neighbors,” Pattern Recognition Letters, vol. 24,
no. 9–10, pp. 1437–1451, 2003.

[5] S. Heise, M. Hlatky, and J. Loviscach, “SoundTorch:
Quick browsing in large audio collections,” in AES Con-

vention 125, San Francisco, CA, USA, Oct. 2008.

[6] ——, “Aurally and visually enhanced audio search with
SoundTorch,” in CHI EA ’09: Proceedings of the 27th

International Conference Extended Abstracts on Human

Factors in Computing Systems. Boston, MA, USA:
ACM, Apr. 2009, pp. 3241–3246.
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sis,” Thèse de doctorat, Université Paris 6 – Pierre
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ABSTRACT 

In the field of computer music, melodic based forms of 

vocalizations have often been used as channels to access 

subject’s queries and retrieve information from music 

databases. In this study, we look at percussive forms of 

vocalizations in order to retrieve rhythmic models 

entrained by subjects in Samba culture. By analyzing 

recordings of vocal percussions collected from randomly 

selected Brazilian subjects, we aim at comparing emergent 

rhythmic structures with the current knowledge about 

Samba music forms. The database of recordings was 

processed using a psychoacoustically inspired auditory 

model and further displayed on loudness and onset 

images. The analyses of emergent rhythmic patterns show 

intriguing similarities with the findings in previous studies 

in the field and put different perspectives on the use of 

vocal forms in music information retrieval and 

musicology. 

1. INTRODUCTION 

Beatboxing, Puirt-a-beul or bols are some of the examples 

of vocal percussion forms found in different cultural 

backgrounds. These practices generally make use of non-

meaningful phonemes, which imitate instruments and 

often rely on onomatopoeia [1 , 2]. The information 

available on forms of vocal percussion account for 

examples distributed over different musical cultures and 

practices, which range from simple devices for musical 

learning to elaborated forms of performing art. Vocal 

percussion may have differentiated from melodic singing 

due to the necessity for more freedom in expressing 

rhythmical ideas. It is also possible that it originated from 

the combination of a vocal apparatus in human species 

and the necessity of rhythmical expression in all human 

cultures. However, what makes these forms of vocal 

percussion relevant to our study is the use of the voice as a 

seamless link between musical intentionality and acoustic 

energy. In this study, we use this link to access rhythmic 

intentionality and analyze rhythmic structure within 

Brazilian samba. 

1.1. Vocal percussion 

Cultural forms of vocal percussion have been rarely 

mentioned in traditional musicological research. More 

recently, the emergence of hip-hop in the cultural sector 

has shed light on the beatboxing form, which is only a 

modern and localized form of vocal percussion. Other 

examples found in the bibliography describe music forms 

in India (bols), song genres in Ireland (Puirt-a-beul), 

pedagogic devices for conga teaching in Cuba [1] and 

verbal art in Africa [3]. So far, it seems that vocal 

percussion assumes diverse socio-cultural roles and 

importance, although only a small number of dispersed 

scholarly and non-scholarly records have showed this in 

detail.  

In computer music some attention has been devoted to 

the potential use of vocalizations, in special pitch based 

vocalizations in western music contexts. The easy 

assessment of user’s musical intentionality for music 

retrieval applications appears to be a central element in the 

“query-by-humming” approach. During the last years, a 

large number of publications and implementations have 

been produced in the field [see 4, for a review of 

algorithms]. Less noticeably, a small number of studies 

approached vocal percussion from this perspective. Kapur 

et al. [5] used the beatboxing as a mechanism to retrieve 

and analyze drum loops and their rhythmical structures. 

Nakano et al. [6] developed a similar approach by using 

native Japanese speakers as subjects, which demonstrates 

the application of the approach in phonetically different 

backgrounds. Kang & Kim [7] used vocal percussion for 

real-time animation of motion clips (dance animations). 

Although most of these studies aim at understanding how 

vocal queries relate with musical databases, in very few 

academic work the opposite is shown, namely, how vocal 

queries are related with subjects’ conceptions of musical 

forms.  

Heylen et al. [8] provides a study that uses 

spontaneous vocalizations to access subjects’ musical 

conceptions or models. In this study, subjects were asked 
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to sing along to several music pieces in different tonal 

contexts. The results show emergent major and minor 

tonal structures that resulted from spontaneous 

vocalizations. The use of vocal apparatus to retrieve the 

tonal evaluation from subjects is understood as a 

corporeal articulation in response to different tonal 

stimulus. The insightful turn of vocalizations into 

corporeal articulations is also a crucial concept in our 

study. It opens channels to less formalized responses to 

music, which include not only vocalizations but also body 

movement. The framework of embodied music cognition 

[see 9], in which this concept is developed, seem to adapt 

more naturally to the problems of musicological 

investigation developed in less-formalized music cultures. 

The music and dance traditions of the samba culture are 

examples of cultural artifacts dominated by informal 

learning and practices, in which our universe of study is 

delimited. 

1.2. Vocal percussion in Samba 

Samba music is generally described as having a binary 

meter music form accentuated in the second beat, and a 

rhythmic texture that is characterized by syncopated 

rhythms [10-13]. The music is only one component of an 

intricate complex, in which forms of dance, music, poetry, 

rituals and social relations develop mostly through in an 

informal context [14, 15].  

Ziriguidum, balacobaco and telecoteco are some of the 

very common onomatopoeic expressions used in Brazil. 

They are not easily found in dictionaries, but they are 

intuitively linked with samba concepts, behaviors and 

culture. Expressions like these appear in thousands of 

internet references (mostly in Brazilian Portuguese): blog 

posts, magazines, books, little enterprises, dance clubs, 

restaurants and others. Surprisingly, there are almost no 

references on the use of vocal percussion as a common 

practice. To what extent is this practice common in 

Brazilian society? Which characteristics of this form of 

vocal percussion are consistently aligned with the musical 

repertoire? How do they reflect the conceptions of samba 

within the acculturated population? 

In this preliminary study, we concentrate on the last 

two questions. By analyzing a database of vocal 

percussions recorded from randomly selected Brazilian 

subjects, we aim at providing the first images about this 

aspect of samba culture. The database of audio recordings 

was analyzed using a psychoacoustically inspired auditory 

model and further processed into loudness and onset 

images as described in the next sections. Section 2 

describes the procedures used in the recordings and 

dataset. Section 3 explains the methods used to analyze 

and produce images of rhythmical content. In the Section 

4, we show and discuss the results, rhythmical structures 

derived from the analysis and compare them  with results 

from previous studies about samba music. 

2. DATASET  

The dataset used in this study is a growing database of 

vocal percussions recorded in Brazil, between 2008 and 

2009. This database will be further complemented with 

questionnaires in order to provide better information about 

socio-cultural profiles of the subjects (not analyzed in this 

study). 

In order to create conditions to access practical 

measures of how the practice is present in the universe of 

study, we opted to randomly choose subjects (passers-bys) 

in public spaces. The sessions took place in four different 

locations in Belo Horizonte (Brazil), in relatively quiet  

spaces (classrooms). The recordings were done with a 

professional digital recorder and high-quality 

microphones, using a sample definition of 44100 b/s at 16 

bits (stereo), stored in SD cards. 

First, the subjects filled out a brief contact form. No 

information about the study was provided before the 

recordings. During the second part of the experiment, the 

subjects were invited to perform samba rhythms, using 

their voice in spontaneously organized sequences. These 

sequences were registered in one single take. If the subject 

refused to perform or declared her/himself unable to 

perform the task, this was registered in a form. No training 

sessions or repeated takes were used in this experimental 

model.  

3. METHODS AND ANALYSIS 

3.1. Segmentation and normalization 

The audio excerpts were segmented manually. The criteria 

for segmentation were selecting and extracting 

homogeneous excerpts that last a minimum of 4 or 8 

beats. Each excerpt was then normalized at 0 dB 

(amplitude) and the channels merged into mono aural 

WAV files. Although female and male voice differences 

may have an influence on the overall auditory images, we 

opted to avoid any kind of spectral normalization or 

further processing aimed at normalizing these differences.  

3.2. Analysis 

3.2.1. Loudness images 

During the first stage of our analysis, the excerpts were 

processed with a psychoacoustic inspired auditory model 

based on [16] and implemented as a windows executable. 

The auditory model simulates the auditory decomposition 

in the periphery of the auditory system, which results in 

40 channels of loudness patterns obtained from a 

simulation of neural rate activity distributed over the 

audible spectrum [for more details see 16, p. 3514]. The 

loudness patterns were processed by the auditory model 

implementation at sample rate of 100 frames/second. All 

images were further resampled and normalized to a 
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sample rate of 98 frames per musical beat. This procedure 

allows comparing and accumulating groups of auditory 

images and onset images, which originally had different 

absolute time durations. 

In this study, we display auditory spectrum images 

with 4 or 8 beats lengths, depending on which  illustration 

was used. When the auditory images are displayed with 8-

beat length, 4 beat images will duplicate. When 4-beat 

images are displayed, only the first half of the 8-beat 

images is displayed.  

3.2.2. Onset images 

To avoid imprecise onset accumulations derived from a 

sum or a mean of loudness patterns, we applied a method 

for onset detection to each auditory image using an 

integrate-and-fire neural net based on an approach 

developed in [17] and implemented in IPEMToolbox 

[18]
1
. In the sequence, onset images were quantized in 256 

sample images (128 samples for 4-beat images), which 

means that onset attacks were integrated in 32 sample 

“slots” per musical beat. This procedure helps to slightly 

integrate deviated onsets in a single position when 

concatenating onsets in mean images. Mean onset images 

were produced from the integration of onsets in the same 

“slot” position (1/32 beat). Figure 2a show mean images 

of loudness, Figure 2b show mean image of onsets.  

In order to visualize a single rhythm profile in the high 

portion of the auditory images, we summed up the high 

channels of the auditory images, as displayed in the Figure 

3 (basically half of the channel distribution: 21:40 for 

high-frequency channels), which seem to be sufficient 

enough to demonstrate the propositions of section 4.2.3.  

4. RESULTS AND DISCUSSION 

The results consist of information regarding the overall 

profile of the database and a discussion about the selected 

images of the dataset, analyzed with the methods 

mentioned above. 

4.1. Overview  

We collected recordings from 55 subjects, which 

produced a database of 80 excerpts (1.5 excerpts/subject). 

A percentage of 5.4% subjects (3 subjects) was unable to 

perform the task. A percentage of 41% of the recordings 

was performed by female subjects and 59% by male ones. 

The actual database is composed of 45 excerpts with 4-

beat length and 35 excerpts with 8-beat excerpts. We 

extracted the mean BPM values for all excerpts manually. 

The BPM list has a normal distribution (Kolmogorov-

Sminov test, alfa = 0.05) with mean 102.09 and standard 

                                                
1
  IPEM toolbox is available at http://www.ipem.ugent.be  

deviation 18.5. The minimum BPM found was 59.6 while 

the maximum was 184.4.  

4.2. Analysis of auditory and onset images 

4.2.1. First images 

Figure 1 (a, b, c), displays 3 phases of the generation of 

loudness/onset images. Firstly, (1a) the first loudness 

images are extracted and resampled. They are followed by 

an (1b) onset image derived from the loudness images and 

(1c) the same onset image quantized to 32 samples/beat. 

The quantization of onset attacks provides a better 

integration of onsets for each 1/32
nd 

segment of the 

musical beat.  

 

Figure 1(a) - First loudness image of an excerpt of vocal 

percussion performed by a female subject. Degrees of 

gray represent normalized loudness (white:black=0:1); (b) 

- onset image at 98 samples/beat; (c) - quantized onset 

image at 32 samples/beat. 

4.2.2. Mean loudness and onset images 

We calculated the mean loudness image and a mean onset 

image for all excerpts. Figure 2a and 2b summarize 

loudness and onset channels for all vocalizations.  
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Figure 2. 4-beat mean (a) loudness image and (b) onset 

image for all excerpts.  

In both Figures 2a and 2b we observe the isolation of 

low and high-pitched onsets, denoted by a separation 

between high and low frequency patterns. These two 

distinct layers seem to exhibit periodic rhythmic patterns 

along time. The high portion of the spectra shows a 

characteristic tatum layer of samba, composed of � -beat 

onset profiles (16
th

 notes in a 2/4 bar). The low portion of 

the spectra exhibits a punctuated rhythm (1) that stresses 

each beat mark, which can also be found in several samba 

recordings (such as the one detailed in Figure 3). An 

auditory inspection of the sound database confirms the 

relevance of these observations and that low-frequency 

patterns are usually performed with consonants t or d, 

followed by a very low sound. Of course, transients of 

these consonants spread over the high spectrum, which 

makes the separation of onsets between spectral regions 

questionable (see discussion in section 4.2.4). 

(1) 

The third 16
th

-note onsets of each beat (at the 0.5 

position of the beat) are often accentuated in the high-

spectra. The second 16
th

-note onsets are often less clearly 

defined in both high and low portions of the auditory 

spectra. Double onset peaks verified some of the 2
nd

, 3
rd

 

and 4
th

 16
th

-notes in the onset image (Figure 2b) seem to 

indicate the presence of different groups of microtiming 

behaviors, not evident in the loudness images. 

4.2.3. Tatum and microtiming 

The tatum layer is defined as the lowest level of musical 

metrical hierarchy, and normally detected through the 

fastest rhythmical figures observed in the rhythmical 

texture. This musical layer is found in high-pitched 

patterns of instrumental samba ensembles and commonly 

represented in musical notation as isochronous 16
th

 note 

figures. Figure 3, extracted from [19], displays a similar 

onset analysis applied to a commercial recording of samba 

music (Ela veio do lado de lá – Benito Di Paula, 1975). In 

this case, our results seem to confirm the same structure 

observed in commercial samba recordings. 

 

Figure 3. Onset analysis of a commercial samba 

recording. Traced lines indicate beat points. 

Recent studies have examined the role of microtiming in 

the induction of “groove” in Brazilian music. Gouyon [20] 

studied the microtiming in the samba using a database of 

commercial recordings. Lindsay & Nordquist [21] 

analyzed microtiming using commercial recordings and 

recording of individual samba performers. Gerischer [22] 

studied the groove and microtiming using field recordings 

of Brazilian percussion groups. All these studies 

demonstrated the existence of a systematic anticipation of 

the 4
th

 and 3
rd

 onsets in groups of four 16
th

-notes (1 beat). 

Figure 4 displays the analysis of microtiming between 

the peaks of the onset images (high auditory spectrum, 

channels 21:40). The top graph shows the accumulated 

onset image (1/32 beat) and the bottom graph displays the 

sample difference between each onset and the following 

one. 
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Figure 4. Microtiming analysis of the higher onset image 

(1/32 beat samples). The bottom graph shows the distance 

(in samples) between onsets. Traced lines represent 1/8 

and 1/4 isochronous sample divisions of the beat. 

The patterns displayed in the bottom graph of Figure 4 

show that the intervals between 1
st
 and 2

nd
, 2

nd
 and 3

rd
 

16
th

-notes (second graph, numbers 1 and 2, horizontal 

axis) are normally shorter than others. 3
rd

 and especially 

4
th

 intervals (numbers 3 and 4, horizontal axis) are often 

larger than the mathematical isochronous � rule of the 

tatum layer. The pattern of deviations verified by our 

database of vocal percussions is strikingly consistent with 

studies mentioned above, especially with the results 

displayed in [22, p. 105], [20, p. 200] and [21, p. 26]. 

Although such an observation seems to be a trivial 

confirmation of findings of previous studies, the fact that 

untrained subjects could re-enact precise microtiming 

structures verified in musical stimuli is worth paying 

attention to. 

4.2.4. Rhythmical hypotheses 

By subsuming the hypothetical voicing possibilities of our 

observations, we can create a collection of rhythmical 

motives that may provide explanations for the rhythmic 

possibilities found in the results. Figure 5 demonstrates 

these possibilities in traditional music notation: 

 

Figure 5: Hypothetical rhythmic motives (A, B, C, D) 

extracted from our observations. This collection of motives 

is not exhaustive and other variations may occur. 

The motive A is the most obvious structure found in the 

loudness/onset images because it directly mirrors the high-

low spectral layers. If we accept that the third 16
th

-note is  

linked with the low voice, a low-high-low pattern (B) will 

appear in the low voice, while tatum layer is still 

maintained. However, this strong accent may also 

represent a third mid-frequency voice (C) due its slight 

distribution over the mid frequencies. In this case, the 

mixture of channels is supposed to be an inevitable 

consequence of the monophonic condition of human 

voice. Finally, the same condition in B may be exclusively 

pertinent to the low voice, which gives rise to a 

syncopated pattern (D) in the high spectra. The last 

hypothesis of course implies that the existence of a 

constant tatum layer in the higher portion of the auditory 

spectrum must be rejected. After all, these hypotheses 

seem to indicate that syncopated or contrametric lines are 

not strongly represented by the models that lie underneath 

the vocal percussion practices. It is also possible that 

syncopation onsets may exist, but they are so dispersed 

and distributed over the time span that their presence is 

masked by the commetric forces or by the average 

procedure in the calculation of mean images.  

The results raise very intriguing questions. Samba 

musicians, composers dancers, researchers and expert 

listeners seem to agree that syncopation, polyrhythmic and 

contrametric content are the most salient characteristic of 

Samba music [14, 23, 24]. It was expected that subjects 

would likely perceive and store traces of highly 

syncopated stimuli and, therefore, be able to perform 

entrained patterns with the same characteristics. However, 

what we observed is that vocal percussion patterns do not 

show observable syncopation at relatively accessible 

macro time and mid spectrum, but demonstrate a 

surprising consistency at microtiming level. In which part 

of the chain stimuli-subject-vocalization was the syncope 

filtered? 

The answer to this question will take us further than 

this preliminary study. Improved methodologies and the 

incorporation of other modalities may be necessary to 

better represent the samba complex as a systemic 

structure. Nevertheless, the results seem to demonstrate 

the richness of the vocal practices in providing elements 

for both information retrieval and cognitive modeling 

investigation. 

5. CONCLUSION 

In this paper we analyzed a database of vocal percussion 

in samba culture. We aimed at understanding how 

rhythmic models emerged from the vocalizations and how 

they articulate with models of the samba music. The study 

shows that the ability to perform this practice seem to be 

spread over the group of subjects of this study, and that 

rhythmic models are relatively consistent throughout 

mean images of the loudness and onset patterns. Rhythmic 

patterns derived from these images show 3 important 
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observations: that (1) rhythmic patterns are similar with 

overall samba music characteristics and (2) strikingly 

entrained at microtiming level. The syncopation priority 

of samba music (3) seems to be absent in vocal percussion 

representations but a better methodology may clarify the 

presence of syncopated onsets. 

In terms of perspectives for the SMC and MIR fields, 

this study shows that vocal queries are not simple copies 

of models of musical intentionality, but may emerge from 

complex interactions between acoustic 

stimuli/environment and other modalities such as 

corporeal engagement with music (dance). However, the 

precision of vocal queries may reach levels of 

performance comparable with professional musicians, 

with the advantage that it situated within the context of the 

ubiquitous and normalized medium of human vocal 

emissions. Future work must include a better pattern 

detection methodology, a robust statistical verification, 

analyses of cross-modal interactions and a more 

systematic investigation over the profile of subjects, 

metrical content and microtiming. 
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ABSTRACT 

We are developing a computational system that produces 

music expressing desired emotions. This paper is focused 

on the automatic transformation of 2 emotional dimensions 

of music (valence and arousal) by changing musical 

features: tempo, pitch register, musical scales, instruments 

and articulation. Transformation is supported by 2 

regression models, each with weighted mappings between 

an emotional dimension and music features. We also 

present 2 algorithms used to sequence segments. 

We made an experiment with 37 listeners who were 

asked to label online 2 emotional dimensions of 132 

musical segments. Data coming from this experiment was 

used to test the effectiveness of the transformation 

algorithms and to update the weights of features of the 

regression models. Tempo and pitch register proved to be 

relevant on both valence and arousal. Musical scales and 

instruments were also relevant for both emotional 

dimensions but with a lower impact. Staccato articulation 

influenced only valence. 

1. INTRODUCTION 

The automatic production of music that expresses desired 

emotions is a problem with a large spectrum for 

improvements. The importance of developing systems 

with such a capability is evident to the society. Every 

context with a particular emotional need can use systems 

of this kind to accomplish its objectives. However, only 

recently there has been a great improvement in this area. 

Scientists have tried to quantify and explain how music 

expresses certain emotions [3, 4, 11]. Engineers have 

developed systems with the capability of producing music 

conveying specific emotions [7, 16, 17] by using the 

knowledge acquired by scientists. 

We are developing a computational system used to 

produce music expressing desired emotions (section 3), 

grounded on research of Music Psychology and Music 

Computing (section 2). In this work we are focused on the 

transformation of music and improvement of the weights 

of features of the regression models used in the control of 

the emotional content of music; we also present 

sequencing algorithms (section 4). We made an 

experiment with 37 listeners that emotionally labeled 132 

musical segments: 63 of transformed and 69 of non-

transformed music (section 5). The analysis of the data 

obtained from this experiment and the update of the 

regression models are present in section 6. Section 7 

makes some final remarks.  

2. RELATED WORK 

Our work involves research done in Music Psychology 

and Music Computing. The comprehension of the 

influence of musical features in emotional states has 

contributed to bridge the semantic gap between emotions 

and music. We are interested in the effect of structural and 

performance features on the experienced emotion [10]. 

We analyzed several works [2, 3, 4, 6, 7, 11, 15] and 

made a systematization of the relevant characteristics to 

this work that are common to four types of music: happy, 

sad, activating and relaxing (Figure 1). 

Figure 1. Characteristics of happy, sad, activating and 

relaxing music 

This systematized knowledge is used by works aiming 

to transform the emotional content of music. These works 

have developed computational systems with a knowledge-

based control of structural and performance features of 

pre-composed musical scores [2, 7, 16, 17]. Winter [17] 

built a real-time application to control structural factors of 
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a composition. Pre-composed scores were manipulated 

through the application of rules with control values for 

different features: mode, instrumentation, rhythm and 

harmony. REMUPP [16] is a system that allows real-time 

manipulation of features like tonality, mode, tempo and 

instrumentation. Pre-composed music is given to a music 

player and specific music features are used to control the 

sequencer (e.g., tempo); to employ filters and effects (e.g., 

rhythmic complexity); and to control synthesizers (e.g., 

instrumentation). Livingstone and Brown [7] implemented 

a rule-based system to affect perceived emotions by 

modifying the musical structure. This system is grounded 

on a list of performance and structural features, and their 

emotional effect. The KTH rule-based system for music 

performance [2] relates performance features to emotional 

expression. This system is grounded on studies of music 

psychology. 

3. COMPUTATIONAL SYSTEM 

The work presented in this paper is part of a project that 

intends to develop a system that produces music 

expressing a desired emotion. This objective is 

accomplished in 3 main stages: segmentation, selection 

and transformation; and 3 secondary stages: features 

extraction, sequencing and synthesis. We are using 2 

auxiliary structures: a music base and a knowledge base. 

The music base has pre-composed MIDI music tagged 

with music features. The knowledge base is implemented 

as 2 regression models that consist of relations between 

each emotional dimension and music features.  

Aided by Figure 2 we will describe with more detail 

each of these stages. Pre-composed music of the music 

base is input to a segmentation module that produces 

fragments. These fragments must as much as possible 

have a musical sense of its own and express a single 

emotion. Segmentation consists in a process of discovery 

of fragments. This process occurs from the beginning of 

the piece by looking to each note onset with the higher 

weights. An adaptation of LBDM [1] is used to attribute 

these weights according to the importance and degree of 

variation of five features: pitch, rhythm, silence, loudness 

and instrumentation). Resulting fragments are input to the 

module of features extraction that obtains music features 

used to label these fragments which are then stored in the 

music base. 

Selection and transformation are supported by the same 

knowledge base. Selection module intends to obtain 

musical pieces with an emotional content similar to the 

desired emotion. These pieces are obtained from the music 

base, according to similarity metrics between desired 

emotion and music emotional content. This emotional 

content is calculated through a weighted sum of the music 

features, with the help of a vector of weights defined in the 

knowledge base for each emotional dimension. Selected 

pieces can then be transformed to come even closer to the 

desired emotion. Transformation is applied in 6 features 

(section 4). The knowledge base has weights that control 

the degree of transformation for each feature. Produced 

pieces from the transformation module are sequenced in 

the sequencing module. This module changes musical 

features with the objective of obtaining a smooth sequence 

of segments with similar emotional content. This sequence 

is given to a synthesis module, which uses information 

about the MIDI instruments and timbral features to guide 

the selection of sounds from a library of sounds. 

Figure 2. Diagram of our computational system 

4. METHODS 

This section presents the methods being used to transform 

music, sequence music and improve regression models. 

4.1. Transformation of musical segments 

Music transformation algorithms have the objective to 

approximate the emotional content of selected music to 

the desired emotion. By knowing the characteristics 

common to different types of music (section 2) we 

developed six algorithms that transform different features: 

tempo, pitch register, musical scale, instruments, 

articulation and contrast of the duration of notes. These 

algorithms start by calculating the emotional distance 

between the emotional content of the selected music and 

the desired emotion. The value of this distance is divided 

by the value of the weight of the feature being 

transformed. The value that results from this division 

corresponds to the amount of increase/decrease we need 

to make on the feature to approximate music emotional 

content to the desired emotion. Next paragraphs explain 

how this increase/decrease is made by each algorithm on 

the MIDI file. 

The algorithm used to transform tempo obtains the 

original tempo of the music (in beats per minute) and then 

increases/decreases the note onsets and duration of notes. 

The algorithm that transforms pitch register transposes 

up/down music by a specific number of octaves to 

increase/decrease valence/arousal. We choose octaves, 

because they are the intervallic transformation more 

consonant [14] with audible repercussion in the frequency 
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spectrum. This is done by adding positive/negative 

multiples of 12 to the pitch of all the notes. 

The algorithm that transforms musical scales finds the 

original scale of the MIDI file and selects a target scale 

according to emotional tags to be defined for each scale. 

Then, it finds the pitch distance relative to the tonic for 

each note in the original scale. If this distance is not found 

in the target scale, it finds the closer pitch distance to this 

distance that is present in the target scale and changes the 

pitch of the note, according to the new distance. For 

instance, suppose we want to transform from a ragha 

madhuri (pitch distances of 4, 5, 7, 9, 10 and 11 semitones 

to the tonic) to a minor gipsy scale (pitch distances of 2, 3, 

6, 7, 8 and 11 semitones to the tonic). A note distant 4 

semitones from the tonic in the ragha madhuri scale would 

have its pitch decreased by one semitone to be distant 3 

semitones from the tonic in the gipsy scale. This happens 

because the interval of 4 semitones is not present in the 

minor gipsy scale. We used a group of 27 twelve-tone 

scales
1
. We chose this group and not others because it has 

a higher variety of number of notes and intervals: scales 

have between 2 and 7 notes and intervals vary from 1 to 7 

semitones. 

The algorithm used to transform instruments obtains 

original MIDI instruments and selects new instruments 

according to the emotional tags of each timbre. These tags 

are calculated through a weighted sum of audio features 

(e.g., spectral dissonance and spectral sharpness), with the 

help of a vector of weights defined in the knowledge base 

for each emotional dimension. 

The algorithm that transforms normal to staccato 

articulation decreases the duration of all notes by a 

specific percentage. If we consider 75%, notes with a 

duration of X would have a new duration of X-X*0.75. 

We also have an algorithm that increases the contrast 

between the duration of notes. It increases/decreases the 

duration of longer/shorter notes according to a degree of 

transformation (k) and the duration of notes expressed in 

beats:  

This algorithm is based on an equivalent algorithm of 

KTH [2]. It was not yet tested. 

4.2. Sequencing of musical segments 

Music sequencing algorithms have the objective to obtain 

a smooth sequence of segments with similar emotional 

content. To date we only have algorithms for rhythmic 

matching and to do fade in and fade out of volume. 

                                                          
1
 http://papersao.googlepages.com/musicalscales 

The algorithm of rhythmic matching intends to match 

the rhythm of previous segment(s) to the rhythm of next 

segment. This objective is accomplished by matching the 

mean of the interonset intervals (IOI) of the notes of the 

N
th

 segment (IOI_N) with the mean of the IOI of the notes 

of the N-1 (IOI_N-1) segments according to the pseudo-

code: 

The algorithms of fade in and fade out are used to 

smooth the transitions between segments, respectively, by 

gradually increasing the volume of the starting segment 

and decreasing the volume of the finishing segment. 

4.3. Improvement of the regression models 

We intend to improve the regression models in order to 

control transformation algorithms, as well as to allow a 

better control of selection algorithms. Updated weights 

take into account new weights obtained in this experiment 

and weights obtained in previous experiments [8, 9] and 

are calculated according to the following formula: 

0.1*Weights [8] + 0.6*Weights [9] + 0.3*NewWeights. 

The values of 0.1, 0.6 and 0.3 for each experiment were 

obtained according to the number of music files and 

listeners used in each of the experiments. 

5. EXPERIMENT 

In our experiment we started by using our system to 

randomly select 14 MIDI files of film and pop/rock music 

expressing different emotions. These MIDI files were 

subject to a segmentation process that produced a set of 

746 segments, from which a set of features were 

automatically extracted. From the set of segments and 

with the help of the set of features, our system selected 

132 segments that were expected to express different 

emotions and last between 10 and 15 seconds. We used 

small segments to try to have only one emotion expressed 

in each segment and to allow a fine-grained correlation 

between musical features and emotions. 63 of the 132 

segments were changed in only one of the following 

features: 12 in tempo, 10 in pitch register, 27 in musical 

scale and 14 in articulation. The other 69 segments were 

not subject to transformations. 

We made an online questionnaire
2
 to allow anonymous 

people to emotionally classify the 132 segments. 37 

different listeners labeled 2 emotional dimensions for each 

                                                          
2

http://student.dei.uc.pt/~apsimoes/PhD/Music/smc09/

if (beat < 1 && beat > 0) 

    adjustment = -(11/170) * (170 - beat*170) 

else if (beat < 2 && beat > 1) 

    adjustment = (4/200) * (beat*200) 

else if (beat > 2) 

    adjustment = (2/200) * ((beat-1)*200) +  6 

newDuration = oldDuration + k*adjustment /400 

adjustment = IOI_N-1 / IOI_N 

if (IOI_N-1 > IOI_N) 

adjustment = -IOI_N / IOI_N-1 

change = 0 

for firstNote to pnultimateNote 

  change = change + (onsetNextNote – onsetThisNote) – 

  (onsetNextNote – onsetThisNote)*adjustment 

  onsetNextNote = onsetNextNote – change 

end for 
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segment with values selected from the integer interval 

between 0 and 10. We obtained standard deviations of 

1.76 and 1.85, respectively, for the answers for valence 

and arousal. These deviations were computed first 

between listeners, and then averaged over segments. 

Obtained labels were related with the extracted features 

for both transformed and non-transformed music. Feature 

selection algorithms were used (best-first and genetic 

search [18]) over the 476 extracted features from non-

transformed music to select the features emotionally more 

relevant. 

6. RESULTS 

This section presents the results of the emotional impact 

of transformed (tempo, pitch register, musical scales, 

instruments and articulation) and non-transformed 

features in order to update the relations and their weights 

for each feature of the regression models 

6.1. Tempo 

We transformed 6 segments by accelerating in 50% and 

slowing down in 30% their tempo, obtaining 3 versions 

for each one: fast, normal and slow tempo. For each of the 

resulting 6 groups of 3 segments, we correlated the tempo 

of each version with the emotional data obtained in the 

experiment. Table 1 presents the correlation coefficients.  

Group 1 2 3 4 5 6 Mean 

Valence(%) 94 96 91 -7 62 100 75 

Arousal(%) 100 98 98 -16 97 -36 74 

Table 1. Correlation coefficients between tempo and 

valence and arousal for the 6 groups of segments 

The expected high positive coefficients were confirmed 

by most of the results. However, the fourth group of 

segments obtained small negative coefficients for both 

valence and arousal, and the sixth group for arousal. This 

may be explained by the presence of an imperceptible 

transformation, because of the presence of very long notes 

(> 4seconds) on the original segment. A higher percentage 

of acceleration and slowing down of the original segment 

would be needed. The result of 100% for valence in the 

sixth group is not very reliable because the answers were 

very close: 3.5, 3.3 and 3.2. Emotional transformations 

contributed to an increase of 0.4/0.2 in valence/arousal 

with changes from low to normal tempo, and an increase 

of 1/0.8 in valence/arousal with changes from normal to 

high tempo. 

6.2. Pitch register 

We transformed 5 segments by transposing them up and 

down two octaves, obtaining 3 versions for each one: 

high, normal and low register. For each of the resulting 5 

groups of 3 segments, we correlated the register of each 

version with the emotional data obtained in the 

experiment. Table 2 presents the correlation coefficients. 

Group 1 2 3 4 5 Mean 

Valence(%) 79 100 15 60 33 57 

Arousal(%) -39 -63 -98 -92 -62 71 

Table 2. Correlation coefficients between pitch register 

and valence and arousal for the 5 groups of segments 

Generally speaking, the increase of register correlates 

positively with valence and negatively with arousal. A 

more detailed analysis of the results in groups 3 and 5 

showed lower correlation for valence, which revealed that 

the change from normal to high register contributes to a 

decrease in valence. From the analysis of the mean pitch of 

the segments, we can observe that the increase in register 

affects valence positively only till we have mean values of 

MIDI pitch around 80, whilst higher values contribute to a 

decrease in valence. We assisted to a similar situation in 

this first group for arousal: values of MIDI pitch higher 

than 80 seem to do not affect the arousal of music. 

Emotional transformations contributed to an increase of 2/-

0.6 in valence/arousal with changes from low to normal 

register, and an increase of 0.7/-0.4 in valence/arousal with 

changes from normal to high register. 

6.3. Musical scales 

We transformed 1 segment by changing the original major 

scale to other 27 musical scales (subsection 4.2). We used 

feature selection algorithms in the process of finding the 

features that best characterize the emotional variation 

when changing the scale. The number of semitones in 

scale, the difference between successive intervals of the 

scale, the spectral dissonance and spectral sharpness with, 

respectively, the weights: -0.17,-0.15, 0.18 and -0.14 were 

important for valence. The number of semitones in scale, 

the difference between successive intervals of the scale, 

the spectral dissonance and stepwise motion with, 

respectively, the weights:-0.19, -0.07, 0.14 and 0.24 were 

important for arousal. Table 3 presents the correlation 

coefficients between the most discriminant features and 

emotional dimensions for the considered 27 versions of 

the segment. 

Musical feature Valence(%) Arousal(%) 

Spectral dissonance 46 31

Tonal dissonance 28 -

Timbral width -32 -

Sharpness -34 -20 

Stepwise motion 24 33

Melodic thirds -34 -18 

Number of semitones in scale -40 -23 

Difference of successive intervals in scale -28 -16

Correlation coefficient 61 45 

Table 3. Correlation coefficients between musical features 

and valence and arousal for the 27 versions of the segment 
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6.4. Instruments 

We changed the instruments of the 69 segments not 

subject to other types of transformations: tempo, register, 

scales and articulation. We tried to have each of the 

General Midi 1 (GM1) instruments [12] present in, at 

least, 1 of these 69 segments, in order to analyze the 

emotional impact of every GM1 instrument.  

Table 4 presents the correlation coefficients between 

audio features and the valence and arousal for the 69 

segments. From Table 4, we can infer that instruments are 

essentially relevant to the arousal, being spectral 

dissonance, timbral width and spectral sharpness relevant 

features in the emotional analysis of the sound/timbre of 

instruments. We found that violin, string ensembles, 

choirs and piccolo contribute to low valence; and 

percussion instruments contribute to high valence/arousal. 

Musical feature Valence(%) Arousal(%) 

Spectral dissonance 28 72 

Timbral width - 54 

Tonal dissonance 19 27 

Sharpness - 44 

Table 4. Correlation coefficients between musical features 

and valence and arousal for the 69 segments 

6.5. Articulation 

We transformed 14 segments by changing their 

articulation to staccato, obtaining 2 versions for each one: 

normal and staccato. We correlated the articulation of the 

28 versions with the emotional data obtained in our 

experiment and found that the change from normal to 

staccato articulation is 40% correlated with the increase of 

valence and has no impact in arousal. 

6.6. Emotional impact of non-transformed features 

We used experimental data from the 69 segments not 

subject to transformations to analyze the emotional impact 

of  non-transformed features. Tables 5 and 6 present the 

features emotionally more discriminant for each emotional 

dimension. We obtained correlation coefficients of 79% 

and 85% (tables 7 and 8), respectively, for valence and 

arousal, using these features. 

6.7. Update of the regression models 

After the analysis of the emotional effect of tempo, pitch 

register, musical scales, instruments and articulation on 

the transformed music and of the emotional effect of the 

more important features on the non-transformed music we 

updated the weights of features of the regression models 

according to the formula present in subsection 4.3. 

In tables 7 and 8, we compare the weights as well as 

the correlation coefficients of previous experiments [8, 9] 

with the weights and correlation coefficient obtained in 

this experiment. The fifth features emotionally more 

discriminant are present with a bold font with higher size. 

7. CONCLUSION 

We successfully tested the effectiveness of algorithms of 

music transformation. Change of tempo was positively 

related to both valence and arousal. Change of pitch 

register was positively related to valence and negatively 

related to arousal. The presence of semitones in musical 

scales was found to be an important feature negatively 

related to valence. Spectral dissonance, timbral width and 

spectral sharpness were found to be important features for 

instruments and are positively related to arousal. Staccato 

articulation was found to be positively related to valence. 

These results and correlation coefficients of features 

emotionally more relevant served to update the weights of 

features of the regression models that have been used to 

control the emotional changes made by the transformation 

algorithms. This experiment was grounded on previous 

experiments [8, 9]. 

Musical feature Corr. Coeff.(%) 

Staccato incidence 57 

Number of unpitched instruments 53 

Note density 52 

Average note duration -50

Average time between attacks -50

Overall dynamic range 48 

Variability of note duration -46

Melodic fifths 45 

Pitch variety 43 

Note prevalence of closed hi-hat 42 

Rhythmic looseness 41 

Percussion prevalence 40 

Table 5. Features emotionally more discriminant for 

valence 

Musical feature Corr. Coeff.(%) 

Variability of note prevalence of unpitched instruments 70 

Percussion prevalence 69 

Note density 66 

Number of unpitched instruments 58 

Staccato incidence 56 

Importance of loudest voice 55 

Variation of dynamics 48 

Note prevalence of snare drum 47 

Overall dynamic range 46 

Variability of note prevalence of pitched instruments 45 

Note prevalence of bass drum 45 

Note prevalence of closed hi-hat 43 

Table 6. Features emotionally more discriminant for 

arousal 
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Musical feature W [7] 

16files

53list. 

W [8]

96files

80list. 

NewW 
69files 

37list. 

Update
W

Average note duration 0 -0.30 0 -0.18 

Chromatic motion 0 -0.16 -0.12 -0.13 

Importance bass register -0.35 -0.17 -0.24 -0.20 

Initial tempo 0 0.60 0.4 0.48 

Muted guitar fraction 0 0.27 0 0.16 

Note density 0 0.09 0 0.05 

Note prevalence of marimba 0 0.17 0 0.10 

Num. unpitched instruments 0.20 0.11 0 0.08 

Orchestral strings fraction 0 -0.43 -0.14 -0.30 

Polyrhythms -0.26 0 -0.16 -0.08 

Saxophone fraction 0.26 0.16 0 0.13 

Staccato incidence 0 0 0.17 0.05 

String ensemble fraction -0.46 0 -0.19 -0.10 

Variability of note duration -0.26 0 -0.37 -0.14 

Key mode 0 -0.13 0 -0.08 

Spectral sharpness 0 0 0.24 0.07 

Spectral volume 0 0 0.28 0.08 

Correlation coefficient 97% 81% 79% - 

Table 7. Weights and correlation coefficients for features 

emotionally more discriminant for valence 

Musical feature W [7] 

16files

53list. 

W [8]

96files

80list. 

NewW 
69files 

37list. 

Update
W

Average note duration -0.57 -0.44 0 -0.32 

Avg. time between attacks 0 -0.12 0 -0.07 

Importance bass register -0.22 0 -0.21 -0.08 

Importance of high register -0.57 0 0 -0.06 

Initial tempo 0 0.31 0.4 0.31 

Note density 0.21 0.47 0.22 0.36 

Number of common pitches 0 0 0.19 0.06 

Percussion prevalence 0.27 -0.26 0 -0.12 

Primary register 0 -0.12 -0.25 -0.16 

Repeated notes 0.16 0.11 0 0.08 

Strength strong. rhythm. pulse 0 0 0.22 0.07 

Variability of note duration -0.26 -0.17 0 -0.13 

Variability note prevalence of 

unpitched instruments 
0 0.20 0.12 0.15 

Spectral dissonance 0 0 0.27 0.08 

Spectral sharpness 0 0.30 0.22 0.25 

Spectral similarity 0 -0.35 -0.21 -0.27 

Average dynamics 0 0.08 0 0.05 

Correlation coefficient 99% 88% 85% - 

Table 8. Weights and correlation coefficients for features 

emotionally more discriminant for arousal 
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ABSTRACT

This paper is a progress report from a workgroup of the 

University of Music Karlsruhe studying Music 

Technology at the Institut für Musikwissenschaft und 

Musikinformatik (Institute for Musicology and Music 

Technology). The group activity is focused on the 

development and design of computer-controlled 

instruments – digital music instruments [5]. 

We will describe three digital music instruments, 

havedeveloped at the Computer Studio. These 

instruments are mostly unified by the idea of human 

gesture and human interaction using new technologies to 

control the interaction processes. At the same time they 

were built upon the consciousness of musical tradition 

taking a fresh approach on everyday objects.

1. META_SONIC.IN PLACE

meta_sonic.in place is an interactive sound installation in 

which sounds can be triggered by color recognition. The 

aim of the work is to create a new, heightened experience 

of sound and space [10]. This installation was first used in 

the courtyard at Wedinghausen Monastery (www.kloster-

wedinghausen.de) as part of the 12
th

Internationaler 

Kunstsommer Arnsberg (Arnsberg International Summer 

of Art - [www.kunstsommer-arnsberg.de ].

Figure 1. picture of the opening
1

meta_sonic.in place is structured in two levels : a 

hardware and a software level. The hardware part consists 

of a PA (5 loudspeakers, subwoofer, mixer), which 

provides for the 

Visitors are able to interact and influence the sounds 

directly; they can decide on how to combine the sound 

material and can change its characteristics.  They do this 

by using either a colored scarf or a glow stick as they 

walk around the courtyard, exploring and discovering 

what the place has to reveal (Fig. 2). 

acoustic irradiation, an audio interface, a 

MacBook Pro and a camera. The camera detects the 

movement of the visitors as part of the interaction process. 

The software level is a standalone application developed 

in Max/Msp and Jitter [7]. With the software application

we can manage the sound material and control the live 

electronic sound processing.

Figure 2. schema of the realization in the courtyard at 

Wedinghausen Monastery

1
 - Picture by Julian Stratenschulte
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1.1. Interaction Process

In the monastery courtyard, there was a raster comprising 

15 fields (Fig.3), defined by the given structure of the 

venue. Nine of these were active at one time. The order of 

the fields changed every 30 minutes (inside of the 

application) as predefined rule. In addition, audio effects 

could be triggered in four of the nine active fields. Three 

central fields, one of which was the over the shaft of the 

former courtyard well, were always active.

It is also possible to use a different number of fields and a 

different raster. The key factor is that the user is provided 

with a matrix, which is easily accessible.

Figure 3. instance of possible array of fields

1.2. Color Recognition

The location is surveyed by a camera positioned several 

meters above the area. The video frame is then divided 

into different fields, which are programmed to detect 

different colors. A color filter programmed into Jitter 

reads the video signal and identifies the colors red, blue 

and green in defined image sections (fields). If one of the 

defined colors is filtered in the image section, a sound is 

activated or an existing sound is modified.

1.3. Audio

The sound library establishes a connection between the 

past and the present of the place where the installation is 

applied. Around 100 samples in stereo and mono were 

produced for the installation at Wedinghausen Monastery, 

including religious music, which had been changed to 

unfamiliar sound, ambient noises and synthetically 

generated sounds. One of the most important objectives in 

this work consists on the spatial and historical integration 

between the real space and the sound art object – the 

installation.

Various stereo pairs could be created using four loud 

speakers. So the spatialization was effected by using a 

combination of individual loud speakers, while the fifth 

loud speaker in the well only played back mono sound 

files. Each field was assigned nine sounds chosen for 

compositional reasons, which were played back in a 

predefined order. Once a sound was activated, it could be 

modified in four different ways:

- drunK71:

- 

which consists  of  the  effects  pitch 

and  stereo-delay. Short delay-times (ca. 200ms) 

give the pitched sound different nuances. 

FREQdelay:

- 

comprises two different effects that 

work independently of each other: by random-

process, either a down and upward glissando or a 

stereo-delay is applied.  The signal thus produced 

is played parallel to the original: if the original 

signal comes from one side, the modified sound is 

heard from the other side.

ALLout:

- 

is an effect especially for the field above 

the well. If a color is identified here, the sample 

triggered comes to the fore while the outer 

loudspeakers are muted.

MONroom: like ALLout, it is especially designed 

for the "well field". If this effect is activated, the 

signal is also routed to the outer loudspeakers.

Figure 4. Possible indoor realization

1.4. Results

The concept aims to create an installation which is as 

ambivalent as it possibly can be, the core of which is like 

an instrument which sounds different depending on where 
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and by whom it is played, but which is always played in a 

similar way. The sound material, the spatialization and the 

type of effects can be adjusted to fit each individual 

location where the installation is applied. However, the 

visitor should always take on the role of interpreter [2] in 

addition to his or her classic function as listener.

The scene created in Wedinghausen transformed the 

monastery courtyard into a stage with the old well as its 

center. As this was the first location where the concept 

was realized, the well became the inspiration for the title 

meta_sonic.in place. The project is named after the 

Ancient Roman Meta Sudans, a fountain with a conical 

‘meta’ in its center, a construction, which also marked the 

place where racing chariots would turn in a Roman circus.

2. CYCLEONIUM

The cycleonium is a computer based music instrument 

[5][8]. Every day objects like a bicycle and a bottle, and 

also a propeller are put in a new context and form the 

base of the sound design. They lose their conventional 

function consequently and have to be considered as 

indispensable parameters of this instrument. The physical 

and mechanical work that is required to make this sound-

machine sound basically doesn’t differ from traditional 

musical instruments. For instance, a guitar: it sounds, 

respectively do we perceive it acoustically, if the strings 

are excited or the corpus is oscillated somehow or other. 

So the player expends energy and translates it into the 

instrument. The user and viewer of the cycleonium is to 

be made aware of that, in principle, musical instruments 

are nothing else than objects that only operate with a 

certain energy expenditure. The energy flow that is 

emerged thereby plays here a primary role. Therefore we 

use the word fluxus, but more in a semantically 

significance (lat. flux, fluidum = flow) than artistic 

aesthetics [4]. Any kind of sounds require energy to 

sound. They have self-energy indeed, but it first has to be 

excited. Otherwise every sound is only a sounding 

abstraction (they aren’t a perpetual motion machine) . 

The player of the cycleonium produces, amongst others,

kinetic energy that excites a propeller that simultaneously 

blows air on the aperture of a bottle: a pitched sound is 

audible. 

2.1. Description

The cycleonium consists basically of four pieces: a bicycle 

(Fig. 5 and Fig. 6), a bottle and a propeller that form the 

hardware and a computer for software-based sound 

processing (live-electronics).

The bicycle is rebuilt in such a way that it resembles a 

stationary bicycle. In this way the propeller can be 

powered whereby the emerging air flow hits the angle of 

the aperture of the bottle. Likewise in a flute, a periodical 

oscillating air column  that is perceivable as a tone pitch is 

produced in the corpus of the bottle [1]. The intensity of 

the sound depends on the speed of the propeller and 

consequently on the expended force of the player. The 

blades of the propeller are fixed up in a way that they turn 

down and cause a rattling noise if the speed is too low. 

Thus the interplay of the expended force of the player 

with the speed of the propeller and thereby with the sound 

of the bottle is directly audible and explicit. The breath of 

the player and the sound  of the chain and arbor of the 

bicycle are as equally important as the sound of the bottle 

itself. The produced sounds are amplified and real-time 

processed.

The live-electronics take place in Max/Msp [7] on a 

Laptop. The sounds can be pitched, transposed, filtered, 

recorded and played and processed with delay or reverb. 

Each Parameter can be controlled with a MIDI-controller. 

The following microphones are used:

bottle:  electret microphone

breath:  dynamic microphone

chain/arbor: condenser microphone 

   (cardioid)

For instance, over the keynote of the bottle can be formed 

an overtone scale with 15 partials or more that are 

controllable individually. The spatialization is realized 

with delays, which can be filtered, pitched and assigned to 

the respective audio-outputs discretely in real-time [3]. To 

bring the bottle in the best possible position to the airflow 

one can adjust it in height, distance and angle to the 

propeller.

The cycleonium was built with the support of the 

apprenticeship workshop of Chiron-Werke GmbH & Co. 

KG (www.chiron.de).

Figure 5. Technical schema
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2.2. Purpose

The player perches on it like on a stationary bicycle and 

starts to pedal. The midi-controller and the Laptop can be 

put on a tray that is at the height of the handlebar. By 

using a dynamic microphone that is at the height of the 

mouth he can experiment with his voice respectively 

breath and modify it per MIDI in real-time. The sound of 

the arbor at the propeller and the chain is recorded with a 

condenser microphone (cardioid). Through reverse turns 

of the pedals the sound of chain and arbor becomes more 

concisely and is at the same time a variation of sound. By 

alternating forward and reverse turns a percussive 

rhythmical complement is built to the laminary sound of 

the bottle that mainly can be modified in the pitch. Dense 

and complex structures of sound can be achieved by 

adding overtones, glissandi and delays.

With this prototype of the cycleonium a performance was 

realized at the Kubus of the ZKM in 2009.

Figure 6. picture of the cycleonium1

3. PULSE GUITAR

3.1. Introduction

The PulseGuitar is a digital musical instrument [5]. It 

combines an electric guitar with a computer-controlled  

interface. While the strings of a conventional guitar are to 

be plucked by the player's fretting hand, the strings of the 

PulseGuitar are excited by micro loudspeakers (voice 

coils) that are attached near them (Fig. 7). The force 

transmission is mechanical. The instrument is played by 

moving a joystick which is fixed on its body with one 

hand, and, as usual, fretting the notes with the other hand. 

1
Picture by Kai Hanneken, ZKM 2009

The data from the joystick controls a software synthesizer 

whose signal is amplified and finally routed to the voice 

coils. Dependent on the deflection of the joystick a 

program decides which coil the signal is routed to. The 

PulseGuitar can produce other timbres and rhythmic 

gestures than a common electric guitar.

Virtual Musical Instruments are based on modules. We 

can clearly separate the controller module from how the 

sound was produced (sound module). In this context, the 

instrument is controlled by sending data, such as MIDI, to 

some synthesizer or sampler that outputs sound [6]. At the 

very most, traditional acoustic/electric/electro-mechanical 

instruments do not fit into the scheme of modularity. 

Since the electric guitar is an electric instrument, the 

controller and the sounding part cannot be separated into 

two independent components. The strings represent the 

controller module and also the origin of the sound and the 

major part of the sound module at the same time. 

Changing any part of the controller would also affect the 

timbre of the instrument whereas replacing the controller 

of a virtual instrument will not cause any impact on the 

sound module.

The PulseGuitar revisits the electric guitar and takes a 

new approach in terms of how to play/control it. 

It is fair to mention that several tools which aim to widen 

the musical diversity of the electric guitar have been 

developed in the past. Prominent devices are the Ebow 

(www.e-bow.com) and also the Moog Guitar

(www.moogmusic.com/moogguitar). Both work, unlike 

the PulseGuitar, with electromagnetic fields that affect 

the state of the strings. 

The PulseGuitar stays with the idea of plucking strings 

mechanically but expands the possibilities by passing the 

task to a machine.

3.2. Experimental Procedures

The synthesizer was built in the Max/MSP 5 

programming environment [7]. It only produces a 

sawtooth wave, which is variable in frequency domain. Its 

signal is routed to little voice coils that are attached on 

the body of the guitar near the strings. Each string is 

equipped with its own voice coil. The mechanical 

movements of the coils are transferred to the strings. It is 

crucial to understand that the oscillator is not used as a 

musical instrument. Rather the physical deflection of the 

voice coils is needed. The strings are not plucked but hit.
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Figure 7.  Schematic illustration

As a result, the synthesizer controls both the excitation of 

the strings and takes over the task of the player's right 

hand. 

The synthesizer is controlled by a joystick (Fig. 8), which 

is also attached to the body. Turning the joystick up and 

down, the string to be played is selected, moving the stick 

sideways defines the frequency of the oscillator (Of 

course, other controllers such as a touchpad could be 

used). The range of the frequency is variable from 0.5 Hz 

up to 200 Hz so the strings can be hit 0.5 to 200 times per 

second.

In the end, the vibrations of the strings are captured by 

conventional pickups.

Figure 8. Picture of the PulseGuitar

At the moment, the PulseGuitar supports only two strings 

because a two channel audio interface was used. However, 

the string number can be easily increased using a multi 

channel interface.

The sound of the instrument depends on the frequency of 

the oscillator (and of course on the amplifier). Below 

about 20 Hz the otherwise continuous perception of 

oscillations (tone) changes to a perception of single 

events (rhythm). So if the strings are being plucked 

between 0.5 to 20 times per second the sound resembles a 

common electric guitar because a guitarist can't help 

playing in that time domain due to motoric limitations. If 

the frequency is increased though, it becomes more 

interesting. Above 20 Hz single excitations are not 

perceived as single events anymore, they unite with the 

sound of the strings. 

The interesting part is not the fact that with the 

PulseGuitar one can play really fast (even though you 

could if you wanted to). Rather the timbre is interesting. It 

is percussive and harmonic in equal shares. The first live 

presentation of the PulseGuitar was done January 21, 

2009 at ZKM Karlsruhe January 27, 2009 at Centro 

Cultural Belem Lisbon with the Portuguese Contemporary 

Music Ensemble OrchestrUtopica.
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ABSTRACT

This paper reports various aspects of the computer music
realization of “Speakings” for live electronic and large or-
chestra by composer Jonathan Harvey, with the artistic aim
of making an orchestra speak through computer music pro-
cesses. The underlying project asks for various computer
music techniques: whether through computer aided com-
positions as an aid for composer’s writing of instrumental
scores, or real-time computer music techniques for elec-
tronic music realization and performance issues on the stage
with the presence of an orchestra. Besides the realization
techniques, the problem itself brings in challenges for ex-
isting computer music techniques that required the authors
to pursue further research and studies in various fields. The
current paper thus documents this collaborative process and
introduce technical aspects of the proposed methods in each
area with an emphasis on the artistic aim of the project.

1 INTRODUCTION

This paper documents a collaborative work surrounding the
production and realization of “Speakings” for large orches-
tra and live electronics, between the composer Jonathan Har-
vey and several researchers and computer music designers
at IRCAM 1 . The central idea behind the project is the com-
poser’s aim to bring in speech and music structures together
through live electronics and orchestral writings and with the
aid of computer music formalizations and realizations. We
therefore devote this introduction to the clarification of artis-
tic goals of the project.
Speech and music are very close and yet also distant. The
musical quality of speech has long been known to com-
posers and artists. Today, sound analysis tools show us that
speech signals not only contain melodic information but also
harmonic and inner rhythmic and dynamic qualities pertained
to complex musical structures. Recent research has uncov-
ered common trajectories between the evolutionary roots of
music and speech [9]. The central idea of this project is to

1 http://www.ircam.fr/

SMC 2009, July 23-25, Porto, Portugal

Copyrights remain with the authors

bring together orchestral music and human speech but not
merely through realistic speech synthesis and semantic con-
tents of the speech, but to emphasize non-verbal aspects of
speech structures in music composition. It is as if the or-
chestra is learning to speak, like a baby with its mother, or
like first man, or like listening to a highly expressive lan-
guage we don’t understand. The rhythms and emotional
content of speech are not only formed by semantics, but
also (or probably more) formed by specific spectral dynam-
ics of speech signals despite the semantic context. There-
fore, making an orchestra speak in this sense is not to reach
the semantic values of speech through computer music pro-
cesses, but to emphasize the non-verbal structures in speech
and realize them through instrumental writing as well as
live electronic processes. Starting from baby screaming,
cooing and babbling, an evolution of speech consciousness
through frenzied chatter to mantric serenity becomes the ba-
sic metaphor of the half-hour work’s trajectory.

With this respect, speech structures are introduced into mu-
sical patterns through two distinct processes: (1) With the
use of computer-aided composition techniques to enhance
instrumental writing. Through this process, the orchestral
instruments - soli and ensembles - would imitate speech pat-
terns, full of glissandi, fast, and a mixture of percussive con-
sonants and sliding vowels. Computer music techniques that
allow such a passage are automatic transcription of speech
signals to symbolic music notation, as well as a novel auto-
matic orchestration technique introduced later in the paper.
And (2) using of real-time analysis/resynthesis techniques
to reshape the orchestral audio signals to speech structures,
through which the orchestral discourse, itself inflected by
speech structures, is electro-acoustically shaped by the en-
velopes of speech taken from largely random recordings.
The vowel and consonant spectra-shapes flicker in the rapid
rhythms and colors of speech across the orchestral textures.

This paper is organized as follows: In the incoming sec-
tion, we discuss previous works and their relation to the pre-
sented paper. Section 3 details the first phase of this work
or computer-aided composition techniques as means to pro-
vide musical material for instrumental writing. Section 4
details real-time audio processing techniques employed for
the computer music realizations and their relations to the
instrumental writing both at the score level and during per-
formance. Section 5.1 discusses performance and synchro-
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nization issues between live electronics and the orchestra,
and we conclude the paper by remarks and discussions on
further developments of techniques introduced in the paper.

2 PREVIOUS WORKS

The idea of bringing music and speech together in orchestral
composition is not new and has a long history that goes be-
yond the scope of this paper. For example, the russian com-
poser Modest Mussorgsky’s orchestral writing was highly
influenced by the relations between speech and music. He
went further to claim that the aim of musical art as the re-
production in musical sounds not only of modes of feeling
but mainly of the reproduction of modes of human speech
[7]. Another more recent example in computer music, is
Clarence Barlow’s Synthrumentation by spectral analysis of
speech and their resynthesis to acoustic instruments [2]. An-
other similar but more recent work is Claudy Malherbe’s
piece Locus for real and virtual voice (1997). Malherbe’s
work make use of voice analysis techniques to deduce sym-
bolic music materials used during composition and through
a formal development compromising voice, speech and noisy
structures (see [8] for details and documentations). Both
Malherbe and Barlow’s attempts to deduce speech structures
in music could be categorized within the realm of Computer-

Aided Composition, where music materials emerge out of
composers’ formalizations and offline treatment of music
materials and/or eventually sound synthesis. The work pre-
sented here partially adopts both approaches in [2] and [8],
see section 3.1, but takes one step further by enhancing hid-
den speech structures through real-time analysis of orches-
tral sounds and their timbre-stamped synthesis using known
speech structures, detailed in section 4. This addition is not
only due to artistic aims of the project, but for limitations of
formal analysis techniques where non-verbal structures and
inner rhythmic content of speech are often lost.

3 COMPUTER-AIDED COMPOSITION
TECHNIQUES

This section details the first phase of our realization, to pro-
vide preliminary musical materials taken out of analysis of
voice and speech structures, and an aid to orchestral writ-
ing. Such activities are generally referred to as Computer-

aided Composition (CAC). The output of this phase are raw
symbolic score materials that help the composer realize the
orchestral score. Speech samples used for this phase are
partially random and chosen recordings of radio interviews,
natural baby babbles and sounds, and poetry readings cho-
sen by the composer. We discuss this phase within two
steps: In the first, we simply transcribe melodic and har-
monic structures of speech and voice (if any) through sound
analysis and symbolic music score. Afterwards, we incor-
porate non-harmonic speech structure such as formants and

timbral dynamics to provide an aid for orchestration.

3.1 Melodic and Harmonic Voice Transcription

The simplest way to extract musical information out of voice
(or any audio) signal is to transcribe the melodic and har-
monic structures into symbolic scores. For voice and speech,
this information does not illustrate most interesting internal
structures (such as formants) but is nevertheless important
as a first insight. Extracting the melodic part of any speech
signal amounts to running a simple pitch detector on the au-
dio available in most computer music systems. However, a
better way to extract melodic pitch information on speech,
and in order to be coherent with the inner-structure, is to
extract melodic contours on the level of syllabic segmen-
tations. To this end, we chose the commercially available
Melodyne editor 2 that automatically performs syllabic seg-
mentations and allows further refinement of results through
its intelligent graphical user interface. The results of this
melodic transcription are then saved as MIDI files which
will be mixed later with the harmonic transcriptions.
By harmonic transcription of speech and voice signals, we
aim at transcribing a partial tracking analysis of the audio
spectrum into polyphonic music scores. For this aim, we
pass the audio recording to a transient detector and partial
tracking module based on [11], and then translate “loud”
enough partials into symbolic notation followed by rhyth-
mic quantization. The whole procedure is done in one shot
and in the OpenMusic programming environment, and us-
ing its default libraries [1]. Figure 1 shows a snapshot of
the patcher used for this procedure, starting at the top (the
audio) to the bottom (symbolic transcriptions).
Combining both melodic and harmonic transcription results
would result into a combined score that reveals the harmonic
structures of a speech signal through symbolic music nota-
tion. Figure 2 shows a sample score result of this process.
Note again that this process reveals only elementary har-
monic structures of the signal through pitched notes, and
does not reveal any interesting timbral or formant structures.
This latter is the goal of the next section.

3.2 Automatic Orchestration

Among all techniques of musical composition, orchestration
has never gone further than an empirical activity. Practicing
and teaching orchestration – the art of blending instrument
timbres together – involve hard-to-formalize knowledge and
experience that computer music and composition systems
have for years stayed away from. Although several recent at-
tempts to design computer-aided orchestration tools should
be mentioned (see [3] for a review), those systems only offer
little ability to finely capture musical timbre. Moreover, they

2 http://www.celemony.com/
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Figure 1. OpenMusic Snapshot of partial analysis tracking
for harmonic transcription

Figure 2. Resulting score sample

are often limited to small-size problems due to the cobina-
torial complexity of orchestration (the set of playable sound
mixtures in a large orchestra is virtually infinite).
The piece of music presented in this paper is the first to ben-
efit from the most recent advances in automatic orchestra-
tion research [3]. With the aim of composing instrument
textures that imitate the timbre of sung vowels we used the
Orchidée [4] orchestration tool. Orchidée is a MAT-
LAB-based server application that communicates with tra-
ditional computer-aided composition environments through
OSC [13] messages (see figure 3). Orchidée embeds both
a representation of instrument capabilities – obtained from
prior analysis and indexation of large instrument sound sam-
ple databases – and a set of efficient orchestration algo-
rithms. Given an input target sound, Orchidée outputs
a musical score for imitating this sound with a mixture of
traditional instruments.

Figure 3. Controlling Orchidée with Max/MSP

Compared to its predecessors Orchidée offers many inno-
vative features. First, the instrumental knowledge in Orchidée
is represented by a sound description database in which each
item is a an instrument sound sample associated with mu-

sical attributes (musical variables such as instruments, dy-
namics etc.) and perceptual features (such as brightness,
roughness etc.). Second, Orchidée embeds a timbre model

that efficiently estimates the joint features of any instru-
ment sound mixture. The resulting features may then be
compared to the target’s features and a similarity estimate
along each perceptual dimension may be computed. Last,
Orchidée explicitly addresses combinatorial issues and
tackles the orchestration problem in its inner complexity.
The system comes with a time-efficient evolutionary orches-
tration algorithm allowing the exploration of non-intuitive
sound mixtures and the fast discovery of nearly-optimal or-
chestration proposals. By iteratively capturing and refining
users’ implicit preferences, the algorithm may quickly iden-
tifies the most relevant configurations for a given orchestra-
tion situation. For more details see [4].
For the realization of the piece discussed here, Orchidée
was used to write orchestral background textures that im-
itate sung vowels. The starting point was a simple three
notes mantra sung and recorded by the composer. To each
note corresponded a given vowel: Oh/Ah/Hum (see Fig. 4).
The goal was to imitate the sound of the sung mantra with

Figure 4. Mantra used as an input for Orchidée

a ensemble of 13 musicians. The composer wanted the or-
chestra to sing the mantra 22 times, and wished the resulting
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timbre to evolve along the ostinato in the following man-
ner: The sound was to become louder and louder, brighter,
and closer over time to the target vowel. The orchestra-
tion was to use progressive pitches with harmonic richness.
Feature optimization and constraints specification and han-
dling techniques provided by Orchidée were jointly used
to generate a continuously evolving orchestration. Figure 5
shows an excerpt of the overall result.
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Figure 5. Excerpt of mantra orchestration by Orchidée

4 REAL-TIME ANALYSIS/SYNTHESIS
TECHNIQUES

In the previous section, we showed how some inherent speech
structures such as harmonic and formant structures could
be translated to raw musical material and used during or-
chestral writing. Despite the significance of the information
provided in this phase of work, there seem to be a lot of
interesting structural information that are seemingly lost in
this process, or would be lost during a realistic orchestral
performance. To overcome this, we propose integrating the
spectral dynamics of speech structures directly onto the or-
chestral spectrum through real-time analysis and resynthe-
sis, and without passing through any formalization scheme
as was the case in section 3. This way, we hope to inherit di-
rectly the inner-rhythmical and dynamic formant structures
of speech onto the transformed orchestral sound.
To this aim, we couple the real-time orchestral audio, as the

audio result of the transcription and orchestration process of
section 3 out of given speech samples, with the speech sam-
ple itself through an analysis/synthesis scheme. The anal-
ysis/resynthesis used for this proposal is based on formant
envelope computation of the speech signal using Linear Pre-
dictive Coding (LPC) and enforcing it onto the orchestral’s
natural spectrum envelopes arriving in real-time. The real-
time implementation of this process is done using the Gabor

libraries [12] in the MaxMSP programming environment 3 .
Figure 6 shows a snapshot of the realtime process with vi-
sualizations of deduced formant envelopes, orchestral input
and formantized orchestra on one analysis frame.

Figure 6. Realtime Formantization MaxMSP patcher

Using this process, the inner-rhythmical structures of speech
are stamped into the orchestra and could be diffused as live
electronics through a spatialization process. This process,
hence introduces a second phase of composition involving
the coupling of pre-recorded speech with sections in the or-
chestra and parametrizing the live electronics for diffusion.

5 PERFORMANCE ISSUES

5.1 Live electronic Synchronization

In an orchestral setting, human musicians’ temporal syn-
chronization is assured during the live performance through
constant and active coordination between themselves, the
music score and a conductor. Adding live or fixed electron-
ics into the equation should not undermine the importance
of this synchronization process, which is one of the main
responsible factors for musical expressivity.
Traditionally, synchronization between electronics and in-
strumental components of a mixed piece of music has been
done either by human performers through adhoc cueing, by

3 http://www.cycling74.com/
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score following paradigms, or by a combination of both. Ei-
ther way, this type of synchronization usually assures the
starting point (or correct triggering) of processes in time but
not necessarily their temporal life-span. The following sim-
ple example can illustrate this important problem: Imagine
an instrumental score accompanied by a fixed electronic (au-
dio file) over three measures. Assuming that the score has
a time-signature of 4/4 with a tempo of 60BPM , the cor-
responding audio should ideally have an initial length of 12
seconds. During live performance, the human player might
for many reasons vary the initial tempo of 60 from the very
beginning to the end of the third measure. In such situa-
tions, although the onset trigger could be easily made accu-
rate, synchronization of the overall electronics could not be
assured unless the electronic process detects and undertakes
the same temporal dynamics of the human performance over
the electronic score, as if two humans were interacting.
Given the temporal nature of the analysis/resynthesis tech-
nique described in section 4 we are in the schema of the ex-
ample above: The speech samples behind the live process-
ing should not only be triggered on-the-fly, but also tem-
porally aligned to the orchestra during their life-span. To
achieve this, we use Antescofo, a score follower that
aligns score positions and also decodes an anticipatory tempo
of the performance [5]. Using this information each sound
file is then played back using SuperVP 4 advanced phase
vocoder technology [11] to preserve their quality upon tem-
poral adaptation. To achieve this, a keyboard player in the
orchestra plays its own score along with the orchestra and
synchronous to the tempo given by the conductor. The Antescofo
score of the keyboard part contains not only the instrumental
score, but also electronic commands written in relative beat-
time, translated to clock-time at each tempo change. This
way, getting back to the simple example described above,
we can be certain that upon continuous tempo change of
the instrumental section, the audio playback is assured to
change time span during live performance and up to an ac-
ceptable precision. This procedure is applied to all live treat-
ments and sound diffusions.

5.2 Live Electronics Interpretation

The coexistence of orchestral and computer music parts emerge
from specific artistic purposes. Composer’s initial idea in
employing live electronics was to enhance the sonic space of
the piece with a network of relations between electronic and
instrumental sounds. Such internal or intimate sound rela-
tions emerge not only through compositions but also through
interpretation of the electronics during performance. With
this respect, live electronics is considered as an additional
instrument in the piece whose performed gestures during
any executation contribute to the wholeness of the sonic

4 http://forumnet.ircam.fr/708.html?&L=1

space created within the piece. We have used the Lemur 5

multi-touch screen interface to easily map hand gestures onto
the sound processes, and to control the amounts of sound
processing like a musician would control the amount of a
muted sound listening to what she is producing in interac-
tions of his movements with what she hears and expects.
This feedback behavior goes farther than a simple mixing of
the audio signals as it enables a direct interpretation of the
musical choices. Figure 7 shows the main control screen de-
signed for live performance as about the size of two hands.

Figure 7. The Lemur multi-touch device interface

Human intervention of this kind for interpretation of live
electronics is in no way in contradiction to the automatic-
ity of cue-lists or the use of score following paradigms, but
rather complimentary. The passage from any automatic pro-
cess to “music” is beyond the process itself and depends on
our hearing abilities and interaction with the sound itself as
musicians. This is inherently the purpose of the simple in-
teractive framework using the Lemur interface setup of fig-
ure 7. The act of making live electronic music design is then
to find the balance between automatism and interference to
make interactions more musical.

5.3 Enhancing Rhythm with Space

The interactive surface display of the Lemur in figure 7 of-
fers extended possibilities rather than mere mixing of ef-
fects, to control spatial movements either automatically or
manually through a virtual 2D space. Sound spatialization is
achieved using dedicated intensity panning of Spat 6 real-
time modules [6]. Using spatialization, we bring the sound
into the audience space and put the emphasis on some the-
atrical characters of the sound, thus reinforcing and con-
verging toward the voice quality of the sound processing.
It is also a mean to musically enhance the rhythmic per-
ception through fast movements, either within a rhythmic
counterpoint with the orchestra or in phase with what it is

5 http://www.jazzmutant.com
6 http://forumnet.ircam.fr/692.html
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being performed. It is also an extension of the score writ-
ing techniques as space is considered as a compositional pa-
rameter [10]. An advantage of employing Spat modules
for this 8-channel work is its ability to perceptually control

the spatial quality rather than mere positioning of sources
in space and in realtime. Spat movements are algorithmi-
cally composed using modules offered by the ICST 7 inter-
face tools originally developed for ambisonics spatialisation
techniques, here adapted to the Spat modules. Figure 8
shows the diagram of the real-time performance setup im-
plemented in the MaxMSP programming environment based
on the considerations discussed in this section.

Antescofo~

Score Actions Realtime Tempo

Score Position

Phase 
Vocoder

(SuperVP)

Filename

Treatments

Spatialisation

Electronic + 
Instrument Scores

MaxMSP

Live Electronic 
Interpretation

Orchestra

MIDI Keyboard

Figure 8. Real-time Performance diagram

6 CONCLUSION

In this paper, we documented a collaborative work between
a composer and researchers to create an orchestral piece
with live electronics with the aim of enforcing speech struc-
tures over an orchestra. “Speakings” was first performed by
the BBC Scottish Orchestra and IRCAM in the BBC Proms
festival on August 2008 and has since had several more per-
formances. An audio recording is under publication.
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ABSTRACT

In this work we further explore a previously proposed tech-

nique, used in the context of physical modeling synthesis,

whereby a waveguide structure is replaced by a low-latency

convolution operation with an impulse response. By do-

ing so, there is no longer the constraint that successive ar-

rivals be uniformly spaced, nor need they decay exponen-

tially as they must in a waveguide structure. The struc-

ture of an impulse response corresponding to an acoustic

tube is discussed, with possible synthesis parameters identi-

fied. Suggestions are made for departing from a physically-

constrained structure, looking in particular at impulse re-

sponses that are mathematically-based and/or that correspond

to hybrid or multi-phonic instruments by interleaving two or

more impulse responses. The result is an exploration of vir-

tual musical instruments that are either based on physical in-

struments, completely imagined, or somewhere in between.

1 INTRODUCTION

It is common practice for contemporary musicians to ex-

plore playing techniques by producing sounds on their in-

struments that may be unusual, surprising or perhaps com-

pletely atypical of the instrument. In the case of wind instru-

ments, extended playing techniques such as side and flutter

tonguing, false fingering, split tones, circular breathing, are

typically practiced by very accomplished musicians as who

have highly proficient and virtuosic control over their air-

flow and embouchure. By employing unusual playing tech-

niques, the player achieves a sound that seemingly extends

or redefines the instrument itself.

In addition to extending playing techniques, it has be-

come increasingly common for modern musicians to effec-

tively modify the instrument itself, both offline and during

real-time performance. Some notable examples include re-

cent performances by clarinetist Francois Houle creating a

polyphonic effect by blowing into two different instruments

simultaneously, extending the clarinet by directing the ra-

diated sound onto the strings and soundboard of an open

grand piano, or removing parts of the clarinet bore during

SMC 2009, July 23-25, Porto, Portugal
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performance. Modern trumpet players, such as slide trum-

pet player Steve Bernstein, often use a technique where the

microphone is swallowed by the trumpet, effectively alter-

ing the horn’s frequency response by removing the radiation

transfer function of the flare, producing a low-pass sound

similar to a rubber mallet dragging along the taut skin of a

drum. Many musicians will also explore custom built in-

struments, with slight modification to the shape of the bore,

the bell or the mouthpiece.

Some such instrument extensions can be awkward, costly

or impractical, and limiting if the musician doesn’t want the

change to be permanent or damage the instrument. In any

event, no matter what physical modifications are made, the

instrument will always be constrained by the acoustics gov-

erning the system, which in the case of wind instruments,

will yield a periodic impulse response with uniformly spaced

arrivals (or echos) corresponding to the length of the instru-

ment, with each consecutive arrival decaying over time due

to reflection and propagation losses. Changing or remov-

ing components of the instrument will alter the frequency

response of these losses, but they will always have a low-

pass characteristic and an exponential decay in amplitude,

and the impulse response will always be periodic. Convo-

lutional synthesis would allow for greater possibilities re-

lated to the practice of instrument extension since, unlike

the impulse responses corresponding to a waveguide syn-

thesis model (which aims to model a physical structure), the

employed impulse responses are not necessarily physically

constrained.

In this work we further explore this previously proposed

technique of convolutional synthesis [5], and propose a so-

lution whereby the performer may enhance or replace their

instrument all together with a synthesized parametric im-

pulse response. That is, if the signal generated by the reed

may be estimated from the signal recorded at the bell during

a real-time performance of the instrument [6], it may be con-

volved directly with a new parametric impulse response cor-

responding to a new instrument, either physics-based, com-

pletely imagined, or perhaps somewhere in between. Alter-

natively, rather than using the estimated reed pulse directly,

it may be used to extract key playing parameters that can

then be remapped to the control parameters of a synthesized

source, perhaps a parametric pulse train or a more rigorous

physics-based model of a generalized-reed [7], which may

then be convolved with a new parametric impulse response.
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In both cases, using a low-latency convolution operation [1]

as described in Section 4, will allow for a level of real-time

interactive control comparable to a waveguide model.

The term Convolutional Synthesis borrows from the term

Convolutional Reverb, a technique used for simulating re-

verberation of a physical or virtual space by using its char-

acteristic impulse response. In this work, measurements of

acoustic tubes, and musical instrument bores, are used as a

base from which a parametric impulse response may be syn-

thesized, corresponding to possible wind instrument bores,

either existing, or imagined.

2 PARAMETRIC IMPULSE RESPONSES

2.1 Synthesizing one-dimensional propagating waves

A physics-based model of a wind instrument usually con-

sists of a source (the reed pulse) and a filter (the bore, bell

and possibly the mouthpiece). Depending on the reed con-

figuration, the flow from the reed may have a strong or weak

coupling to the connected acoustic tube, that is, the reso-

nance of the bore and bell may have a varying degree of in-

fluence over the resonance or the reed pulse. The oscillating

reed provides an excitation to the bore by modulating the

air flowing through an aperture with a time-varying cross-

sectional area, providing a pressure input. This input is ef-

fectively convolved with the instrument’s impulse response

(as measured at the reed end) to produce the pressure at the

base of the bore (or mouthpiece).

Pressure waves travelling along the instrument bore are

frequently modeled using the digital waveguide [3] structure

seen in Figure 1. This enables use of appropriate waveguide

elements to account for propagation losses, λ(ω), reflection

losses at the tube ends Rcl(ω) and Rop(ω), and a change of

tube length corresponding to the delay z−L
.

T (ω)z−L

z−Lλ(ω)

λ(ω)

Rcl(ω) Rop(ω)

Figure 1. A waveguide model of a cylinder closed at one

end with reflection Rcl(ω) and open at the other with reflec-

tion Rop(ω).

The impulse corresponding to the waveguide structure in

Figure 1, as driven and measured at the closed end, is fairly

straightforward to synthesize by following the signal flow of

the propagating wave in response to an applied impulse: if

an impulse enters the tube at the (not perfectly) closed end,

the pulse would be measured at that location at that point

in time. After the impulse travels round-trip to the bell and

back, a second arrival, A2, would be measured 2L samples

later at the bore base, and would consist of the initial pulse

filtered according to

A2 = λ2(ω)Rop(ω)(1 + Rcl(ω)), (1)

where the term (1+Rcl(ω)) corresponds to the need to sum

the left and reflected right going traveling waves to obtain

the actual pressure as recorded at the closed end. The ar-

rival A2 would also travel down to the bell and back, and

produce a third arrival, consisting of A2 with additional fil-

tering according to

A3 = λ4(ω)R2
op(ω)Rcl(ω)(1 + Rcl(ω)). (2)

Every subsequent arrival would be the result of the previous

arrival having been subjected to another round of wall and

reflection losses.

Figure 2 shows the impulse response corresponding to

the closed-open tube and waveguide structure shown in Fig-

ure 1. The impulse response has a very clear periodic struc-

ture, with uniformly spaced sequence of arrivals correspond-

ing to the length of the tube. The losses in the system have

a low-pass characteristic, causing an overall exponential de-

cay, with each arrival being increasingly smeared in time.
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Figure 2. A synthesized impulse response corresponding to

a cylindrical acoustic tube closed at one end and open at the

other.

This impulse response may be synthesized by creating

a sequence of arrivals, each one containing the appropriate

filtering corresponding to (1) and (2), up to the number of

desired arrivals. One parameter that may be made avail-

able to the user in this case is the spacing between the ar-

rivals, which may be stretched or contracted (which would

correspond to a change in delay zL
in in Fig. ??) depending

on the desired pitch. Alternate filters for Rop (theoretical,

measured, or imagined) may be swapped in to the impulse

response during performance, corresponding to a real-time

change of the bell shape. Similarly, the transfer function

Rcl may be modified to simulate a change in reed: a lip reed

for example, would have more significant loss than would a

woodwind reed.

2.2 Other Possible Impulse Responses

Regardless of the filter transfer functions or the delay length

L, the impulse response corresponding to Figure 1 will al-
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ways have uniformly spaced arrivals, and if stable, an over-

all amplitude envelope that decays over time. Yet when syn-

thesizing the impulse response directly, that is, by not us-

ing a waveguide model, there is no need to adhere to these

physical constraints. The period between pulse arrivals need

not be uniform but may have some other structure, perhaps

randomly distributed, or according to some mathematical

model such as the golden ratio as in Figure 5. It may also be

possible to create hybrid or multi-phonic instruments by in-

terleaving two separate impulse responses (as in Figure 3).

Also, the sequences need not decay exponentially; they may

grow and then suddenly drop, with rates specified paramet-

rically if so desired.
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Figure 3. An impulse response is synthesized by interleav-

ing two separate impulse response (top and middle) to pro-

duce a multi-phonic impulse response (bottom).

It is also possible to use an entire impulse response as

measured from an instrument, such as the one shown for

a trumpet in Figure 4. Though periodicity is less visible

here, the impulse response is still composed of a sequence

of arrivals, each having a transfer function corresponding to

any losses in the system, most notably the wall losses and

the reflection at the bell. This impulse response could be

used as is, or by changing identified parameters much like

was done in [2], but instead of replacing leading zeros of a

measured reflection function with a delay line, we propose

simply making the number of zeros in the impulse response

variable, and use it to create a periodic impulse response.

Another possibility is to convolve this measured impulse re-

sponse with one that has been synthesized, creating a hybrid

instrument.

3 CONVOLUTIONAL SYNTHESIS

Once a parametric impulse response is in place, the sys-

tem needs an excitation mechanism, that is, a signal to be

convolved with the impulse response. Here we consider

three possibilities: a parametric pulse train, a physics-based

model of a reed, and a signal corresponding to a reed pulse,

estimated be inverse filtering during a live performance.

3.1 A parametric pulse train

In this case, results are explored using a sequence of bell-

curve shaped functions (such as gaussian), the width, shape

(symmetry) and periodicity of which are controllable pa-

rameters. Since it may be desirable to have the source strongly

coupled with the acoustic filter, the periodicity of the pulse

train may be set automatically to a value corresponding to

the fundamental frequency, or a harmonic, of the the para-

metric impulse response.

A graphical user interface, as shown in Figure 5, was

developed to allow for modification of both source (pulse

train) and impulse response parameters, and to perform the

convolutional synthesis.

3.2 A physics-based reed model

In this case, we explore the use of a physics-based model of

a generalized reed as a source. The reed model depends on

a bore model for obtaining the downstream (bore) pressure,

which is used for establishing the pressure difference across

the reed, a requirement for oscillation.

The problem that may be encountered here is that cer-

tain reed configurations will not oscillate under all bore con-

ditions (this is an expected limitation of a physics-based

model). Rather than limit the producible sounds by limit-

ing the possible impulse responses, we propose the use of

two impulse responses (as seen in Figure 6), whereby one

impulse response, h(t), is convolved with the bore input

pressure (the product of the airflow from the reed U and the

bore impedance Z0) to produce the bore pressure required

to achieve reed oscillation, and the other impulse response,

g(t), is convolved with the input pressure to obtain the pro-

duced sound. It should be noted that if keeping a physi-

cal structure is desirable, g(t) may be inferred from h(t),
with the assumption that a transmission is always amplitude

complementary to its corresponding reflection (that is, it has

transfer function G(z) = 1 + H(z) for pressure waves [4]).
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Figure 4. An impulse response from a trumpet.
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Figure 5. A graphical user interface allows for parametric

synthesis of both input source and impulse response. For

the impulse response, the user may specify the spacing of

the arrivals, the filters of which they are composed, and the

individual arrival and overall amplitude envelopes. For the

source, the user may specify periodicity, shape and width of

pulses.

It may also be possible however, to use completely unrelated

impulse responses.

3.3 An estimated reed pulse

In this case, the bore impulse response is not only used for

synthesis, but for analysis and estimation of the reed pulse,

during an actual performance. If the reed pulse may be es-

timated using an inverse filter corresponding to the correct

impulse response (which will change during performance),

the reed pulse may be directly convolved with an impulse

response similar or entirely different from the one corre-

sponding to the instrument being played. Alternatively, fea-

tures corresponding to different playing techniques may be

extracted from the estimated reed pulse, and then remapped

to control parameters of the pulse train or reed model de-

pm

pb

g(t)

h(t)

Z0U
PCV

(reed)

Figure 6. A signal flow diagram of convolutional waveg-

uide synthesis in the context of a reed instrument. The bore

pressure pb is obtained by convolving the bore input pres-

sure Z0U with the impulse response h(t), and the model

output is obtained by a convolution with the impulse re-

sponse g(t).

scribed above. This application is the ultimate aim of the

convolutional synthesis technique and relies on successfully

estimating the reed pulse, a research goal that has obtained

several results [6].

4 LOW-LATENCY CONVOLUTION

Figure 7. Fast convolution with latency

Though the waveguide structure, as seen in Figure 1,

could have been used to filter all three source/excitation ex-

amples described in Section 3, we propose the use of a low-

latency convolution, as described in [1], with a complete

impulse response (i.e. not just a reflection function corre-

sponding to a single round-trip down the bore to the bell

and back).

If latency is not a concern, a simple implementation of

fast convolution as illustrated in Figure 7 may be used, whereby

a blocksize of samples s(k) is convolved with the entire im-

pulse response h(n) and stored. One hopsize later, the next

blocksize of samples s(k + 1) is also convolved with h(n)
and added to the previously stored result. This process con-

tinues until the end of the input signal s(n) is reached. The

problem with this implementation is that there is a latency
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corresponding to the length of the impulse response. That is,

if parametric changes are made to the impulse response, the

effects of one or more previous impulse response state(s)

would continue to be heard for a time, in the worst case,

corresponding to the sum of the lengths of the impulse re-

sponse and blocksize (see the lengths of the component sig-

nals s(k)∗h(n), s(k+1)∗h(n) etc. in Figure 7 as compared

to counterpart components in the low-latency convolution il-

lustrate in Figure 8).

Figure 8. Fast convolution with low-latency.

In a low-latency convolution operation as described by

[1] however, both signal s(n) and impulse response h(n)
are windowed into a sequence of blocks (as shown in Fig-

ure 8). The convolution operation of a signal frame with

an impulse response frame need only occur at the time it is

needed for continued sound output. Because the result of

a previous lengthy convolution is not stored, the user may

modify the impulse response every blocksize of samples,

where the blocksize is significantly shorter than the entire

length of the impulse response. If the impulse response is

parametric, the user’s modifications may be heard in real-

time, yielding the same level of interactive control as the

waveguide model.

5 CONCLUSION

At the expense of computational complexity, the low-latency

convolution affords the user some additional advantages to

the waveguide model. For example, it is possible to build

impulse responses less typical of a physical system, which

would be difficult to obtain within a waveguide structure.

There is no longer the physical constraint of having im-

pulse response arrival uniformly spaced. Rather, they may

be spaced according to some other structure, or interleaved

in patterns that create multiple tones, creating multi-phonic

or hybrid instruments. The impulse responses are also not

constrained by stability in that arrivals must not decay.

This work is ultimately intended to be used in real-time

performance, affording modern wind instrument players the

ability to extend their instruments in addition to extending

their playing technique. The proposed convolutional tech-

niques permits sound exploration that is no longer limited

by the physical structure of the instrument being played.
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ABSTRACT

The phenomenon of music surprise can be evoked by
various musical features, such as intensity, melody,
harmony, and rhythm. In this preliminary study we
concentrate on the aspect of intensity. We formulate
surprise as a critical derivation from the predicted
next intensity value, based on the “immediate” past
(∼ 7 s), slightly longer than the short-term mem-
ory. Higher level cognition, processing the long range
structure of the piece and general stylistic knowledge,
is not considered by the model. The model consists
of a intensity calculation step and a prediction func-
tion. As a preprocessing method we compare instan-
taneous energy (root mean square), loudness, and rel-
ative specific loudness. This processing stage is fol-
lowed by a prediction function for which the follow-
ing alternative implementations are compared with
each other: 1) discrete temporal difference of inten-
sity functions, 2) FIR filter, and 3) polynomial extrap-
olation. In addition, we experimented with different
analysis window length, sampling rate and hop size
of the intensity curve. Good results are obtained for
loudness and polynomial extrapolation based on an
analysis frame of 7 s, a sampling rate of the loudness
measures of 1.2 s, and a hop size of 0.6 s. In the poly-
nomial extrapolation a polynomial of degree 2 is fitted
to the loudness curve in the analysis window. The ab-
solute difference between the extrapolated next loud-
ness value and the actual value is then calculated and
divided by the standard deviation within the analysis
window. If the result is above a threshold value we
predict surprise. The method is preliminarily evalu-
ated with a few classical music examples.

SMC 2009, July 23-25, Porto, Portugal
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1 INTENSITY CALCULATION AND SURPRISE
MEASURES

We compare three representations for the intensity: 1)
the instantaneous energy, i.e. the root mean square
of the amplitude, 2) the specific loudness in 24 bark
bands (Zwicker and Fastl [1999] p.225) and 3) loud-
ness as the sum of the specific loudness across the
bark bands. We use the implementation within the
IRCAM descriptor (Peeters [2004]).

After experimenting with different frame and hop
sizes we chose a hop size of 0.6 s and a frame size of
1.2 s (rectangular window), calculating the intensity
or (specific) loudness respectively.

The intensity is fed into a surprise prediction func-
tion. The output of such a model yields a curve of
“surprisingness”. Each surprise curve is normalized
with respect to its maximal value. Applying a thresh-
old leads to the binary decision surprise point/ no
surprise. We use a threshold of 0.95. We compare
four different models. The first two methods (Δ en-
ergy and Δ loudness) are defined by taking the dif-
ferences of consecutive samples from energy or loud-
ness. The third method is an FIR filter across the sam-
pled loudness within an analysis frame of 7 s. The
forth method is based on polynomial regression of the
sampled loudness. Across a time frame of 7 seconds
a regression polynomial is calculated and used for ex-
trapolating the subsequent loudness value. In addi-
tion, the root mean square approximation error σ is
calculated across this window. The value of “surpris-
ingness” is calculated by dividing the deviation of the
extrapolated and the actual next loudness value by σ.

2 DATA SET AND EVALUATION METHOD

We use a small set of 8 excerpts of classical music
by Haydn (Symphony No. 94 mit dem Paukenschlag)
Beethoven (Symphonies 5 & 6), Strauss (Tod und Verk-
lärung), and Rossini (Guillaume Tell). The surprise
points have been manually annotated by a subject
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Method F-Measure
Δ Energy 0.71

Δ Loudness 0.75

Filter 0.25

Polynomial Regression 0.83

Table 1: Comparison of surprise measures.

who had 13 years of violin instruction. The subject
listened to the excerpts several times to determine
the point in time when he was maximally surprised,
expressed by high attention that this moment called
and/or a gooseflesh shortly after, due to the dynam-
ics of the piece when listening to it for the first time.

We adopt the usual evaluation method in music in-
formation retrieval for onset detection to surprise by
transferring it to a larger time scale. The predicted
surprise points are compared to the annotated sur-
prise points. Within a tolerance range of ±0.6s, co-
inciding annotated and predicted surprise points are
considered as correct hits. Multiple hits within the
tolerance window are considered as simple hits. Then
precision, recall, and f-measure are calculated.

3 EVALUATION AND EXAMPLES

Table 1 shows that the polynomial regression method
works best. Due to its psychoacoustical justification,
the Δ loudness method works better than the Δ en-
ergy method. As a demonstrate we show the analysis
of two sound examples in Figures 1 and 2.

4 CONCLUSION AND DISCUSSION

The use of the polynomial regression model allows us
to distinguish a continuous crescendo from an abrupt
subito forte. Due to the rather short analysis window
of 7 s (which is slightly longer than what is consid-
ered the short term memory) only surprise effects are
considered that reflect a direct reaction to the sound.
Surprise that is due to longer range structure or due
to knowledge of stylistic particularities cannot be con-
sidered by the model suggested here. The optimal
threshold of the polynomial regression model could
be learned on pieces of a particular style and eval-
uated on a hold-out set of pieces of the same style.
Other loudness models can be compared with the
ones used here. It would help to use more sophisti-
cated prediction models, e.g. such that consider pe-
riodic regularities in the loudness. Possible candi-
dates would be autocorrelation or wavelets. Another
effect to be taken into account is that the repetition
of a surprising passage is less surprising. Therefore
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Figure 1: In the first subplot, root mean square
energy and loudness is displayed. The specific
loudness reveals the perceptually relevant en-
ergy distribution across the Bark bands. For sur-
prise prediction, the loudness proofs more use-
ful than the channel-wise specific loudness. The
lowest subplot shows the various surprise mea-
sures. We observe a pronounced peak of the
polynomial extrapolation method at the subjec-
tive surprise point with low values otherwise.
On the contrary, the Δ methods yield high sur-
prise values also at other points in time.
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Figure 2: The analysis of a Richard Strauss ex-
cerpt (cf. Figure 1). Oscillating behavior of the
Δ methods can be seen.

patterns of temporal development leading to a sur-
prise point should be stored and time aligned to fu-
ture surprise candidates. This could be performed
by Dynamic Time Warping. For considering multi-
ple context dependencies, Bayesian networks provide
a useful methodology.
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ABSTRACT

The paper reports on first steps towards automated com-
putational analysis of a unique and unprecedented corpus
of symbolic performance data. In particular, we focus on
between-hand asynchronies – an expressive device that plays
an important role particularly in Romantic music, but has
not been analyzed quantitatively in any substantial way. The
historic data were derived from performances by the renow-
ned pianist Nikita Magaloff, who played the complete work
of Chopin live on stage, on a computer-controlled grand pi-
ano. The mere size of this corpus (over 320,000 performed
notes or almost 10 hours of continuous performance) chal-
lenges existing analysis approaches. The computational steps
include score extraction, score-performance matching, def-
inition and measurement of the analyzed features, and a
computational visualization tool. We then present prelim-
inary data to demonstrate the potential of our approach for
future computational modeling and its application in com-
putational musicology.

1 INTRODUCTION

This paper presents research towards automated computa-
tional analysis of large corpora of music performance data.
In particular, we give a first report on a computational ap-
proach to analyzing a unique corpus of historic performance
data: basically the complete work of Chopin, performed by
the renowned pianist Nikita Magaloff. Corpora of that size
– hundreds of thousands of played notes – require a level
of automation of analysis that has not been accomplished so
far. We describe the required processing steps, from con-
verting scanned scores into symbolic notation, to score-per-
formance matching, definition and automatic measurement
of between-hand asynchronies, and a computational visual-
ization tool for exploring and understanding the extracted
information.

SMC 2009, July 23–25, Porto, Portugal
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As the two hands of a pianist have the possibility to pro-
duce different musical parts independently, the between-hand
asynchronies yield a spectrum of artistic expression ranging
from the fairly constrained “melody lead” effect [1] to bass
anticipations [5], or the “earlier type of tempo rubato” [3].
Towards the end of the paper, we present preliminary results
on the between-hand asynchronies in Magaloff’s complete
Chopin to demonstrate the scope of insights that such large
corpora can offer. Finally, we discuss the future pathways
of this research endeavor and its potential for computational
modeling and musicological investigation.

2 THE CHOPIN CORPUS

The analyzed Chopin corpus comprises live concert perfor-
mances by the Georgian-Russian pianist Nikita Magaloff
(1912–1992), who played almost the entire solo repertoire
of Chopin in a series of 6 recitals between January and May
1989 at the Mozart-Saal of the Wiener Konzerthaus 1 in Vi-
enna on a Bösendorfer computer-controlled grand piano. In
this unprecedented project, Magaloff, by that time already
77 years old, performed all works of Chopin for solo pi-
ano that appeared in print during Chopin’s life time, keep-
ing a strict ascending order by opus number, starting with
the Rondo, Op. 1 up to the three Waltzes Op. 64, includ-
ing the three Sonatas, 41 Mazurkas, 25 Préludes, 24 Études,
18 Nocturnes, 8 Waltzes, 6 Polonaises, 4 Scherzos, 4 Bal-
lades, 3 Impromptus, 3 Rondos, and other works (Variations
brillantes, Bolero, Tarantelle, Allegro de Concert, Fantaisie,
Berceuse, Barcarole, and Polonaise-Fantaisie). 2

Magaloff played these recitals on a Bösendorfer SE comp-
uter-controlled grand piano that recorded his performances
onto computer hard disk. The SE format stores the perfor-
mance information in a symbolic format with high preci-
sion, providing detailed information on the onset and off-

1 This concert hall provides about 700 seats, http://www.
konzerthaus.at.

2 The works not played were either piano works with orchestra accom-
paniment (Op. 2, 11, 13, 14, 21, and 22), works with other instruments
(Op. 3, 8 and 65), or works with higher (op. posth., starting from Op. 66,
the Fantaisie-Impromptu) or no opus numbers.
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set timing of each played tone, the dynamics, and the ped-
alling. The entire corpus comprises more than 150 individ-
ual pieces, over 323,000 performed notes or almost 10 hours
of continuous performance.

3 COMPUTATIONAL ANALYSIS OF
PERFORMANCE DATA

3.1 Score Extraction

In order to analyze symbolic performance data automati-
cally, the performances have to be connected to the corre-
sponding musical scores (score-performance matching). As
symbolic scores were not available for the complete work
of Chopin, the first step was to extract this information from
the printed music scores. We used a music recognition soft-
ware (“SharpEye”) to convert the 946 pages of scanned mu-
sic into a musicXML representation. Extensive manual ver-
ification of the conversion process was necessary to elimi-
nate a large number of conversion errors, as well as post-
correction of conversion incapabilities of the used software
(e.g., ottava lines, parts crossing staffs, etc.).

3.2 Score–Performance Matching

The symbolic scores were then matched to Magaloff’s per-
formances employing a matching algorithm based on an edit
distance metric [4]. Also the matching results had to be in-
spected and corrected manually with an interactive graphical
user interface that displays the note-by-note match between
the score information and the performance. All uncorrectly
played notes or performed variants were identified and la-
beled. (This, by the way, will also make it possible to per-
form large-scale, in-depth analyses of the kinds of errors
accomplished pianists make.)

3.3 Defining and Measuring Asynchronies

Our aim was to analyze the between-hand asynchronies of
notes that are notated as nominally simultaneous in the score
(that is, all tones belonging to the same ‘score event’). To
that end, we first needed to compute these asynchronies au-
tomatically from the corpus.

The staff information of the musical notation (upper ver-
sus lower staff) was used to calculate the between-hand asyn-
chronies. As the performance data does not contain infor-
mation about what hand played what parts of the music, we
assumed that overall the right hand played the upper staff
tones and the left hand the lower. 3

We define a between-hand asynchrony as follows: For

all notes belonging to the same score event, subtract the on-

3 Certainly, there are numerous passages where this simple assumption
is wrong or not likely to be true, but given the sheer size of the data set, the
potential bias may be tolerable.

set timing of each upper-staff note from the onset timing of

each lower-staff note (“lower minus upper”). Thus, positive
asynchrony values indicate that the upper staff (right hand)
is early, while negative numbers denote bass anticipations
(left hand early). Multiple asynchronies within one score
event were averaged for subsequent data analyses.

All notated arpeggios, ornaments, trills, or grace notes
were excluded from our preliminary data analysis (about
10% of the entire data), as these cases feature special and
usually larger asynchronies than ‘regular’ score events. These
special cases deserve a separate detailed analysis that would
exceed the scope of the present paper.

3.4 Computational Visualization

For a first intuitive analysis and understanding of this huge
amount of measurement data, adequate visualization meth-
ods are needed. Thus, we developed a dedicated computa-
tional visualization tool. A screenshot is presented in Fig-
ure 1. It comprises three panels on top of each other, sharing
the same time axis. The upper panel shows the individual
tempo curves of the two hands; the middle panel shows the
average asynchronies for each score event that contained si-
multaneous notes in each staff; and the lower panel features
a piano-roll representation of the performances with the rel-
evant notes connected by vertical lines. The color of these
lines is either red (indicating a right-hand lead) or green
(indicating a left-hand lead). The grey area in the middle
panel marks a range of +/–30 ms within which asynchro-
nies are not likely to be perceived as such [2]. Furthermore,
the tool indicates occurrences of bass anticipations (“B.A.,”
lower panel) and out-of-sync regions (horizontal bars, mid-
dle panel; for description see below).

4 PRELIMINARY RESULTS

In the following, we give a first glimpse of the scope of re-
sults that such large-scale analyses may yield.

4.1 Overall Asynchronies

The distribution of all asynchronies between the two hands
is shown in Figure 2, including the mean and the mode
value. The positive mode value reflects an overall tendency
for the right hand to be early, which is most likely attribut-
able to the well-known ‘melody lead’ effect [1]. Moreover,
the mean value is slightly below the mode value reflecting a
slightly skewed histogram towards the left side. Particularly
in the region of –100 to –300 ms there is a slight increase
of values, most likely due to frequent bass anticipations (red
line, see below).

The asynchrony distributions of the individual pieces vary
considerably and may depend on the specifics of the pieces.
The pieces played most synchronously by Magaloff are those
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Figure 1. Screenshot of a computational visualization tool showing bars 50–54 of Chopin’s Nocturne Op. 27 No. 2 performed
by Magaloff. The tempo curves of the two hands are plotted in the upper panel, the asynchronies in middle (positive values
indicate an early right hand; negative an early left hand; the grey area sketches the +/–30-ms region around zero), and a piano
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Figure 2. Histogram of the signed between-hand asynchro-
nies per event over the entire Chopin corpus (displaying a
total of 163,208 asynchronies). The distribution of bass an-
ticipations (see Section 4.2) is drawn by a red line on the left
part of the histogram.

that feature predominantly chordal textures (Op. 40-1, 28-9,
28-20, 10-2, see Figure 3); the least synchronous pieces are
those that have strong melodic textures that leave room for
artistic interpretation.

There is a significant tempo effect within the investigated
pieces. Figure 3 shows the mean absolute (unsigned) asyn-
chronies per piece (a) and the standard error of the asyn-
chronies (b) against the average event rate (in events per
second). An event rate value was computed for each score
event by counting the performed events (chords) within a
time window of 3 seconds around it. The average event rate
is the piece-wise mean of those values. We found that the
faster the piece, the lower is the absolute asynchrony and
also the lower is the variability of the asynchronies, which
suggests that Magaloff takes more room to employ “expres-
sive” asynchronies in slower pieces than faster pieces.

4.2 Bass Anticipations

A bass anticipation is labeled as such when the lowest tone
of a lower-staff score event is more than 50 ms ahead of
the mean onsets of the upper-staff tones of that event. The
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Figure 3. Absolute (unsigned) asynchronies (a) and stan-
dard error (SE) of the mean asynchronies (b) against the
mean event rate per piece. The numbers refer to the opus
numbering of the pieces.

overall distribution of the bass leads is shown in Figure 2
(red line) on the left side of the histogram, and the invidid-
ual pieces are shown in Figure 4. The proportion of bass
anticipations is lowest on average for the Etudes, the Pre-
ludes, and the Rondos (well below an average of 1% of the
events), and highest in the Mazurkas and the Nocturnes (al-
most 2%). No bass anticipations were found particularly in
the Preludes (16 out of 25 did not contain bass anticipations)
and the Etudes (7 of 24).

An exception is the Prelude Op. 28 No. 2, which exhibits
both the highest mean asynchronies and the largest propor-
tion of bass anticipations among all pieces (clearly visible in
Figures 3 and 4). This very slow and short piece features a
constant 1/8-note accompaniment with a single-note melody
above it. The sad character and the slow tempo may be the
reason for the high temporal independence of the melody in
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Figure 4. Proportion of bass anticipations against mean
event rate per piece. Zero proportions (34 pieces) were ex-
cluded from the calculation of the regression line.

Magaloff’s performance.
There is also an effect of event rate, suggesting that bass

leads become less frequent as the tempo of the pieces in-
creases (Figure 4). Again, slower pieces leave more room
for expressive freedom than do faster pieces. To further an-
alyze the occurrences of bass anticipations, we categorized
all score events bar-wise into first beats, on-beats (all beat
events except the first beat), and off-beats. It turns out that
metrical position has a significant effect: the highest num-
ber of bass anticipations fall on the first beat (1.80%); other
on-beat events receive 1.48% bass anticipations, and 0.66%
are found on off-beat events. This suggests that bass antic-
ipations are used by Magaloff to emphasize predominantly
strong beats.

4.3 The Earlier Type of Tempo Rubato

An expressive means that has a long performance tradition
is the “tempo rubato in the earlier meaning” [3]. It refers
to expressive temporal deviations of the melody line, while
the accompaniment, offering the temporal reference frame,
remains strictly in time. Chopin in particular often recom-
mended his pupils to keep the accompaniment undisturbed
like a conductor, and give the right hand the “freedom of ex-
pression with fluctuations of speed” [3, p. 193]. In contrast,
the later meaning of tempo rubato was used more and more
to refer to the parallel slowing down and speeding up of the
entire music (today more generally referred to as expressive

timing). In expressive performance, both forms of rubato
are present simultaneously.

We aim at identifying sequences of earlier tempo rubato
automatically from the entire corpus. To extract overall in-
formation about sequences where Magaloff apparently em-
ployed an earlier tempo rubato, we count the out-of-sync re-
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Figure 5. The number of out-of-sync regions (earlier tempo
rubato) per piece is plotted against the event rate.

gions of each piece. An out-of-sync region is defined as a se-
quence of consecutive asynchronies that are larger than the
typical perceptual threshold (30 ms) and that contain more
elements (events) than the average event rate of that piece
(2–13 tones). Usually faster pieces contain many shorter
runs that are out-of-sync, but due to the fast tempo, these re-
gions extend only to some fraction of a second. To take this
into account, the search for out-of-sync regions is coupled
to the piece-wise average event rate.

On average, a piece contains 1.8 such regions. The pieces
with the lowest numbers are generally the Mazurkas, Pre-
ludes, and Etudes (below 1), the pieces with the highest
counts are by far the Nocturnes (on average well over 5),
suggesting that particularly this genre within Chopin’s mu-
sic leaves most room for letting the melody move freely
above the accompaniment. Figure 5 shows the number of
out-of-sync regions per piece against the average event rate
of the piece. It demonstrates that faster pieces contain fewer
such regions, suggesting that this form of tempo rubato is
bound to slower and medium tempi (such as the Nocturnes,
the slowest piece category in the Chopin corpus). This over-
all finding is not surprising; the earlier tempo rubato is ex-
pected to be more often found in melodic contexts rather
than in virtuoso pieces, as the historic origins of the earlier
tempo rubato go back to vocal music.

To illustrate, the example of the visualization tool pre-
sented in Figure 1 is briefly discussed. It shows an excerpt
(bars 50–54) of the Nocturne Op. 27 No. 2. This example
contains two runs of tempo rubato as determined by the al-
gorithm (indicated by horizontal bars in the middle panel).
The first starts on the downbeat of bar 50, where Maga-
loff delayed the melody note by 265 ms, only to be early
over the next few notes of the descending triplet passage.
The beginning of the 48-tuplet figure (which is interpreted
as 1/16-note triplets as well) also leads the accompaniment.
Towards its end, the second run of tempo rubato as deter-
mined by our algorithm begins, just when Magaloff starts to

lag behind the accompaniment. This lag coincides with a
downward motion and a notated decrescendo. The follow-
ing embellishment of the b-flat (notated as 1/32 notes and
1/32 triplets) is again clearly ahead of the accompaniment.
The first note of the next phrase is also ahead, potentially to
underline the notated anticipation of the upcoming harmony
change towards e-flat minor.

5 SUMMARY AND FUTURE WORK

This paper presented a computational approach to making
large performance corpora accessible for detailed analysis.
It defined and automatically measured between-hand syn-
chronization in over 150 pieces by Frédéric Chopin. Work-
ing with data sets of that size, i.e., complete sets of perfor-
mances of a single composer or several hundred thousand
played notes requires, among other things, effective score-
performance matching algorithms and interactive graphical
user interfaces for post-hoc data inspection and correction.

Preliminary data analysis of the between-hand synchro-
nization attempted to demonstrate the rich use of asynchro-
nies in Magaloff’s complete Chopin corpus, a historic docu-
ment of a unique performance project that offers unequaled
opportunities for performance analysis. We sketched over-
all trends of asynchronicity with respect to pieces, tempo,
and metrical constraints, as well as specific cases of bass
anticipations and occurrences of tempo rubato in its earlier
meaning.

This research endeavor is preliminary as it stands. It is
meant to lead to further modeling efforts to be able to pre-
dict asynchronies from Romantic scores following Nikita
Magaloff’s instrinsic style. Piece category, overall musical
texture, as well as local and global aspects from the scores
may be promising features for training machine learning al-
gorithms in order to derive predictive computational models
of between-hand asynchronization. Such models may en-
hance existing performance rendering systems by adding an
important expressive feature.

To be able to automatically assess performance corpora
of this scale offers completely new pathways for computa-
tional musicology. Historic documents such as the present
corpus are in managable reach for detailed analysis. Other
large corpora, such as piano rolls of historic reproducing pi-
anos or the performance database of the Yamaha eCompe-
tition 4 , may be other sources for future large-scale perfor-
mance investigation.

Finally, detailed knowledge derived from performances
by established musicians may help us develop real-time vi-
sualization tools that give intelligent feedback to practicing
piano students to enhance their awareness of what they are
doing, and potentially help them to improve their play in-
stantly.

4 http://www.piano-e-competition.com
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ABSTRACT

Sample-based music composition often involves the task
of manually searching appropriate samples from existing
audio. Audio mosaicing can be regarded as a way to autom-
atize this process by specifying the desired audio attributes,
so that sound snippets that match these attributes are con-
catenated in a synthesis engine. These attributes are typ-
ically derived from a target audio sequence, which might
limit the musical control of the user.

In our approach, we replace the target audio sequence by
a symbolic sequence constructed with pre-defined sound ob-
ject categories. These sound objects are extracted by means
of automatic classification techniques. Three steps are in-
volved in the sound object extraction process: supervised
training, automatic classification and user-assisted selection.
Two sound object categories are considered: percussive and
noisy. We present an analysis/synthesis framework, where
the user explores first a song collection using symbolic con-
cepts to create a set of sound objects. Then, the selected
sound objects are used in a performance environment based
on a loop-sequencer paradigm.

1 INTRODUCTION

Corpus based sound synthesis encompasses a wide range
of approaches that leverage the developments of audio de-
scription technologies for speech and music synthesis ap-
plications. Initially developed for text to speech applica-
tions, Concatenative Sound Synthesis [1] has been adapted
to the musical domain, notably to singing voice and musi-
cal instrument synthesis. Musical mosaicing [2] introduced
a more general approach from the point of view of unit
selection by mapping the search of suitable sounds from
the database to a constraint satisfaction problem. However,
while traditionally closer to popular practices in the reuse of
musical materials, applications of musical mosaicing have
been limited by the dependence on an acoustic target that is
analyzed to define the constraints. In this paper we present
an initial step towards symbolic audio mosaicing based on
machine learning of abstract sound categories. The system
describes acoustic events in polyphonic music using human-
understandable concepts (e.g. percussive, having promi-

nence of singing voice, harmonic sound with constant pitch,
etc.). Then it provides the user with a symbolic audio mo-
saicing interface to compose music by concatenating these
“concepts”. Sound descriptors from the symbolic sequence
are used as target in an audio mosaicing system. One of
the main bottlenecks we face when trying to develop such
system is the need to automatically characterize music seg-
ments using perceptually meaningful sound object cate-
gories. Nowadays we have a lot of signal-level descrip-
tors, but these descriptors are rarely linked with perceptu-
ally meaningful sound events in polyphonic music (with few
exceptions like chroma features or some rhythmic descrip-
tors). We make use of Music Information Retrieval (MIR)
techniques like sound segmentation [3], instrument classifi-
cation [4], and audio feature extraction [5] to classify poly-
phonic sound segments into pre-defined sound object cate-
gories.

Depending on the area of research we look from, there
are several interpretations of the concept of sound object. If
we look from a perceptually-oriented point of view we find
concepts related to auditory streams and perceptual group-
ing of sound events [6]. Looking from a signal process-
ing point of view we can rely on concepts like onsets or
ADSR envelope. Traditional music theory deals the con-
cepts of notes and chords. In Musique Concrète, Schaeffer
proposed the idea of musical objects [7]. One simple work-
ing definition can be found in [8]: “Sound Object: a basic
unit of musical structure, generalizing the traditional con-
cept of note to include complex and mutating sound events
on a time scale ranging from a fraction of a second to sev-
eral seconds”. Within this proof-of-concept paper we start
by considering only two easily identifiable types of sound
objects found in polyphonic music: percussive and noisy

sounds. The former category includes sounds objects with
a sharp attack followed by a decay (e.g. drums, pizzicato),
while the latter includes unpitched sound objects with flat
amplitude and spectral envelopes (e.g. stable white noise,
highly distorted sounds).

The main characteristic of this project is the concept of
semi-automatic sound object retrieval. The research tasks
focus on detecting segments of a song with high probabil-
ity of being member of a pre-defined sound category. At
the same time, with the analyzed sounds, the user should be
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Figure 1. General overview of the implemented system.
Note the user intervention in both exploration and composi-
tion processes.

able to create new audio material in the context of electronic
music performances.

An overview of the process is depicted in figure 1. The
steps involved are: Instance Detection, Instance Selection

and Performance Environment. The first consists of two
sub-processes: the model training, given a manual annotated
ground-truth database; and the extraction of new sound ob-
ject candidates from a song collection. In the instance selec-
tion process, the user selects among the extracted candidates
in a GUI. Finally, the performance interface allows the user
to specify different steps in a sequencer using sound cate-
gories. In the next sections we describe each step in detail.

2 AUTOMATIC INSTANCE DETECTION

In the proposed analysis framework, the user selects from
a list of automatically detected sound objects. In order to
detect these objects the system extracts acoustic descriptors
from all songs in the collection, and creates a list of candi-
dates. The instance detection process applies machine learn-
ing techniques to classify the list of sound candidates into
pre-defined categories, outputting a class-label and a likeli-
hood value for every proposed segment. Additional features,
such as amplitude envelope and spectral content, are com-
puted to further describe the sound objects. These features
are used in the following stage, the sound object selection
(see section 3).

2.1 Segment-based Sound Object Detection

Initially, one can foresee two different approaches to detect
sound objects: frame-based and segment-based. In a frame-
based approach sound objects can be identified by using a
continuous descriptor computed out of frames of short du-
ration. In a segment-based approach segments of longer du-
ration are described and evaluated by an automatic classifier.

The problem of using a frame-based approach is that it
ignores time-evolving aspects of the sound, such as the en-
ergy envelope. Therefore, our approach is segment-based,
relying on supervised machine learning techniques. A man-
ually annotated ground truth database is used to train models
of sound object categories. From the audio file, we use an
in-house sound analysis library to extract low-level acous-
tic features. In the next step we generate a list of segment
candidates, which can overlap. For each candidate, a con-
fidence measure is computed using automatic classification
algorithms. We keep the non-overlapping segments with a
confidence measure of more than 50%.

2.1.1 Training Database

In order to build a model for each sound category we need
a ground truth database with labeled examples. We decide
to construct two labeled databases (one per sound category)
namely PercussionDB and NoiseDB.

PercussionDB: Concerning the percussive category, in
order to obtain a more generalized model, we use a ground
truth database built by processing the ENST drums database
[9]. This is the largest publicly available drum database.
It contains recordings from three different drummers and
drum sets playing single hits, drum phrases and complete
songs covering various styles. The authors provide two type
of drum recording tracks namely dry (without sound effects)
and wet tracks, along with the corresponding music accom-
paniments. In our case, since we want to detect percussive
events in real world music, we use the wet tracks. In or-
der to obtain “realistic” songs we mix the drums and their
accompaniments tracks directly (without further changes of
sound levels). Afterwards we segment 30 seconds of each
song (and their labels) for a total of 64 songs. Since we
want to detect all percussive sounds as belonging to one
class we merge all the provided labels into one “parent” cat-
egory named as “percussive”. Finally we keep the sound
events that are found by an onset detector [3], labelling intra-
onset segments with a maximum length of 150ms. If the on-
set has at least one percussive label in its vicinity (±40ms)
it is labeled as “percussive” otherwise is labeled as “non-

percussive”. At the end of this process we obtain 3.690 ex-
amples of percussive events (and 3.690 of non-percussive
ones).

NoiseDB: Concerning the noisy category, we collected
several songs containing potential “noisy” sounds, as well as
isolated noise sound from sample collections. We manually
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Amplitude-related object descriptors
Mean
Variance
Minimum
Maximum
Skewness
Kurtosis
Time-related object descriptors
Temporal Skewness
Temporal Kurtosis
Temporal Centroid
Maximum Normalized Position (MxNP)
Minimum Normalized Position
Slope: arc tangent of the slope of the linear
regression of the data.
Normalized Attack (Decay): Slope form
beginning (end) to the MxNP.
Attack (Decay): Slope from beginning (end)
to Max position (in frames).

Table 1. Object-level descriptors

annotate the noisy objects obtaining a total of 208 “noisy”
sound objects.

2.1.2 Audio Descriptors

To characterize each sound object we first compute more
than 90 frame-level audio descriptors. Then we compute
several object-level descriptors to extract amplitude-related
and time-related features from the time series of audio
frames. For each frame-level descriptor, we compute the
whole set of object-level features depicted in table 1. Thus,
we obtain more than 1.400 descriptors for each sound ob-
ject. A more detailed explanation of this process can be
found in [10].

2.1.3 Classification Experiments

Once we have properly labeled databases (i.e. PercussionDB
and NoiseDB) we use them to train several supervised clas-
sification algorithms.

For classification experiments we first perform a
Correlation-based Feature Selection [11] (CFS) on each
database to retain the most informative features (those with
low intracorrelation and, at the same time, high class- corre-
lation). Then we train both Support Vector Machines (SVM)
and Logistic Regression [12] (LR) algorithms on each bi-
nary class problem (i.e percussive vs. non-percussive and
noisy vs. non-noisy) using 10-fold cross validation in
WEKA 1 .

Since we obtain quite similar results from SVM and LR,
we adopted the later for simplicity. See table 2 for an over-

1 http://www.cs.waikato.ac.nz/ml/weka/

Class # instances # descriptors F-measure
P vs. N-P 7.380 74 0.71
N vs. N-N 416 38 0.88

Table 2. Classification results for percussive vs. non-
percussive (P vs. N-P) and noisy vs. non-noisy (N vs. N-N)
classes

Figure 2. Audio onset segmentation (dashed lines), variable
window length segmentation (empty squares), and sound
object candidates (solid squares).

view on classification results. From the evaluation of the
classification experiments, we can conclude that the model
for the percussive category achieves good results (F-measure
of 0.71) using a data set of more than 7.300 instances. We
consider that this model is sufficiently general for classi-
fying new percussive sound objects. Regarding the noisy

model we also obtain good classification results (F-measure
of 0.88). Although it would be interesting to have more
examples to train the model we consider that this model is
quite representative for noisy sound objects.

At the end of this process we have two LR models, one
in charge of detecting percussive sound events and the other
in charge of detecting noisy events. Since the LR algorithm
outputs a class label and its corresponding probability mea-
sure, we store this probability to be used as a measure of
confidence in the prediction.

2.1.4 Candidate Detection

In order to detect the percussive or noisy sound objects (and
their confidence values) we need to evaluate all possible
sound segments against our classification models. For every
new song we compute its onsets and define sound segment
boundaries as inter-onset intervals (see figure 2).

After the segmentation step we compute all possible can-
didate segments between two onsets, using a frame resolu-
tion of 512 samples. Additionally, we use category-specific
rules in order to reduce the number of candidates and im-
prove the performance of the classification. For the percus-

sive sound category, the possible candidate segments must
start at the onset position. Conversely, for the noisy cate-
gory, candidates are not allowed to start at onset position in
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order to avoid impulsive segments, and a minimum length is
required so that they can be perceived as stable sounds.

At the end of the process, we obtain a list of sound ob-
ject instance candidates and their confidence value. We also
compute some additional object-level descriptors to be used
in the assisted instance selection process described next. For
percussive objects we compute their attack, decay and mag-
nitude values and for the noisy category we compute spectral
energy values for high, mid and low frequency bands.

3 ASSISTED INSTANCE SELECTION

3.1 Overview

The main feature of the selection prototype is to discover
sound objects in a song collection. Given a song collec-
tion, we compute a list of candidate objects for each song.
When a song is loaded in the main panel, the user can play
the candidates, which are highlighted in different colors for
percussive and noisy categories. Also, the user may restrict
the found sound objects by setting a threshold, so that only
those sounds with a confidence value above that threshold
will be highlighted. Additional filtering can be done ac-
cording to specific characteristics of each sound category.
For example, for percussive sound objects the user might
set values for attack, decay and magnitude and, according
to the selected parameters, a triangular shape is drawn (see
figure 3). When applying this filter, only those candidates
whose attack, decay and magnitude values are within the
ranges defined by the corresponding parameters and the tol-
erance slider are highlighted. Noisy sound objects may be
filtered according to the distribution of energy in the spec-
trum. A dual slider allows specifying the relative propor-
tion of high, mid and low frequency energy. A second slider
specifying the desired total absolute level of energy. A rough
representation of the target spectrum shape defined by these
parameters is also displayed.

Sound object candidates may be added to a list using a
context menu. The list represents the selection of sound ob-
jects that the user can export to the performance environ-
ment (section 4).

Additionally, a list of similar objects in the whole song
collection is computed in advance for each candidate, using
Euclidean distance. A second list shows the most similar
objects for the currently selected candidate.

4 PERFORMANCE ENVIRONMENT

The performance tool consists in a mosaicing system that
concatenates sound objects previously selected using the ex-
ploration prototype. It is composed of two separate mod-
ules: the graphical user interface and the audio engine. The
interface displays information about the current status of the
synthesis process, and sends sound object descriptors to the

Figure 3. Interface of the exploration prototype. Three
sound objects are identified. Amplitude envelope for the
percussive objects(red) are represented with triangles.

audio engine through Open Sound Control [13]. The audio
engine receives the list of descriptors for each step of the se-
quence and uses them to select the appropriate sound object
for that step.

4.1 Interface

The interface consists of three hierarchical levels: Com-

poser, Sequencer and Browser. Each level can be also re-
lated to a different temporal scale: song / performance (Com-

poser), loop (Sequencer) and sound object (Browser). Each
sequencer has a variable number steps (e.g. sixteen steps in
figure 4), and for each step the user can browse and select
sound objects of a given category to compose a loop.

In the Browser, the user can listen to the sound objects of
a given category in a specific sound objects set (previously
stored with the selection tool). Typically, the number of ob-
jects for one category will be under 100 instances. Sound
objects can be scattered according to some signal descriptor
(e.g. mapping energy to distance to the center). The user can
pre-listen to one sound object at any time before selecting it.

The Sequencer is a classical step sequencer. It has a cir-
cular shape, showing in real-time the current playing posi-
tion. The number of steps is specific to a given loop and can
be set by the user. Each Sequencer can also be rotated in or-
der to modify its relative phase. Each step of the Sequencer

can be filled with a sound object of one of the defined cat-
egories or left empty. The desired target object is selected
through the Browser. A preset management system allows
the user to store, load and unload sequences.
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Figure 4. Synthesis interface, showing a Sequencer exam-
ple, and a detailed view of the sound objects Browser. The
Composer level (not shown in the figure) is the top level and
can contain multiple Sequencers.

The top level is the Composer, which might contain one
or several Sequencers synchronized to a global user-defined
tempo. The user can create a composition by manipulat-
ing the Sequencers (changing location, muting, soloing) on
the fly. When having several Sequencers in one Composer

panel, the descriptors sent to the audio engine will depend
on the position of the Sequencers. For each step, the sent
descriptors will be a linear combination of the descriptors
of the individual sound objects.

4.2 Audio mosacing engine

The audio mosaicing engine is responsible for the actual
sound generation. It selects and concatenates samples from
the internal sound bank obtained in the selection process.
Each step in a loop is described by the vector of audio de-
scriptors sent by the the interface module. The audio engine
seeks the sound objects that best match the incoming de-
scriptors.

One of the main motivations of using audio mosaicing
is the flexibility in modifying the synthesized sounds by
changing the content of the audio engine’s internal sound
bank. In this case, the synthesized output will mimic the
structure and timbre characteristics of the sound objects used
in the Composer, but using different sounds. Also, more
complex interactions based on the mosaicing paradigm are
possible using multiple Sequencers as described.

5 CONCLUSIONS AND FUTURE WORK

We have presented and implemented a proof-of-concept pro-
totype for symbolic audio mosaicing. The main idea be-
hind this system is to combine MIR and corpus-based syn-
thesis techniques to obtain a new analysis/synthesis frame-
work for music creation. The proposed application replaces,
within the mosaicing paradigm, the target audio sequence
by a symbolic sequence constructed with pre-defined sound
categories.

We have implemented a fully working prototype con-
sidering two sound categories (i.e. percussive and noisy

sounds) automatically detected by machine learning tech-
niques. We believe that this user-assisted application is an
engaging interface for audio mosaicing. This application
gives the users an alternative to pre-defined sample banks
by exploring their own music collections using high level
categories.

The next logical step is to add some more categories and
perform a user study in order to evaluate the concept. Ulti-
mately, it should be possible for users to define their own
sound categories. Concerning the segmentation step, we
plan to extend the research by using other descriptors than
onset detection. This approach might improve the genera-
tion of candidates for some categories.
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ABSTRACT

Recently there has been increasing interest of scientists for 

the performance of singing or reciting voices of the past in 

utilising  analysis-synthesis  methods.  In  the  domain  of 

Ancient  Greek  musicology  indeed,  where  we  find  the 

roots of the occidental music, the main research has been 

done  mostly  by  scholars  of  classical  Greek  literature. 

However, there is still a vast territory for research in audio 

performances to be carried out with the help of new digital 

technologies.  

In this paper,  we will present an attempt to decode a 

recited text of Ancient Greek tragedy and render it  into 

sound. At the first paragraph of this article we underline 

the origin of music arising from the melodicity of speech 

in  Ancient  Greek tragedy.  In  the  second paragraph,  we 

describe  the  methodology  we  have  used  in  order  to 

analyse the voice of S. Psaroudak�s, himself professor of 

Ancient Greek music, by an open source prosodic feature 

extraction tool based on  Praat. We give a description of 

the prosodic analysis, implementation details and discuss 

its feature extension capabilities as well. Last, we refer to 

the  difference  between  the  Ancient  and  Modern  Greek 

phonological  system, the application  of  this  research  in 

music and further development.

1. INTRODUCTION

Our  sources  on  the  pronunciation  of  ancient  Hellenic 

speech  (at  least,  classical  Attic)  mention  two  main 

“prosodies”:

1) syllabic duration (long, short), and

2) musical accents (acute, grave, circumflex).

3) To this phonetic picture modern scholarship adds 

another prosody: stress accent.

Based on this information, an attempt has been made by 

Professor  S.  Psaroudak�s,  to  reconstruct  the  sound 

(intonation)  of  poetic  recitation  in  an  extract  from  the 

parodos of Aeschylus’ Agamemnon (ll.40-46) [1].

The  present  paper  describes  and  analyses  the  recorded 

vocal  contours.  It  concentrates  especially  on  the  pitch 

contour  of  an  expert  voice  in  order  to  explore  the 

melodicity  of  Ancient  Greek  poetry  according  to  an 

analysis  of  the  theoretical  sources  and  possible 

alternatives  or  modifications  of  their  application  in 

performance. Particularly with regard to the insight of the 

pre-semiotic  linguist  Wilhelm  von  Humboldt  which  he 

gained  as  he  was  metrically translating  "Aeschylos 

Agamemnon" we like to quote: "[...]; one always thinks to 

find everything in the mental domain. Though it's not the 

place to elaborate on this here; it always appeared to me 

that  it's  predominantly  the  way in  which  letters  link to 

syllables and syllables combine to words in language, and 

how in speech again those words link up with one another 

according  to  timing  and  tone  which  defines  the 

intellectual, yes that it actually designates no less than the 

moral and political fate of a nation." [20, p. 136]

2. THE PROSODY OF THE TRAGIC  POETRY IN 

ATTIC  THEATER

As our main concern is to analyse the interpretation of a 

text  by  the  performance  of  an  expert  in  the  field,  like 

professor Psaroudak�s, this makes up just the beginning of 

a  new  research  that  can  lead  us  to  elaborate  on  the 

relationship between music and logos [5]. What was the 

pitch  range  of  the  voice  while  reciting  the  tragic  text? 

Which were the timbers according to the meaning of the 

words, the dynamics, the rhythm? 

According to scholars [17, 10] the solo singing voice 

was  particularly  associated  with  Greek  tragedy.  Early 

tragic actors’ roles may have consisted almost entirely of 

singing. The actor of fifth-century tragedy had to sing in a 

variety of metres in rapid succession and to negotiate the 

delicate  transitions  between  them:  the  shift  between 

recitative and lyrics was regarded as particularly emotive 

[19].  Anapaestic  and  lyric  verses  repeatedly  alternated 

with iambic trimeters, and these were spoken. 
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Figure  1.  the   recorded  text:  parodos  of  Aeschylus’ 

Agamemnon (ll.40-46).

Besides some important  external  evidence,  tragic poetry 

offers  internal  clues to the way in which the voice was 

being used; in iambics people constantly use such verbs as 

legein and phrazein in reference to their own speech and 

that  of  their  interlocutors,  whereas  the  semantic  range 

referring to lyric utterance,  -  which includes  melpein and 

aidein, is quite different.
1
 [10]

Figure  2.  The  tonal  movement  of  the  voice  upon  the 

analysis of Psaroudak�s [1].

Tragedy  thus  offered  the  dramatist  a  palette  of  vocal 

techniques  with which  to  paint  his  sound pictures,  and 

certain  patterns  can  be  discerned  in  the  way  that  he 

handled them. Our main concern is to develop this palette 

of vocal techniques in order to trace new  audio ways of 

performing the tragic text and  thus make the connection 

1
assets.cambridge.org/97805216/51400/excerpt/9780521651400_excerpt.

pdf

of Tragedy  to the etymology of tragoudi which in modern 

Greek means song.
2

2. METHODOLOGY FOR THE PROSODIC 

MODELLING

Intonation modelling for speech synthesis is now one of 

the big issues  facing  not  only speech  synthesis  systems 

but also music synthesis systems. 

Figure 3. The rhythmic interpretation of the text upon the 

analysis of Psaroudak�s [1]

2
 Theatrical singers  are attested from tragedies  of  Thespis  in the sixth 

century BC to the Byzantine theatres in which Theodora performed in the 

sixth century AD, when the word ‘tragedy’ gave rise to what is still the 

word for ‘song’ in the Greek language (tragoudi).
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One of the basic questions that derive from ancient Greek 

text is the intonation of speech according to the text and 

the  emotions.  Many  evolutionary  theories  suggest  that 

musical behaviour evolved in conjunction with, or as an 

adaptation of, vocal communication [7].

In music, pitch and temporal  relations define musical 

tunes, which retain their identities across transformations 

in  pitch  level  and  tempo.  In  speech,  pitch  variation 

provides an important source of semantic and emotional 

information. In addition, temporal properties help listeners 

to  determine  boundaries  between  words  and  phrases. 

Typically,  descending  pitch  contours  and  syllables  or 

notes of long duration mark ends of phrases in speech [11] 

and in music [8].

The  problem  of  intonation  modelling  for  speech 

synthesis is summed up by the following quote regarding 

segmental effects on pitch: We have some basic intuitive 

ideas about what natural pitch should sound like, but we 

just  don't  understand  enough  to  know  how  the  pitch 

associated with a specific segment, in a specific syllable 

with  a  specific  accent,  in  a  specific  word  in  a  specific 

phrase with a specific phrase type, in a specific context, 

spoken by a specific speaker, should behave.

We have followed the next steps in order to extract the 

prosodic  contours  of  the  recited  voice  of  Psaroudak�s 

according to the last research results of pronunciation [3] 

utilising the open source environment of Praat in order to 

investigate and compare the special interpretation and the 

diagrams that professor Psaroudak�s has designed by hand 

concerning the rhythm, the accent and the intonation. [1].

1.) Record the text by the special interpretation of S. 

Psaroudak�s   according  to  the   Allen’s 

pronunciation system.

2.) Implement the prosodic feature extraction tools in 

order  to  get  several  features  that  describe  the 

performative model of the prosody.

3. IMPLEMENTATION 

For the implementation of the prosodic feature extraction 

tool  we  have  chosen  Praat’s programmable  scripting 

language [9]. 

An important  reason  to use  Praat as  our  platform is 

that  it  provides  an existing suite of  high quality speech 

analysis routines, such as pitch tracking.

Several different types of features are computed based 

on the stylised pitch contour.

� Range features:  These features  reflect  the pitch 

range of a single word or a window preceding or 

following  a  word  boundary.  These  include  the 

minimum, maximum, mean, and last values of a 

specific  region (i.e.,  within a word or  window) 

relative  to  each  word  boundary.  These  features 

are  also normalised  by the baseline  values,  the 

top line values, and the pitch range using linear 

difference and log difference.

� Range features:  These features  reflect  the pitch 

range of a single word or a window preceding or 

following  a  word  boundary.  These  include  the 

minimum, maximum, mean, and last values of a 

specific  region (i.e.,  within a word or window) 

relative  to  each  word boundary.  These  features 

are  also normalised  by the baseline  values,  the 

top line values, and the pitch range using linear 

difference and log difference.

� Movement features:  These features measure the 

movement of the contour for the voiced regions 

of the word or window preceding and the word or 

window  following  a  boundary.  The  minimum, 

maximum, mean, the first,  and the last  stylised 

values are computed and compared to that of the 

following word or window, using log difference 

and log ratio.

� Slope features: Pitch slope is generated from the 

stylised pitch values. The last slope value of the 

word  preceding  a  boundary  and  the  first  slope 

value  of  the  word  following  a  boundary  are 

computed. We also include the slope difference 

and  dynamic  patterns  (i.e.,  falling,  rising,  and 

unvoiced)  across  a  boundary  as  slope  features, 

since  a  continuous  trajectory  is  more  likely  to 

correlate with non-boundaries; whereas, a broken 

trajectory tends to indicate a boundary of some 

type.

� Energy  features:  The  energy  features  are 

computed  based  on  the  intensity  contour 

produced by Praat.

Similar to the features, a variety of energy related range 

features,  movement  features,  and  slope  features  are 

computed, using various normalisation methods.

� Other  features:  We add  the  gender  type  to  our 

feature set.  Currently  the gender  information  is 

provided in a metadata file, rather than obtaining 

it via automatic gender detection.

Table  1. The  use  of  raw  files  for  extracting  various 

features
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Given a corpus with audio and time aligned words and 

phones  as  input,  our  tool  first  extracts  a  set  of  basic 

elements  (e.g.,  raw  pitch,  stylised  pitch,  VUV) 

representing duration, and energy information, as is shown 

in Figure 5 (c). Then a set of duration statistics (e.g., the 

means and variances  of  pause duration,  phone duration, 

and last rhyme duration), related statistics (e.g., the mean 

and  variance  of  logarithmic  values),  and  energy  related 

statistics are calculated. Given the duration, , and energy 

information, as well as the statistics, it is straightforward 

to  extract  the  prosodic  features  at  each  word  boundary, 

according  to  the  definition  of  features  in  and  our  tool 

documentation [12].

We describe below how to obtain and represent these 

basic elements in  Praat. Table 1 summarises their use in 

the computation of the prosodic features. 

Word  and  Phone  Alignments:  A  forced  alignment 

system  2  is  used  to  determine  the  starting  and  ending 

times of words and phones. In our tool these alignments 

are represented in TextGrid IntervalTiers, as in Figure 4

Figure 4. Sound and Textgrid Tiers of syllabus and words

Vowel  and  Rhyme:  The  starting  and  ending  times  of 

vowels  and  rhymes  are  determined  from  the  phone 

alignments. As to rhyme, we only consider the last rhyme, 

which  is  defined  to  be  the  sequence  of  phones  starting 

from the last vowel and covering all the remaining phones 

in  a  word.  Vowels  and  rhymes  are  also  represented  in 

TextGrid IntervalTiers.

We rely on Praat’s autocorrelation based pitch tracking 

algorithm  to  extract  raw  pitch  values,  using  gender 

dependent pitch range.

The raw pitch contour (Figure 5) is smoothed and the 

voiced/unvoiced  regions are  determined  and stored in  a 

TextGrid IntervalTier.  Praat’s pitch stylisation function is 

used to stylise raw values over each voiced region (Figure 

6). Both raw values and stylised values are represented in 

PitchTiers. The pitch slope values are generated based on 

the  stylised  pitch  contour,  and are  stored  in  a  TextGrid 

IntervalTier.

Figure 5. Sound and raw pitch countour (Pitch Tier)

Figure 6. Sound and stylised pitch contour (Pitch Tier). 

Energy: Intensity values are computed for each frame and 

stored  in  an  IntensityTier  (Figure  7).  Since  there  is  no 

intensity  stylisation  function  in  Praat,  we  choose  to 

represent   intensity  values  in a  PitchTier,  and apply the 

pitch stylisation function to stylise the intensity contour. 

Note that stylisation is performed on the entire intensity 

contour,  in  contrast  to  the  pitch  case,  for  which  this 

applies  only  in  voiced  regions.  The  raw  and  stylised 

intensity  values  are  stored  in  PitchTiers,  and  the  slope 

values are stored in a TextGrid IntervalTier.

As  we  discussed  above,  the  major  advantage  of 

building a prosodic model based on Praat is the capability 

of  taking  advantage  of  Praat’s existing  built-in  speech 

analysis algorithms and other Praat scripts that have been 

written  as  extensions.  In  addition,  because  Praat is  a 

public  domain  tool,  there  is  the  promise  of  future 

extensions to Praat functionality. 

Although the  features  we have  implemented  have  been 

used for a variety  of event detection tasks, they are not 

necessarily  equally  effective  for  all  tasks.  Hence,  it  is 

important to have the flexibility to easily add new features 

to the system.
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Figure  7.  Sound  and  raw  intensity  contour  (Intensity 

Tier). 

4. FURTHER DEVELOPMENT 

This research is only the starting point of understanding 

the audio aspects of Ancient Greek music.

In  the future  we hope to  focus,  on the  extraction  of 

rules that describe this kind of prosody and implement it 

in the model of Greek speech synthesis Demosthenes [18] 

in order to instruct the system with new information about 

ancient Greek poetry. This will be a further starting point 

to  compare  the  phonological  systems  of  Ancient
3 

and 

Modern Greek  concerning singing and the relation  of the 

language.

On the other hand our research will be appreciated by 

directors and actors of Ancient Greek tragedy who seek 

for approaching the realistic way of interpreting the text 

[4, 8].

5. CONCLUSION

In this paper, we have attempted to extract especially the 

pitch contours as well as other features that characterise 

the  interpretation  of  the  tragic  text  prosody  upon  the 

special analysis of professor S. Psaroudak�s.

This  research  initiates  a  new  domain:  computational 

archeomusicology  where  computer-based  analytical 

methods  are  used  for  the  study  of  long-term  musical 

3
 In modern Greek, especially in singing, we find great differences in the 

accentual system. Ancient Greek is generally referred to as a language 

with melodic accent [3] using register tone (as opposed to e.g. Mandarin 

Chinese  which  uses contour  tone),  varying the  pitch of  the  voice  and 

thereby changing the lexical or the grammatical meaning of a word [16, p. 

253]. Modern Greek with its dynamic accent focuses on using stress, i.e., 

using  more  air  and  muscular  energy,  thereby  producing  a  mixture  of 

increased loudness, pitch and quantity [16, pp.249–250]. This difference 

manifested itself in the Modern Greek writing system, in that all accentual 

signs that had been introduced by Aristophanes of Byzantium around the 

third century BCE, except for the acute, the ���	
, were dropped from the 

official orthography in the reforms of the 1970s and 80s.

behaviour  and  evolution  of  ancient  Greek  music,  its 

systematisation  and  systems.  The  procedure  of  the 

prosodic feature extraction has been achieved through the 

environment extraction tools we built based on Praat.
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Amélie Anglade
Centre for Digital Music

Queen Mary
University of London

amelie.anglade@elec.qmul.ac.uk

Rafael Ramirez
Music Technology Group
Universitat Pompeu Fabra

rramirez@iua.upf.edu

Simon Dixon
Centre for Digital Music

Queen Mary
University of London

simon.dixon@elec.qmul.ac.uk

ABSTRACT

We present an approach for the automatic extraction of trans-
parent classification models of musical genres based on har-
mony. To allow for human-readable classification models
we adopt a first-order logic representation of harmony and
musical genres: pieces of music are represented as lists of
chords and musical genres are seen as context-free definite
clause grammars using subsequences of these chord lists.
To induce the context-free definite clause grammars charac-
terising the genres we use a first-order logic decision tree
induction algorithm, Tilde. We test this technique on 856
Band in a Box files representing academic, jazz and popular
music. We perform 2-class and 3-class classification tasks
on this dataset and obtain good classification results: around
66% accuracy for the 3-class problem and between 72% and
86% accuracy for the 2-class problems. A preliminary anal-
ysis of the most common rules extracted from the decision
tree models built during these experiments reveals a list of
interesting and/or well-known jazz, academic and popular
music harmony patterns.

1 INTRODUCTION

Users tend to be sceptical about automatic recommender
systems that are not transparent. Providing some insight
into the reasoning to the user has proven to improve both the
user’s trust and his involvement in the system [3, 11]. Thus,
for a better user acceptance, automatic music classification
systems (which can be used as part of a music recommender
system) should provide an explanation to the user on how a
piece of music is classified by the system.

Recent studies [1, 9] have shown that a logic-based repre-
sentation of the musical events together with a logical infer-
ence such as Inductive Logic Programming (ILP) [5] allow
for a human-readable characterisation of music. In this arti-
cle we extend these works by building human readable and
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transparent music classification models – namely first-order
logic decision tree models (an extension of the classical de-
cision trees using ILP) – performing both classification and
characterisation. We focus on classification into musical
genres using as descriptor the harmony of each song.

The paper is organised as follows: In Section 2 we review
some existing studies using harmony for automatic classifi-
cation. In Section 3 we introduce the harmonic content de-
scription employed in this study. In Section 4 we present
the details of our learning task, including the data, the in-
ductive logic decision tree algorithm and the results (clas-
sification performances and characterisation rules obtained)
before concluding in Section 5.

2 PREVIOUS RELATED WORK

Although some harmonic (or chord) sequences are famous
for being used by a composer or in a given genre, little at-
tention has been paid in the automatic genre recognition lit-
erature to how harmony can help in this task. For exam-
ple, in [12] the authors use a chroma feature representation
describing the harmonic content of the music. A compari-
son of the histograms reveals some patterns which contain
some genre specific information. Recognition rates around
70% are reported for a five class classification. However this
study focuses on low-level harmony features.

In [10], a rule-based system is used to classify sequences
of chords belonging to three categories: Enya, Beatles and
Chinese folk songs. A vocabulary of 60 different chords
was used, including triads and seventh chords. Classifica-
tion accuracy ranged from 70% to 84% using two-way clas-
sification, and the best results were obtained when trying to
distinguish Chinese folk music from the other two styles,
which is a reasonable result as both western styles should
be closer in terms of harmony.

Paiement et al. [7] also used chord progressions to build
probabilistic models. In that work, a set of 52 jazz stan-
dards was used, encoded as sequences of 4-note chords.
The authors compared the generalization capabilities of a
probabilistic tree model against a Hidden Markov Model
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(HMM), both capturing stochastic properties of harmony in
jazz, and the results suggested that chord structures are a
suitable source of information to represent musical genres.

More recently, Lee [4] has proposed genre-specific Hid-
den Markov Models that learn chord progression character-
istics for each genre. Although the ultimate goal of this work
is using the genre models to improve the chord recognition
rate, he also presented some results on the genre classifica-
tion task. For that task a reduced set of chords (major, minor,
and diminished) was used.

Finally, Perez-Sancho et al. [8] have investigated if 2,
3 and 4-grams of chords can be used for automatic genre
classification on both symbolic and audio data. They report
better classification results when using a richer vocabulary
(seventh chords) and longer n-grams.

3 HARMONIC CONTENT DESCRIPTION AND
REPRESENTATION

We extend these previous studies in which chord sequences
are of fixed length by using context-free definite-clause gram-
mars to represent chord sequences of arbitrary length.

3.1 Harmonic content

The music pieces used in this study have been kindly pro-
vided by the Pattern Recognition and Artificial Intelligence
Group of the University of Alicante. There, experts have
collected, annotated and double-checked files encoded in
the format of the PG Music software Band in a Box (aka
BIAB) 1 and then converted into MMA 2 format. These
files can be seen as simplified scores only containing the
chords which are labelled in a jazz/pop/rock shorthand fash-
ion (e.g. using G7 for G dominant seventh chord, D for D
major, etc.). In these transcriptions from the University of
Alicante, chords are limited to major or minor triads and 7th
chords (dominant seventh, major seventh or minor seventh).
But there is no unique way to transcribe chords and notice
that different levels of detail in chord representation might
lead to the induction of different classification rules. Fur-
thermore only the chord changes are annotated in the pro-
vided files. Although meter positions of chords are impor-
tant since we do not have access to this information we leave
this for future work.

3.2 Using context-free definite-clause grammars as rep-
resentation scheme

Context-free definite-clause grammars proved to be useful
in the logic-based extraction of biological patterns in a par-
ticular class of amino acids sequences, the neuropeptide pre-
cursor proteins (NPPs) [6]. NPPs share common character-

1 http://www.pgmusic.com/products bb.htm
2 http://www.mellowood.ca/mma/

istics with musical pieces (represented as chord sequences):
these sequences are highly variable in length, they tend to
show almost no overall sequence similarity and the class
(NPPs or non-NPPs in the case of amino acids sequences,
musical genres in the case of songs) to which a given se-
quence belongs is not always clear (some NPPs have not yet
been discovered and experts can disagree on the genre of a
given song). Both because of these similarities in the data
and because context-free definite-clause grammars can be
induced using Inductive Logic Programming, we choose to
adopt this representation scheme.

In the definite clause grammar (DCG) formalism a se-
quence over a finite alphabet of letters is represented as a
list of letters. Here the chords (e.g. G7, Db, BM7, F#m7,
etc.) are the letters of our alphabet. A DCG is described us-
ing predicates. For each predicate p/2 (or p/3) of the form
p(X,Y) (or p(c,X,Y)), X (the input) is a list representing
the sequence to analyse and Y (the output) is the remaining
part of the list X when its prefix matching the predicate p (or
property c of the predicate p) is removed.

%We assume the tonality is C Major
perfect cadence(A,B):-
gap(A,C), degree(5,C,D), degree(1,D,E), gap(E,B).

%definition of the gap predicate
gap(A,A).
gap([ |A],B) :- gap(A,B).

%definition of the rootNote predicate
rootNote(‘C’,[c|T],T).
rootNote(‘C’,[cm|T],T).
. . .

%definition of the degree predicate
degree(5,A,B) :- rootNote(‘G’,A,B).
degree(1,A,B) :- rootNote(‘C’,A,B).

Table 1. Simple definite clause grammar describing a per-
fect cadence in C major.

To illustrate this, an example of a simple chord sequence
context-free definite-clause grammar encoding the concept
of perfect cadence (in C major) is given in Table 1. In
this example, the target concept is perfect cadence/2.
To describe it three background predicates, rootNote/3,
degree/3 and gap/2, are used. rootNote(n,A,B)
means that the first chord of list A has for root note n. B
is the remaining list when the first chord of A is removed.
degree(d,A,B) means that the first chord of list A has
for degree d. The last lines of the Table 1 state that root note
G corresponds to the 5th degree (dominant) in C major and
C corresponds to the 1st degree (tonic). In Prolog the under-
score ( ) can match anything, so the gap/2 predicate (also
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from [6]) matches any chord sequence of any length, allow-
ing to skip uninteresting subsequences (not characterised by
the grammar rules) and to handle large sequences for which
otherwise we would need very large grammars. Finally, the
first lines of Table 1 define a perfect cadence as a chord on
the fifth degree directly followed by a chord on the first de-
gree (using the degree/3 predicate), sequence that can
happen anywhere in the list of chords that define the song
(due to the gap/2 predicate).

rootNote(‘C’,[c|T],T). rootNote(‘C’,[cm|T],T). . . .
rootNote(‘Cs’,[cs|T],T). rootNote(‘Cs’,[csm|T],T). . . .
. . . . . . . . .

interval(perf uni,A,B) :- rootNote(‘C’,A,B), rootNote(‘C’,B,C).
interval(perf uni,A,B) :- rootNote(‘Cs’,A,B), rootNote(‘Cs’,B,C).
. . .
interval(min sec,A,B) :- rootNote(‘C’,A,B), rootNote(‘Db’,B,C).
. . .
interval(dim oct,A,B) :- rootNote(‘C’,A,B), rootNote(‘Cb’,B,C).
. . .

gap(A,A).
gap([ |A],B) :- gap(A,B).

Table 2. Background knowledge predicates used in the first-
order logic decision tree induction algorithm to describe
genres. For each chord in a chord sequence its root note is
identified using the rootNote/3 predicate. The intervals
between the root notes (measured upwards) are “computed”
using the interval/3 predicate.

For the genre classification tasks our target predicate is
genre/3 and the patterns we extract are based on the in-
tervals between root notes of the chords. Root interval pro-
gressions capture some degree information but do not de-
pend on the tonality. Thus when using root intervals no pre-
processing of the data or key extraction is necessary. The
background predicates used to describe our grammar (given
as background knowledge to our learning system) are given
in Table 2. Notice that contrary to the example in Table 1
in which one rule was enough to describe a perfect cadence,
we look for a set of rules to describe each genre, each rule
describing one characteristic chord sequence of this genre.

4 LEARNING CLASSIFICATION RULES FOR
MUSICAL GENRES

4.1 Training data

The data set contains three genres: popular, jazz, and aca-
demic music. Popular music data consists of pop, blues, and
celtic (mainly Irish jigs and reels) music; jazz consists of a
pre-bop class grouping swing, early, and Broadway tunes,

bop standards, and bossanovas; and academic music con-
sists of baroque, classical and romantic music. All the cat-
egories have been defined by music experts at the Univer-
sity of Alicante who have also collaborated in the task of
assigning meta-data tags to the files and rejecting outliers.
The total amount of pieces is 856 (Academic 235; Jazz 338;
Popular 283), providing around 60 hours of music data.

4.2 Learning algorithm

We have applied Tilde’s top-down decision tree induction
algorithm [2]. Tilde can be considered as a first order logic
extension of the C4.5 decision tree algorithm: instead of
testing attribute values at the nodes of the tree, Tilde tests
logical predicates. This provides the advantages of both
propositional decision trees (i.e. efficiency and pruning tech-
niques) and the use of first-order logic (i.e. increased expres-
siveness). First-order logic enables us to use a background
knowledge (which is not possible with non relational data
mining algorithms). It also provides a more elegant way to
represent musical concepts/events/rules which can be trans-
mitted as they are to the users. Thus the classification pro-
cess can be made transparent to the user.

Tilde builds models, namely first-order logic decision trees
which can also be represented as ordered sets of rules (or
Prolog programs). In the case of classification, the target
predicate of each model represents the classification prob-
lem.

4.3 Learning task

We use Tilde with genre/3 as target predicate, where
genre(g,A,B) means the song A (represented as its full
list of chords) belongs to genre g. The last argument B, the
output list (i.e. the empty list) is necessary to comply with
the context free definite clause grammar representation. The
predicates considered to build the model are interval/3
and gap/2, defined in the background knowledge (cf. Ta-
ble 2). In addition we constrain the system to use at least two
consecutive interval predicates between two gap pred-
icates. This guarantees that we are considering local root
interval sequences of a least length 2 (i.e. chord sequences
of length 3) in the songs. However notice that the context
free grammar definite clause representation allows these lo-
cal root interval sequences to be of any length larger than
2.

4.4 Classification results

Our objective was to classify musical pieces into the three
main genres present in the dataset: academic, jazz and pop-
ular music. For that we both built a model that was directly
dealing with the 3-class problem and induced three mod-
els dealing with each of the 2-class subproblems. For each
classification task we performed a 5-fold cross-validation.
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Furthermore we controlled the complexity of the decision
trees built by varying the minimal number of examples a
leaf should cover (MC). The results of these experiments
are shown in Table 3.

academic/jazz/popular MC=2 MC=5 MC=10
Accuracy (baseline = 0.398) 0.663 0.665 0.655
Stderr 0.016 0.016 0.016
# nodes in the tree 91.0 42.6 26.6
# literals in the tree 248.6 116.2 71.0
academic/jazz MC=2 MC=5 MC=10
Accuracy (baseline = 0.590) 0.839 0.860 0.844
Stderr 0.015 0.015 0.015
# nodes in the tree 22.2 10.6 5.2
# literals in the tree 62.6 29.4 14.8
academic/popular MC=2 MC=5 MC=10
Accuracy (baseline = 0.540) 0.743 0.768 0.723
Stderr 0.019 0.019 0.020
# nodes in the tree 42.8 24.0 12.0
# literals in the tree 113.6 61.6 31.6
jazz/popular MC=2 MC=5 MC=10
Accuracy (baseline = 0.551) 0.843 0.819 0.804
Stderr 0.015 0.016 0.016
# nodes in the tree 44.0 21.8 12.2
# literals in the tree 125.2 61.0 31.8

Table 3. Classification results (on the test data) using a 5-
fold cross-validation. MC (minimal number of examples a
leaf should cover) is a parameter of the decision tree learn-
ing algorithm. The number of nodes and literals present in a
tree gives an estimation of its complexity.

The models for all the classification tasks have a good
accuracy which is not much affected by the value of the
minimal coverage of a leaf (MC): the accuracy is always
much higher than the baseline. Changing the minimal cov-
erage of a leaf from 2 examples to 5 examples (and similarly
when going from MC=5 to MC=10) leads to trees contain-
ing half the number of nodes and literals (so models that are
two times simpler). As long as the classification accuracy
is not affected using simpler models has several advantages.
Firstly, the processing time to assign a class to an unseen
example is smaller when using simpler models. Moreover
simpler models contain less rules and each rule covers on
average a higher number of examples. Such rules tend to be
more meaningful and do not capture local or isolated phe-
nomena, so are less subject to overfitting. Finally if we want
to display the model to the user (for transparency reasons)
simpler models are easier to understand. Here a good com-
promise is reached when using MC=5 for which the classi-
fication accuracy is generally higher than for any other MC
value and the models are simpler but not overly simplified.

The confusion matrices for the four classification tasks
when using MC=5 are shown in Table 4. We obtain respec-
tively 86% (academic vs. jazz), 77% (academic vs. popular),
82% (jazz vs. popular) and 67% (3-class problem) accuracy.
The best results are obtained when trying to distinguish jazz
from another genre (academic or popular). The biggest dif-
ficulty that appears in both the 3-class task and the 2-class
task is to distinguish academic music from popular music.
Indeed the harmony of these two genres can be very simi-
lar, whereas jazz music is known for its characteristic chord
sequences, very different from other genres harmonic pro-
gressions.

Real/Predicted academic jazz popular Total
academic 145 31 58 234
jazz 33 267 37 337
popular 68 56 151 275
Total 246 354 246 846
academic 197 37 234
jazz 43 294 337
Total 240 331 571
academic 165 69 234
popular 49 226 275
Total 214 295 509
jazz 272 65 337
popular 46 229 275
Total 318 294 612

Table 4. Confusion matrices (on the test data) for the four
classification tasks using a 5-fold cross-validation and for
minimal coverage of a leaf set to 5 (MC=5).

4.5 Overview of the extracted rules

As explained in Section 4.2 for each run Tilde returns a clas-
sification model that can be represented as a tree or as an or-
dered set of rules (or a Prolog program). Because of space
limitation we only show some interesting and recurrent rules
extracted from the various models built (a complete list of
classification models and their rules is available upon re-
quest). However note that a rule in itself can not perform
classification both because of having a lower accuracy than
the full model and because the ordering of rules in the model
is important to the classification (i.e. some rule might never
be used on some example because one of the preceding rules
in the model covers this example).

The following rule was found in the academic vs. jazz
classification models:
genre(academic,A,B) :- gap(A,C), interval(perf fifth,C,D),
interval(perf fifth,D,E), gap(E,B).
“Some academic music pieces contain a chord root interval

sequence of two consecutive ascending perfect fifth.”
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This rule can be interpreted as the common IV-I-V degree
progression. Interestingly the same rule appears in the pop-
ular vs. jazz classification model to characterise popular mu-
sic. So rather than characterising academic music or popular
music this rule suggests that a sequence of two consecutive
ascending fifth does not occur very frequently in jazz music
(at least not as frequently as in academic or popular music).

The above rule is further specialised in the 3-class mod-
els to characterise popular music this time:
genre(popular,A,B) :- gap(A,C), interval(perf fifth,C,D),
interval(perf fifth,D,E), interval(min sev,E,F), gap(F,B).
“Some popular music pieces contain a chord root interval

sequence of two consecutive ascending fifth directly followed

by an ascending minor seventh.”

This sequence could be for instance the IV-I-V-IV sequence
found in the verse of “Let it be” by the Beatles.

Other rules found both in the academic vs. jazz and the
3-class models are:
genre(academic,A,B) :- gap(A,C), interval(min sev,C,D),
interval(perf fifth,D,E),interval(perf fourth,E,F),gap(F,B).
“Some academic music pieces contain a chord root interval

sequence in which an ascending minor seventh is followed

by an ascending perfect fifth, followed by an ascending per-

fect fourth.”

and:
genre(academic,A,B) :- gap(A,C), interval(perf fifth,C,D),
interval(perf fifth,D,E), gap(E,F), interval(perf fifth,F,G),
interval(perf fourth,G,H), gap(H,B).
“Some academic music pieces contain a chord root interval

sequence of two ascending perfect fifth later (but not neces-

sarily directly) followed by an ascending perfect fifth and an

ascending perfect fourth.”

They can be respectively interpreted as V-IV-I-IV and IV-I-
V later followed by a back and forth pattern such as I-V-I or
IV-I-IV.

Some very jazzy patterns were also found, such as:
genre(jazz,A,B) :- gap(A,C), interval(perf fourth,C,D),
interval(aug fourth,D,E), gap(E,B).
“Some jazz music pieces contain a chord root interval se-

quence containing an ascending perfect fourth followed by

an ascending augmented fourth.”

and:
genre(jazz,A,B) :- gap(A,C), interval(maj sev,C,D),
interval(perf fourth,D,E), gap(E,B).
“Some jazz music pieces contain a root interval sequence

containing an ascending major seventh directly followed by

an ascending perfect fourth.”

5 CONCLUSIONS AND FUTURE WORK

In this paper we presented a first-order logic approach to
automatically extract genre classification models using har-

mony. This models are not black boxes: thanks to the ex-
pressiveness of first order logic the decision tree models we
obtained can be presented to the users as sets of human
readable rules. Good classification results (comparable to
previous work results in the field) were obtained with these
first-order decision trees algorithms. With almost no accu-
racy loss we managed to lower the complexity of our mod-
els from 50 rules to 25 rules on average, getting simpler,
faster to use and more meaningful decision trees. By using
a context-free definite-clause grammar representation which
can encode chord sequences of any length we extended pre-
vious classification and characterisation studies that were
limited to chords sequences of fixed length. For instance in
[1] musical style was characterised using chord sequences
of length 4 . In [8], the n-gram representation is used to
study chord sequences of length 2, 3 or 4 only. Our sys-
tem not only allows for any chord sequence length but also
enables the coexistence of harmony progressions of various
lengths in the same model.

Future work includes adding the chord categories (e.g.
minor triad, dominant seventh, etc.) in our grammar to try
to increase the classification accuracy of our models. We
also plan to test if using degrees (when key estimation is
possible) instead of root intervals can improve our models.
Finally we intend to test our framework on audio data using
chord transcription algorithms.
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ABSTRACT

A graphical tool for the timbre space exploration and inter-
active design of complex sounds by physical modeling syn-
thesis is presented. It is built around an auditory represen-
tation of sounds based on spike functions and provides the
designer with both a graphical and an auditory insight. The
auditory representation of a number of reference sounds, lo-
cated as landmarks in a 2D sound design space, provides the
designer with an effective aid to direct his search along the
paths that lie in the proximity of the most inspiring land-
marks.

1 INTRODUCTION

Sound synthesis techniques are nowadays available which
offer a high degree of naturalness and expressiveness. Some-
times, however, this comes at a price of a consistent com-
plexity in both the control of real time performance, and
the parametric tuning required in the sound design process.
One such case is physical modeling, in which the process
that produces the sound is represented by means of more
or less simplified equations of the underlying physical laws.
As a result, the parameters involved in the modeling should
in principle be easy to understand because they have a real
counterpart, and should be easy to control because our sen-
sorial experience should mediate the action-reaction patterns
to which they relate[1]. Nonetheless, the most accurate and
expressive models available today are often described in terms
of detailed physical relations and parameters that are not
always accessible or understandable to the non specialists.
Moreover, the nonlinear nature of the phenomena under ob-
servation may sometimes lead to numerical schemes that do
not always reflect the behavior of the real systems in the
whole parameters space. These considerations motivate the
search for new tools to aid the synthesis parametric tuning,

SMC 2009, July 23-25, Porto, Portugal

Copyrights remain with the authors

and are of particular interest in our opinion in the case of
physical modeling audio synthesis.

In this paper we propose a graphical tool for the timbre
space exploration and interactive design of complex sounds
by physical modeling synthesis that is intended to assist the
sound designer. It is aimed at exploiting the auditory repre-
sentation of sounds based on spike functions and provides
the designer with both a graphical and an auditory insight
that may be used in place of, or combined with, the set of
low-level physical parameters of the models. The graphical
tool adopts a sonic landscape paradigm, in which the audi-
tory representation of a number of reference sounds can be
located as landmarks in a 2D sound design space, and pro-
vides an effective aid to direct the search along the paths that
lie in the proximity of the most inspiring sonic landmarks.

The use of terminology and metaphors referring to the
environment and landscapes has a rather old tradition in the
field of sounds perception, especially when referred to the
perception of ecological and everyday sounds. In the late
70’s, the Canadian composer R. Murray Schafer introduced
the term “soundscape”, defined as the auditory equivalent
to landscape[2], and Barry Truax published his Handbook
for Acoustic Ecology[3]. The term soundscape perception
is also used in a scientific context to characterize how inhab-
itants perceive, experience and appraise their sonic environ-
ment.

Our use of the terms “sonic landscape” and “sonic land-
mark” however refers to a particular organization of sounds
in a 2D sonic space. The sound synthesis framework we
rely on is based on a class of physical models for everyday
sounds, which includes low level events (impacts and fric-
tion) and high level ones (bouncing, breaking, rolling, crum-
pling). This Physically-based Sound Design Tools (SDT
from now on) is being developed and supported within a
number of EU funded research projects on audio synthe-
sis and sound design (Sounding Objetcs (SOB), Closing the
Loop of Sound Evaluation and Design (CLOSED), Natural
interactive walking (NIW))[4, 5]. An example of graphical
interface for the parametric tuning of friction sounds, in-
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cluded in the SDT and implemented in Max/Msp, is shown
in Figure 1. The aim of the tool proposed here is to add
to this class of tuning interfaces a perceptual representation
output layer (spike functions) and a tool to perform paramet-
ric interpolations using reference auditory representations in
the perceptual space. The representation of sounds based on
the spike functions provides the designer with both a graph-
ical and an auditory insight. The latter point is of extreme
interest since it is based on a sort of ”auditory representa-
tion of sound”. The peculiarity of the spike representation
is, in fact, to be lossy. This aspect turns to be an advan-
tage, whereas the reconstructed sounds maintain the tempo-
ral articulation of the original ones but they are decolored
from their original timbre characteristics. Any reconstruc-
tion of a sound has a “watery character”, so that all the
sounds become timbrically similar, even if distinguishable
according to their temporal structure. In this way, the sound
designer has at disposal a kind of “auditory-radiography” of
the sounds that can be compared as sonic archetypes, help-
ing the designer in her/his sound space exploration.

The paper is organized as follows: first, a description of
the sound synthesis engine and of the spike-based auditory
representation is given in Section 2; Section 3 describes the
interpolation sound space and the graphical tool proposed to
assist the sound designer; in Section 4, same sound design
examples obtained with the tool are illustrated; Section 5
contains the conclusions and future issues.

2 DESIGN AND IMPLEMENTATION OF THE
SPIKE-BASED PARAMETER INTERPOLATION

TOOL

The interactive interpolation tool presented is organized as
a client-server distributed application, in which the client
side hosts the user graphical front-end based on the audi-
tory spike sound representation, and the server side hosts the
SDT audio synthesis engine. In the following we provide
some details on the sound synthesis algorithm used to gen-
erate the reference and the new sounds, on the spike analysis
framework used to graphically represent the sounds, and the
properties of the interpolation in the 2D space.

2.1 The sound synthesis engine

The sound synthesis chosen to illustrate our design tool is
a physical modeling implementation of friction sounds syn-
thesis, included in the aforementioned SDT package.

The scope of the SDT is to provide a platform of sound
synthesis tools that interaction designers can easily exploit
in their sketching activities and that can be run on common
real time software such as Max/MSP and Pd. The aim is
also to provide the patches with a set of side tools to easily
manage projects and that can be of help when working with

Figure 1. The friction MAX/Pd patch, contained in the SDT
synthesis tools package. The user can tune up to 27 synthe-
sis parameters representing the driving forces, the character-
istics of the modal resonators, and the characteristics of the
nonlinear interaction.

acquisition boards and sensors. Most of the models con-
tained in the SDT, aimed at reproducing sounds from solid
objects interaction, are structured as two resonating objects
interacting by means of a contact model. The friction model
specifically referred to here, relies on a description of the
average behavior of a multitude of micro-contacts made by
hypothetical bristles extending from each of two sliding sur-
faces. A modal decomposition is adopted for both interact-
ing objects, leading to a first parametric subset including
modes frequency, decay factors and gain. The remaining
low-level parameters are related to the interaction mecha-
nisms and to the interaction force specification. To gain an
insight of the phenomenological role of the low-level phys-
ical parameters of the friction model, and of what a sound
designer can be asked to deal with, a description is given in
Table 1, and are visible in the SDT tuning interface of Fig-
ure 1 . Further details on the friction model can be found in
[4], Chap. 8.

Sym. Physical Description Phenomenological Description
σ0 bristle stiffness affects the evolution of mode lock-in
σ1 bristle dissipation affects the sound bandwidth
σ2 viscous friction affects the speed of timbre evolution and pitch
σ3 noise coefficient affects the perceived surface roughness
μd dynamic friction coeff. high values reduce the sound bandwidth
μs static friction coeff. affects the smoothness of sound attack
vs Stribeck velocity affects the smoothness of sound attack
fN normal force high values give rougher and louder sounds

Table 1. A phenomenological guide to the friction model
parameters.
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2.2 Spike representation

In a classical signal representation approach, overlapping
discrete blocks are used. However, in this method, in par-
ticular for non-stationary signals, a small shift of a block
can cause a large change in the representation, depending
on where an acoustic event falls within the block. A sparse,
shiftable representation method based on atom-like filter func-
tions can solve the problem. Hence, following [6], a sound
signal x(t) can be approximated as a linear combination of
K filter functions, the so-called spikes. In this study, we em-
ployed the Gammatone functions γfk,tk

(t) with amplitudes
ak and residual εK+1(t):

x(t) =
K∑

k=1

akγfk,tk
(t) + εK+1(t). (1)

A Gammatone function is defined by its center frequency
fk and its filter order. In a Gammatone filter bank, the filter
center frequencies are distributed across the frequency axis
in proportion to their bandwidth. The shape of the magni-
tude characteristics of the fourth order Gammatone filter ap-
proximates the magnitude characteristics of the human au-
ditory filter in a proper way [7]. Hence, these filter functions
have a biological background.

Each spike sk = (tk, fk, ak) is composed of the tempo-
ral offset tk, the center frequency fk of the corresponding
Gammatone filter and the amplitude ak.

For a pre-determined number of spikes K, the optimal
coefficients ak, fk, tk, in terms of a minimal residual signal
ε(t) have to be found. We employ matching pursuit [8, 6]
to iteratively determine the spikes sk and to minimize the
residual. The algorithm is initialized by setting the residual

ε1(t) := x(t). (2)

Then for 1 ≤ k ≤ K, the optimal time offset tk and cen-
ter frequency fk are determined iteratively so that the Gam-
matone filter γfk,tk

(t) maximally correlates with the signal
εk(t) :

(fk, tk) = argmaxf,t∗ < εk(t), γmf,t∗ (t) > . (3)

In order to perform the scalar product shown in Equa-
tion 3 between the filters and the signal, the filters should
have certain window lengths in time domain. In his audi-
tory toolbox, Slaney [9] used fixed window lengths for each
filter in the filterbank. However, the energy levels decrease
much slower for the low frequency filters than for the high
frequency filters. Therefore, we adapted the window lengths
considering the center frequencies. We calculated the posi-
tions within each filter, where the total energy in the time en-
velope falls to its thousandth. We used these position values
in time as the window lengths to calculate the scalar prod-
ucts. Hence, the amplitude of the kth spike is defined to be

the scalar product between the corresponding filter, with its
window length, and the residual signal, as follows:

ak :=< εk(t), γfk,tk
(t) > . (4)

Then we update the residual by

εk+1(t) = εk(t) − akγfk,tk
(t) (5)

Finally, for k = K we yield Equation 1.
By varying K within Equation 1, the SNR values of the

spike code corresponding to the sparsity of the representa-
tion can be changed. Increasing K increases the SNR of the
spike code. Small K (high sparsity) decreases the SNR.

Figure 2. For an impact sound, we display the sound wave
and the spike code. This picture clearly indicates how the
spike code captures the skeleton of the sound.

Figure 2 shows the wave form and the spike code rep-
resentation of an impact sound. In this example, a Gamma-
tone filter bank of M = 256 filters is used for generating the
spike code consisting of K = 32 spikes. Note that salient
areas in the wave of this sound is coded with more spikes
than other areas. This indicates that the spike representation
captures the signal characteristics properly.

3 THE SONIC SPACE, SONIC LANDMARKS AND
GUI

The sonic landscape is organized as a 2D space in which
reference sounds (sonic landmarks) are located. The orga-
nization of the reference sounds may rely on perceptual cri-
teria, derived on a statistical basis (e.g., clustering), or may
be arbitrarily decided by the user.

The sonic landmarks in the sonic space form a 2D scatter
points set. The sound designer may chose to generate a new
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Figure 3. Scatter points interpolation: Delaunay triangula-
tion (dashed lines) on a set of data points (circles), and four
interpolated points (stars).

sound in the vicinity of a set of sonic landmarks inspired by
their sonic properties. Depending on the coordinates of the
new position indicated by the user, the new set of synthe-
sis parameters is generated through an interpolation scheme
accounting for the neighboring sonic landmarks. Consider a
set of landmark points

{(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)}
where (xi, yi) is the position in the 2D space, and zi is the
value of the synthesis parameters vector. A convenient in-
terpolation scheme for this class of problems is based on the
following steps (for sake of simplicity, we consider a scalar
parameter, z):

• Compute a grid of triangles connecting the scatter points
together. One possibility, which is used here, is the
Delaunay triangulation.

• For a new interpolated point, find the three vertices
(xi1, yi1, zi1), (xi2, yi2, zi2) and (xi3, yi3, zi3) defin-
ing the triangle in which the point is confined and
compute the coefficients A, B,C, D for the equation
of the plane defined by the triangle Ax + By + Cz +
D = 0.

• Finally, compute the interpolated value through linear
interpolation: f(x, y) = −A

C x − B
C y − D

C

Figure 3 gives an example of such interpolation for a
small set of data points (circles) and a scalar z parameter.
The interpolated data are depicted as stars.

A graphical user front-end (GUI) was implemented in
Matlab and is shown in Figures 4 and 5. Its main frame
represents the 2D sonic space with the sonic landmarks lo-
cated in pre-defined spots (the figures show a configurations

in which the landmarks were disposed as vertices of a rect-
angle). The location of the reference sounds can be arbitrar-
ily decided and is specified in a configuration file loaded ad
the beginning of each session. Once the landmarks sounds
have been loaded and the auditory representation computed,
the user can perform a number of actions, including:

• Creating a new sound by choosing with the mouse a
position in the proximity of the sonic landmarks whit
desirable characteristics

• Listening to landmarks and new sounds by clicking
on the spike plot

• Deleting newly generated sounds which are not of in-
terest for the user

• Saving the parametric setting of a new sound as pre-
sets in the XML-based format used by the SDT GUI

• Checking network connectivity with the Max/Msp or
Pd server running the SDT sound synthesis engine

Figure 4. Matlab GUI. Spike representation of four sounds
(sonic landmarks) representative of the entire sound space
generated by means of the SDT friction model. By click-
ing in the graphical area around a spike representation it is
possible to listen to the corresponding sound (see the area
highlighted by circle 1). Circle 2 shows the control panel
for the communication with the SDT model in Max/MSP

The spike-based GUI is connected through an OSC net-
work layer to a Max/Msp or Pd server running the SDT
sound synthesis engine. When the user confirms the position
of a new sound to be generated, the GUI starts the communi-
cation with the SDT server, proceeding through the follow-
ing steps: first, the new interpolated parameters are sent to
the server, which updates the controller values; when done,
the SDT synthesis engine is started and an auidio file is gen-
erated; finally, the GUI loads the audio file, generates the
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new auditory representation, and plot the result in the 2D
sonic space.

Figure 5. Creation of new sounds. By clicking in any part
of the Matlab GUI it is possible to start the computation of a
new sound, whose SDT synthesis parameters are calculated
according to the graphical position with respect to the four
sonic landmarks (see circle 1). The interpolation of the pa-
rameters of the four sonic landmarks for the creation of a
new sound is linear. The new parameter set is stored as an
SDT preset in xml format and acquired by the SDT model
in Max/MSP. Circle 2 highlights the Spike representation of
a new sound ready generated to be played in Max/MSP.

4 INTERPOLATION EXAMPLES

This section presents the result of a sound design experi-
ment in which six reference sounds (the sonic landmarks)
where organized in the 2D space as shown in Figure 6 (the
spike representation of the reference sounds, and the De-
launay triangulation generated with this configuration, are
shown). Six new sounds were generated by choosing six
interpolation positions (depicted as red stars). The synthe-
sis sounds resulting from the interpolated parameters, con-
verted into the spike-based representation, are represented
in Figure 7.

Perceptually, the results are in good agreement with the
user’s expectations, and the dynamical and spectral charac-
teristics are recognized as actually deriving from the char-
acteristics of the neighboring landmarks. The audio files
corresponding to the sound landmarks and to the interpo-
lated sounds are available for download at the link provided
in the footnote 1 .

1 http://mordente.sci.univr.it/∼carlodrioli/SoMuCo09/Experiments.htm

Figure 7. Interpolation example: new sounds ( a), b) and c) )
are generated by interpolation of points in the same triangle;
the new sounds d), e) and f) are located in three different
triangles

5 CONCLUSIONS

These results show that the visualization platform helps the
sound designer to easily navigate through the soundscape
and to find the desired sound fastly. In a following step, this
visualization platform will be extended to perform a similar
navigation within the soundscape towards a pre-defined (eg.
recorded) sound with certain characteristics automatically.
A probabilistic method will be defined to model the distri-
bution of the input parameters of the sound model. Given
the pre-defined sound, this method will automatically find
the optimal input parameters for the sound model, which
will produce the closest possible sound to the given sound,
in terms of a spike distance. Hence, a distance measure will
be defined to measure the distance between the spike code
of the pre-defined sound and the spike code of the current
sound produced by the sound model.
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Figure 6. Interpolation example: the new sounds a), b) and c) are generated by interpolation of points in the same triangle; the
new sounds d), e) and f) are located in three different triangles
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ABSTRACT

Hand assignment is the task to determine which hand of the
pianist has played a note. We propose three methods for
hand assignment: The first method uses Computer Vision
and analyzes video images that are provided by a camera
mounted over the keyboard. The second and third methods
use Kalman filtering to track the hands using MIDI data only
or a combination of MIDI and inertial sensing data. These
methods have applications in musical practice, new piano
pedagogy applications, and notation.

1 INTRODUCTION

This paper presents three methods for real-time hand assign-
ment that are able to determine which hand of the player
has played a note. The first method uses Computer Vision
to detect the hands in video images provided by a camera
mounted over the keyboard. The second method uses MIDI
data only while the third method combines MIDI and move-
ment data from inertial sensors worn on the player’s wrist.
Our methods can be used to improve existing notation appli-
cations. Furthermore, we see applications for musical prac-
tice and upcoming piano pedagogy applications. In the fol-
lowing, we provide descriptions of applications that would
benefit by using our methods:

1) Hand-instrument mapping: Current electronic key-
boards, e.g., the Korg X5 [16], typically allow to separate
the claviature into two areas, one for the left hand and one
for the right, so that the player can play a different instru-
mental sound with the left hand than with the right. How-
ever, to do so, each hand is confined to a fixed area, which is
contrary to normal piano practice. Hand assignment meth-
ods could eliminate the need for this static boundary and
enable a more natural playing experience.

2) New piano pedagogy applications: Sonification of
playing movements has a potential to help piano students to
become more aware of their playing movements, which can
help to improve their technique. One way to perform the
sonification is to modify the timbre of a played note accord-
ing to the movement that leads to it. In order to do so, the
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computer has to know which hand has played a note so that
the movement signal of the corresponding arm is evaluated.
We are currently developing such an application based on
data from inertial sensors, which are attached to the user’s
arm.

3) Notation: To notate a MIDI-recording of a piano
performance, it is necessary to perform hand assignment to
assign the notes to the correct note system. Current nota-
tion software typically assigns notes to hands based on their
position relative to a split point. Hand assignment methods
could minimize the amount of post-editing by the user.

When comparing the three methods within oneanother
each method exposes individual advantages and disadvan-
tages. The camera-based method provides the best accu-
racy rate, followed by the sensor-based method and the
MIDI-based method. However, when using the MIDI-based
method no additional hardware is needed. This makes the
MIDI-based solution ideal for improving existing notation
applications. In order to use the sensor-based method, the
user has to attach two clock-like sensors to his wrists, which
can be done in an instant. However, to use the camera-based
method, the user has to mount the camera over the keyboard.
Therefore, the sensor-based method has an advantage over
the camera-based method if mobility is important for the
user, e.g., if the player frequently has to bring her equipment
to rehearsals or concerts. Adverse lighting conditions on
a concert stage can be problematic for camera-based hand
assignment. The sensor- and MIDI-based methods on the
other hand are not influenced by stage conditions. Finally,
the sensor-based and the MIDI-based methods are compu-
tationally cheaper than the camera-based method and can
therefore run on an ordinary microcontroller. Finally, the
sensor-based and the MIDI-based methods are computation-
ally cheaper than the camera-based method, making it possi-
ble to run them on an ordinary microcontroller. This makes
it possible to build a self-contained pedagogical sonification
application, which could This makes it possible to build self-
contained pedagogical sonification applications that do not
rely on an additional laptop or desktop computer.

The remaining paper is structured as follows. Section 2
discusses related work. The three hand assignment methods
are presented in the sections 3 to 5. We provide an evalua-
tion in section 6. Conclusion are presented in section 7.
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2 RELATED WORK

In this section we report methods for hand assignment and
hand tracking. We will discuss voice-separation techniques
based on MIDI data and camera-based approaches for hand
tracking. Methods for hand assignment using data from in-
ertial sensors are not discussed in literature.

2.1 Methods based on MIDI

Kilian and Hoos proposed a method that finds a separation
of a piece into different voices for notation [9]. Chords are
allowed to occur in one voice. The method allows the user
to select the number of present voices. Therefore, it can be
used to find a left hand and right hand part of a MIDI per-
formance (see [9] for notated examples). To separate voices,
Kilan’s and Hoos’ method splits the piece into a sequence of
slices with overlapping notes and finds the voice separation
by minimizing an elaborate cost function using a stochastic
local search algorithm. This approach, while reasonable for
notation, cannot be used for real-time hand assignment of a
live performance because the slice of overlapping notes can-
not be immediately determined when a note is received. Fur-
thermore, the stochastic local search algorithm operates on
the entire piece. Other voice separation methods [1, 7, 11]
do not allow chords inside a voice and can therefore not be
used for hand assignment.

2.2 Methods based on Computer Vision

To detect the two hands in the video, most of the studies
make use of a skin color model. To be more robust to illu-
mination changes, other color spaces than RGB, like YUC
or HSV, are often used for hand tracking. The hand color
distribution can then be modeled as a histogram, a mixture
of gaussian, or any other parametric model [14]. Recent
studies propose to combine the color information with a
displacement information between two consecutive frames
[4]. Hands are then identified by their motion and color.
Edge detection is often used to refine the estimation of hand
shape. After the hand pixels are detected, several algorithms
can be applied for hand tracking (an overview is provided in
[12]). Algorithms like CamShift, CONDENSATION, etc.
give very robust and accurate results as long as there is no
hand occlusion. However, they often fail at labeling the right
and left hand correctly after a big occlusion. However, over-
lappings and occlusions frequently occur in piano playing.

Gorodnichy and Yogeswaran developed a system for
hand assignment that relies on visual tracking [3]. The sys-
tem finds the position of the keyboard in the video and iden-
tifies the Middle C key. Background subtraction is used to
find the hands in the image. Through the identification of
cervices in the hand image, fingers are detected. The system
annotates MIDI recordings with hand and finger labels. In

contrast to our camera-based method, crossing over of the
hands is not considered.

3 HAND ASSIGNMENT WITH COMPUTER
VISION

In this section, we describe our Computer Vision based
tracking algorithm. The pixels belonging to the hands are
detected by their color. The hand tracking is performed
with a particle filter. The disambiguation of the two hands
is achieved by taking into account the principal direction of
the hand shape and motion continuity. Finally, the bounding
box of the hand is refined to provide accurate positions for
the following hand assignment.

3.1 Hand tracking

The detection of skin pixels is made using a Bayesian ap-
proach. The skin model is learned form the HSV space of
a skin picture that can be changed according to the pianist’s
skin color. The back-projection of the skin color provides a
map of skin color probabilities. This method gives accept-
able data for hand-tracking but is not sufficiently accurate
to find the hand shape because of the spectral reflexion on
the keyboard (see Figure 1). The hand-tracking is made us-
ing an annealed particle filter inspired by [2], where each
hand is tracked by one cloud of particles. During the track-
ing process, the cloud pixels of each hand are alternatively
subtracted from the skin detection map so that each cloud
converges to a different hand. Hand positions are located at
the centers of gravity of the particle clouds.

3.2 Hand disambiguation

The problem of hand disambiguation is hard to solve, espe-
cially when the two hands overlap frequently. To overcome
this problem, we adapted a method originally designed for
French Sign Language video processing [10] for pianist
hand detection. Hand shape orientation is used as disam-
biguation criterion. The principal axis of each hand shape
is computed after a bounding box has been determined for
each hand (see Figure 1) .

We model the joint distribution of the pairs (αr, αl) as a
gaussian probability density function f(αr, αl, θα). Given
a pair (α1(t), α2(t)) of hand shape orientation at the time t,
the confidence measure that the hand 1 is the right hand can
be computed with the following log-likelihood ratio.

llr(t) =
f(α1(t), α2(t), θα)
f(α2(t), α1(t), θα)

(1)

Continuity of the movement is used as an additional cri-
terion since the hand shape orientation is not sufficient to
provide a robust distinction between the hands. While the
log-likelihood ratio typically detects the hands correctly, it
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Figure 1. Hand shape orientations

fails if the hands adopt an unusual hand posture. In these
occasions the continuity criterion ensures that the hands are
not confused.

The two criteria are embedded in an optimization func-
tion that has to be maximized between the beginning of the
video and the current frame The optimization is achieved
with the Viterbi algorithm. Let dist(t, t − 1) be the sum
of displacements of the right and the left hand between the
frame t − 1 and t then the global optimization function can
be written as:

argmin
∑

t

dist(t, t − 1) − c · llr(t) (2)

The value of the weight c was empirically determined.

3.3 Bounding box refinement

Once the two hands have been localized by the particle filter,
it is important to localize the part of the hand that is located
over the keyboard more precisely by making a bounding box
refinement.

Once the two hands have been localized by the particle
filter, the intersection of the hand with the keyboard is deter-
mined since a large part of the hand may be localized behind
the keyboard. To this end, we use bounding box refinement.
First, the background is subtracted from the hand image.
Outliers are removed using thresholds and morphological
operators. The actual hand shape is then considered as be-
ing the intersection of a large bounding box surrounding the
hand centroid and the keyboard area. As visible in Figure 2,
this approach finds the bounding boxes of the hands reliably,
even if the two hands overlap.

3.4 Hand assignment

Hand assignment is performed by comparing the horizon-
tal position of the played key in the video with the bound-
aries of the hands. The decision procedure takes into ac-
count whether the played key is inside the span of one hand,
both hands, or outside both hands. If the key is inside the
span of both hands, it is assigned to the hand where the key

Figure 2. Bounding box refinement

more inside the hand span. If the key is outside the span of
both hands, it is assigned to hands based on distance. If one
hand is outside the keyboard area, no notes will be assigned
to it. To calculate the horizontal position of the played key,
the procedure uses information about the keyboard position
in the video, which is provided once by the user in a visual
configuration dialogue.

4 HAND ASSIGNMENT WITH MIDI

The methods for MIDI-based hand assignment (described
in this section), and hand assignment based on sensor and
MIDI data (described in the next section) are closely related.
Both methods are composed of a series of two steps. In the
first step a received note-on event is assigned to the left or
right hand. In the second step the note-on event is used to
modify the estimated position of the corresponding hand.

4.1 Hand assignment

Hand assignment of a note is done with two mechanisms:
the identification of unique notes and the examination of the
distances of the played note to the estimated hand positions.
The method does not allow crossing over of the hands so
that the left hand has to be located left of the right hand. It
is possible to find simultaneously pressed keys that are lo-
cated too far from each other to be played by one hand, a
condition that will be called a unique note. As the hands
are not allowed to cross over unique notes can be directly
assigned to the left or right hand. Unique notes are iden-
tified as notes with an interval of more than an eleventh to
the highest or lowest currently pressed key as most players
cannot grasp such intervals. If a note is not an unique note,
it is assigned to a hand based on the distance of the note to
the estimated hand positions..

The position of the hands are estimated with a Kalman
filter for each hand. The received note-on events are handed
over to the Kalman filter of the assigned hand.
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4.2 Position estimation

For each hand, a Kalman filter is used to estimate the posi-
tion of the hand. The state p of the filter is the position of
the center of the hand. The position p is expressed in MIDI
units. For example, let the center of the hand lie between
the keys corresponding to MIDI pitch values of 60 and 61.
Then the position p would be 60.5. The uncertainty of the
position is expressed by the variance σ2

p. The uncertainty of
the position decreases when a measurement of hand position
is obtained and increases otherwise.

A received note-on event is interpreted as an approximate
measurement of hand position. The variance σ2

m expresses
the uncertainty involved in the measurement. When a note-
on message is received, the variance expressing the uncer-
tainty in the position prior to incorporating the measurement
σ2

p(t−2 ) is computed. Let t1 be point in time when the last
note was assigned to the Kalman filter and t2 be the point
in time when the new note was received. The uncertainty
of the position before incorporating the new measurement
σ2

p(t−2 ) is then updated based on the time difference between
the two notes t2 − t1, a constant term σ2

s , and the previous
uncertainty after incorporating the measurement σ2

p(t+1 ).

σ2
p(t−2 ) = σ2

p(t+1 ) + (t2 − t1) · σ2
s (3)

The uncertainty of the position after incorporating the
measurement σ2

p(t+2 ) is updated based on the uncertainty of
the position before incorporating the measurement σ2

p(t−2 )
and the constant term σ2

m that expresses measurement un-
certainty.

σ2
p(t+2 ) = σ2

p(t−2 ) − σ2
p(t−2 )

σ2
p(t−2 ) + σ2

m

σ2
p(t−2 ) (4)

Let n be the pitch of the note received at t2. Then the
new position p(t2) is estimated based on the old position
p(t1), the uncertainty of the position before incorporating
the measurement σ2

p(t−2 ), and the pitch of the received note
n.

p(t2) = p(t1) +
σ2

p(t−2 )

σ2
p(t−2 ) + σ2

m

(n − p(t1)) (5)

Values for σ2
s and σ2

m were empirically determined.

4.3 Discussion

This section illustrates the method with an example. Say,
a user repeatedly plays two notes that are one octave apart
with one hand. The first note is played after the hand has
been inactive for some time. Therefore, the uncertainty
of the hand position is high according to equation 3. Be-
cause of the high uncertainty, the new measurement has
great influence on the estimated hand position according to
equation 5 and the new estimated position will be near the
pressed key. The uncertainty of the position reduces because

of the new measurement according to equation 4. Because
the position uncertainty has been reduced, the next note,
which is played one octave apart, receives less weight so
that the new position is between the first and second note,
slightly towards the second. After several touches, the posi-
tion uncertainty levels off at a low value controlled by equa-
tions 3 and 4 and execution speed. Therefore, new mea-
surements do not drastically change the estimated position.
The estimated hand position lies between the two alternating
notes and only slightly oscillates when new measurements
are made. If the user changes the position of the hand, the
estimated position will adapt as older measurements loose
influence over time according to equation 3.

5 HAND TRACKING WITH INERTIAL
MEASUREMENT AND MIDI

The method described in the previous section can be im-
proved by using measurement of arm movement. This sec-
tion details on the method based on inertial measurement
and MIDI.

To re-position the hand, a player can use various move-
ments of the arm and the body. Despite the many possi-
bilities to move the hand to a given position, players usu-
ally reach a position with consistent body and arm posture.
Therefore, the angle between the player’s forearm and the
keyboard can be interpreted as an indication for the position
of the hand. The rate of change of this angle can be ob-
tained from an inertial sensor attached to the wrist of the
player. However, this measurement provides only infor-
mation of position change. To obtain absolute hand posi-
tion, the inertial measurement is combined with the MIDI
through Kalman filtering [8].

Similar to the MIDI-based method, unique notes are as-
signed to the corresponding hand; non-unique notes are as-
signed to the hands based on the distances of the played note
to the positions of the hands.

5.1 Arm movement measurement

To determine the rate of change of the angle between the
forearm and the keyboard, which will be called the rate of
sideways movement for simplicity, it is necessary to obtain
the orientation of the sensor toward gravity. It would be pos-
sible to calculate pitch and roll angles directly from the ac-
celerometer signal. However, the playing movements create
additional sources of acceleration, which would adversely
affect the accuracy. To improve the accuracy of the calcu-
lated pitch and roll angles, Kalman filtering is used to fuse
accelerometer and gyroscope signals. Given the pitch and
roll angle, the rate of sideways movement is calculated from
the gyroscope signals.
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5.2 Posture measurement

It is necessary to be able to convert a given angle between
forearm and keyboard to a hand position (in MIDI pitch
units) and vice versa. Because of different movement habits,
the relation between playing position and angle has to be
measured for each player individually. To this end, the
player executes several touches with the same finger in a
distance of, for example an octave, over the entire playing
range of the keyboard. The change of the angle between two
played notes is measured by summation of the rate of side-
ways movement. The measurement has to be performed for
both hands. To convert from hand position to angle between
forearm and keyboard and vice versa, linear interpolation
between the measured values is used.

5.3 Signal fusion

For each arm, a Kalman filter is used to fuse MIDI and in-
ertial measurement data. The state of the filter is the angle θ
between the forearm and the keyboard.

When a new inertial measurement sample is received, the
angle is updated. The new angle θi+1 is computed based on
the previous angle θi, the rate of sideways movement s, and
the sample time dt.

θi+1 = θi + si · dt (6)

Crossing over of the hands is not supported and is avoided
by setting s to zero if it would lead to a crossing over condi-
tion.

The uncertainty of the angle θ is expressed by the vari-
ance σ2

θ . The uncertainty of the angle θ increases based on
σ2

s , which is the variance of the rate of sideways movement,
and the sample time dt.

σ2
θ,i+1 = σ2

θ,i + σ2
s · dt (7)

When a note is assigned to the Kalman filter, the corre-
sponding angle has to be calculated (see section 5.2). The
measurement has an effect on the estimated angle and re-
duces the uncertainty of the angle. Let φ be the angle
that corresponds to the pressed key that is assigned to the
Kalman filter. The new estimate of the angle θi+1 is cal-
culated based on the previous angle θi, the previous uncer-
tainty of the angle σ2

θ,i, and the angle φ.

θi+1 = θi +
σ2

θ,i

σ2
θ,i + σ2

m

(φ − θi) (8)

The uncertainty of the position is calculated based on the
previous uncertainty and the measurement accuracy which
is represented by the constant σ2

m.

σ2
θ,i+1 = σ2

θ,i −
σ2

θ,i

σ2
θ,i + σ2

m

σ2
θ,i (9)

Values for σ2
s and σ2

m were empirically determined.

6 EVALUATION

To evaluate hand assignment accuracy, performances of dif-
ferent piano pieces were analyzed with our methods. To
this end, video, MIDI, and inertial measurement signals
were recorded with one pianist playing different pieces. The
recordings were conducted with the inertial sensors that we
previously developed [5], which provide six degrees of free-
dom measurements of acceleration and angular rates at an
update frequency of 100 Hz.

Simple approaches to automatically evaluate the hand as-
signment results, for example by using score-following to
match the obtained separation with a given correct separa-
tion, are problematic because of playing errors and differ-
ences because of ornamentation. Therefore, the results were
manually examined. To this end it was necessary to present
the result in a human-readably way. We used the text-based
GUIDO format [6, 13] to create graphical musical scores
for the left and right hand part. The human reader can then
identify correct and wrong assignments.

The recorded pieces were the Sinfonias 1–5 by J. S.Bach
(BWV 787–791) and the “Six Dances in Bulgarian Rhythm”
(No. 148–153) from Bartok’s Mikrokosmos vol. 6. Bar-
tok’s dances contain many instances where the hands over-
lap. Furthermore the dances contain frequent changes of
hand position on the keyboard, which are performed very
quick re-positioning movements. Also the hands are cross-
ing over several times. Therefore, the dances are especially
challenging for hand assignment.

The accuracies of the obtained hand assignments are
shown in Table 1. For comparison with a baseline, we in-
clude the results of hand assignment with the split point
method (split point is the Middle C). For all examined
pieces, the our methods achieves better results than the split
point method. The sensor-based method typically achieves
better results than MIDI-based method. The camera-based
method typically achieves better results than the MIDI-
based and sensor-based methods.

The Bulgarian dance No. 152 shows a limitation of our
methods. The hands often completely overlap in this piece,
i.e., one hand is positioned above the other hand while both
hands play notes in the same range. This is contrary to the
assumptions of our methods, as they implicitly split the key-
board at a (time-variable) split-point. Therefore, our meth-
ods are not able to perform hand-assignment correctly if,
e.g., the right hand plays a note that lies between two notes
that are played with the left hand.

The camera-based hand disambiguation allows hands to
be identified during crossing over. The disambiguation is
successful when the hands cross over distinctly. To improve
the disambiguation, the probability model (see equation 1)
could be extended to additionally include the positions of
the hands as the distribution of hand orientation changes ac-
cording to its position on the keyboard.
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Table 1. Hand assignment accuracy
Piece Split MIDI Inert. CV

Sinfonia 1 86.6% 97.6% 98.6% 97.8%
Sinfonia 2 86.4% 94.3% 97.0% 98.6%
Sinfonia 3 94.2% 97.3% 98.3% 99.7%
Sinfonia 4 90.9% 97.5% 98.6% 98.9%
Sinfonia 5 97.2% 99.4% 99.3% 99.6%
No. 148 81.8% 88.7% 91.2% 94.2%
No. 149 79.4% 82.5% 89.6% 88.1%
No. 150 81.9% 86.4% 83.6% 90.8%
No. 151 69.8% 83.9% 87.8% 93.6%
No. 152 65.2% 66.6% 68.4% 70.6%
No. 153 78.2% 85.6% 91.2% 92.5%

The and sensor- and MIDI-based methods could be im-
proved by using a hand model that filters out impossible
hand-note configurations, which could be used instead of
the unique-note mechanism (see section 4.1).

7 CONCLUSION

The main contributions of this paper are three methods for
hand assignment: The first method is based on video im-
ages from a camera mounted over the keyboard, the second
method is based on MIDI, and the third method combines
inertial measurement and MIDI. The methods are real-time
capable and can therefore be used for hand assignment in
interactive scenarios like hand-instrument mapping and for
new piano pedagogy applications. The methods were eval-
uated by running them on performances of pieces by Bach
and Bartok. Applications of our methods are instrument-
hand mapping, new piano pedagogy applications, and nota-
tion applications.
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ABSTRACT

In  this  paper  we  present  an  approach  to  instrument 

augmentation  using  the  musician's  ancillary  gestures  to 

enhance  the  liveliness  of  real-time  digitally  processed 

sound. In augmented instrument praxis, the simultaneous 

control of the initial instrument and its' electric/electronic 

extension is a challenge due to the musician's physical and 

psychological constraints. Our work seeks to address this 

problem  by  designing  non-direct  gesture-sound 

relationships between ancillary gestures and subtle sonic 

effects, which do not require a full conscious control of 

the instrumentalist. An application for the electric guitar is 

presented  on  the  basis  of  an  analysis  of  the  ancillary 

movements  occurring  in  performance,  with  specific 

gesture data acquisition and mapping strategies, as well as 

examples of musical utilizations. While the research work 

focuses  on  the  electric  guitar,  the  system  is  not 

instrument-specific, and can be applied to any instrument 

using digital sound processing.

1.INTRODUCTION

Instrument  augmentation  with  real-time  digital  audio 
signal  processing  offers  numerous  possibilities  for 
musical performance. However,  integrating new features 
into an already complex instrumental playing environment 
is  constrained  by  the  musician's  physical  and 
psychological  capacities  of  accomplishing multiple  and 
simultaneous  tasks [3][10].  There  is  always  a  tradeoff 
between the extended sonic possibilities and the ability of 
the  performer  to  dynamically  control  them.  In  musical 
applications  this  often  translates  as  an  inability  to 
simultaneously  control  the  numerous  parameters  of  the 
sound processing algorithms; a specific "effect" is applied 
to  the  sound  and  only  its  most  prevalent  perceptive 
features are controlled in time. The remaining "secondary" 
parameters typically stay static or are modulated by fixed-
frequency LFO's. This leads to a lack of "liveliness" in the 
real-time  processed  sound,  and  certainly  makes  for  an 
underuse of the processing algorithms' sonic possibilities. 
In our view, significant areas of sonic effect, subtlety and 
nuance  are  left  unused.  One  established  strategy  of 
enhancing multi-parameter variation of DSP in time is the 
adaptative  digital  audio  effects  (A-DAFX):  a  content-

based  transformation  where  the  sound  features  provide 
data to control processing parameters [12]. In the present 
work,  we  investigate  another  strategy,  namely  the 
possibility of connecting the performer's  sound-ancillary 
gestures  to  the  evolution  of  the  processing  parameters 
[14]. Our hypothesis is that instrumentalist's movements 
which  are  not  directly  involved  in  the  creation  of  the 
sound  convey  performance-related  information  which 
may  be  used  to  enhance  the  liveliness  of  digitally 
processed sound.

1.2.ANCILLARY GESTURES AND MUSICAL 

APPLICATIONS

Musician's performance movements which are not directly 
related  to  the  production  or  sustain  of  the  sound  have 
received academic attention. In his study of Glenn Gould's 
piano  performance videos,  F.  Delalande  identified  three 

levels  of  gesture  which  form  a  continuum  going  from 

purely functional to purely symbolic [4]. With his work on 

clarinet  players'  movements,  M.  Wanderley  established 

the  term  ancillary  gestures,  signifying  movements 

occurring  in  the  performance  which  are  not  directly 

related to the production of sound [13]. This discretization 

of  musician's  movements  was  continued  with  the 

following typology [11]: 

• Sound-producing gestures,

• Ancillary gestures (support sound-producing gestures)

•  Sound-accompanying  gestures  (musically  "engaged" 

body movements not involved in the sound production)

•  Communicative  gestures  (communication  between 

performers and towards the public)

   In this article, we adopt the motion-related terminology 

mentioned above. Our project concentrates on the use of 

both ancillary and sound-accompanying gestures.

   In instrument augmentation there is a general tendency 

to work on direct causal relationships between gesture and 

sound,  either  using  the  acoustic  instrument's  sound-

producing  gestures  or  by  adding  new  interfaces  with 

direct  mappings.  The  use  of  ancillary  or  sound-

accompanying  movements  is  rather  rare  in  this  area. 

Previous applications include a flanger-effect control with 

clarinetist’s  ancillary movements [14],  a  weight  balance 

tracking  floor  module  [8],  and  the  Multimodal  Music 

Stand  which  tracks  the  instrument's  tilt  and  the 
SMC 2009, July 23-25, Porto, Portugal

Copyrights remain with the authors

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 327



performer's  head  movements  [1].  Our  current  project 

seeks  to  address  the  specific  problem  of  digital  signal 

processing  "liveliness"  by  using  the  performer's  sound- 

accompanying movements for dynamic variation of DSP 

parameters  which  affect  the  sound's  subtle  perceptive 

features (cf. 3.2). Our system introduces a second level of 

gesture-sound relationship into the augmented instrument-

playing  environment,  where  sound-accompanying 

movements  provide complementary  control  data  for  the 

signal processing.

3. GESTURE-SOUND RELATIONSHIP: AN 

APPLICATION FOR THE ELECTRIC GUITAR

The initial research work was carried out on the electric 
guitar and its related set of movements.   

3.1.Sound-accompanying movements

The electric guitar is traditionally related to popular music 

styles  such  as  jazz  and  rock  where  there  is  a  social 

acceptance  and  even  expectation  for  an  engaged 

performance body [5]. Embodied expression and rhythm 

are  part  of  the  guitar  playing  tradition.  The  sound-

accompanying  movements  being  thus  relatively 

emphasized,  the  electric  guitar  provides  for  a  fertile 

testing  ground  for  our  project.  In  order  to  analyze  the 

different  movements  of  electric  guitar  performance  in 

standing position, we first set out to review video excerpts 

from  a  number  of  players.  Subsequently  we  filmed  a 

series of performances in laboratory conditions, allowing 

for a finer analysis of the players'  movements and their 

relationships to the instrument and to each other.

Figure 1. Still images taken from our filmed guitar 

performances.  Note the weight shifts and the head 

movements.

The  analysis  of  our  video  excerpts  revealed  a  set  of 

sound-producing  gestures  on  the  hands,  prolonged  by 

ancillary movements of the arms and shoulders, and to a 

lesser  degree,  adjustments  of  the  pelvis  and  torso  to 

maintain  the  instrument  level.  Movements  which  were 

less  involved in sound production included more ample 

torso  movements,  weight  shifts,  knee  bends  and  head 

movements. A distinctive feature was foot tapping, which 

occurred often. While being highly individual in style and 

conduct, these basic movements were abundant and rather 

consistent from one performer to another.  Concentrating 

solely  on  the  sound-accompanying  movements,  we 

distinguished  two fairly  independent  motion ensembles: 

firstly weight shifts resulting from the leg (knee) and torso 

movements  and  secondly  seemingly  autonomous 

movements  of  the  head.  Consequently,  we  decided  to 

focus  on  the  extremities  of  the  body,  the  most  remote 

areas  from  the  sound-producing  central  area:  head 

movements and body weight shifts.

3.2."Subtle" perceptive sound features

In hybrid acoustic-electric/electronic instruments such as 

the electric guitar, two levels of gesture-sound relationship 

coexist. The first is that of an acoustic instrument, where a 

direct causality connects gesture to sound through energy 

transduction  from kinetic  energy  to  acoustic  waves  [2]. 

This  is  not  the  case  for  the  second  level:  the 

electric/electronic part of the hybrid instrument where the 

sound processing  is  not  physically  related  to  the  initial 

gesture, the relationship between body and sound having 

to be defined via mapping strategies. The two levels of the 

"electroacoustic instrument" have specific sonic functions: 

the acoustic level determines the fundamental articulation 

of  the  musical  discourse (pitch,  duration,  rhythm, basic 

timbre),  whereas  the electric/electronic  level  determines 

timbral  transformations,  spatialization,  and  sound 

structure  modifications.  The  range  of  transformations 

applied  on  the  initial  gesture-related  signal  varies  from 

subtle to radical. In this project, we seek to work on the 

more  perceptively  subtle  features  of  the  hybrid 

instrument's  electric/electronic level's  sonic  possibilities, 

such as those appealing to the perception as modifications 

of  sound color,  presence,  space and timbre.  We use the 

term  "subtle  perceptive  sound  features"  to  term  these 

somewhat  moderate  effects.  In  a  technical  perspective, 

this  translates  into  inducing  minor  variations  on  the 

sound's spectrum, spatialization, reverberation, delay and 

granularity  or  distortion,  among  other  numerous 

possibilities.

4.A NON-DIRECT GESTURE-SOUND 

RELATIONSHIP 

In  the  present  project,  we  investigate  the  possibility  of 

avoiding  saturating  the  augmented  instrumental 

environment by  introducing  non-direct  relationships 

between  movement  and  sound  into  it.  By  voluntarily 

designing "loose" gesture-sound relationships we aim to 

give the musician the sensation of sound transformations 

which  accompany  the  performance,  without  demanding 

conscious  attention  [7].  This  enables  for  better 

concentration on the essential features of the instrument, 

while  providing  performance-related  data  for  the  signal 

processing.  The established  relation  between  movement 

and  sound  can  be  qualified  as  "loosely  causal";  body 

motion induces changes in the sound's subtle perceptive 
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features, but not in a direct, predictable manner. In order 

to  achieve  this  "blurred"  gesture-sound relationship,  we 

explored the following design principles: complex, multi-

layer mappings  [6],  the  non-reproducibility  of  one 

gesture-sound  couple  and  maintaining  the  sonic  effects 

subtle (ensuring that  the musician does not feel  "out of 

control"). In our view, these characteristics are necessary 

to provide a system that the musician may accept as a part 

of  his/her  instrument.  The augmentation  should find an 

equilibrium in the playing environment, not too obvious 

for the performer to be tempted to "take control" yet not 

too  distant  from  the  gesture  so  as  not  to  appear  as 

intrusive  and  disturbing.  The  introduction  of  "loose" 

connections establishes a hierarchy in the gesture-sound 

relationships of the augmented playing environment: the 

central constituents of the musical discourse are controlled 

by focused gestures and direct mappings, while secondary 

sonic  features  are  induced by peripheral,  non-conscious 

movements.

5.SYSTEM DESCRIPTION 

5.1.Ancillary gesture data acquisition

The system extracts  data  from a  selection  of  guitarist's 

ancillary gestures and uses it to produce sound variations 

via a two-layer mapping strategy. This system functions in 

parallel  with  the  traditional  instrument.  The  sound-

accompanying movements are sampled in three points: on 

top of the head with a two-axis accelerometer and under 

both feet with a board sensing the weight distribution with 

four equidistant FSRs. The system outputs seven channels 

of  data,  which  are  grouped  to  represent  three  distinct 

variables: general "amount" of head movement, left/right 

and back/front weight distribution. In addition, the system 

seeks  to  capture  particularly  dramatic  body  imbalances 

such  as  standing  on  one  foot,  on  the  toe(s),  or  on  the 

heel(s),  by  polling  the  four  FSR  sensor  network  for 

relative  peak  values.  A detection  of  the  feet's  tapping 

movements is implemented, and it will be upgraded with a 

tempo tracking algorithm in a near future version of the 

system.

5.2.A kinetic metaphor as a mapping strategy

Our  system seeks  to  establish  a  non-direct  relationship 

between  movement  and  sound  through  a  two-layer 

mapping: the gesture data is first routed as an input to a 

mass-spring physical model which in turn modulates the 

sound  processing  parameters.  The  mapping  strategy  is 

inspired  by  a  kinetic  metaphor  where  the  performance 

gestures  are  seen  as  energy  inducing  motion  in  an 

independent  system  affecting  the  sound  processing 

parameters. The physical model has its own behavior and 

inertia which are determined according to the specificities 

of the target parameters. The mapping was implemented 

using  the  msd/pmpd  physical  model  in  the  max/msp 

environment  [9]. Each of the main input variables (head 

movement,  2-dimension  weight  distribution)  feeds  a 

distinct  model,  resulting  in  three  mass-damper  systems 

affecting  the  sound  simultaneously.  A minute  tuning  is 

required to achieve a "blurred yet connected" perception 

of the gesture-sound relationship. This may be achieved 

through careful selection of the physical models' inherent 

attributes  (i.e.  behavior),  and  by  mapping  relationships 

between the models' output and chosen DSP parameters.

Figure 2. System schema

5.3.Applications

A series of test applications was implemented in max/msp, 

based on the  electric  guitar's  use of  real-time "effects". 

Testing  our  system  in  a  musical  praxis  proved  highly 

interesting, providing subjective insights to the "feel" of a 

non-direct gesture-sound relationship and to its' tuning via 

mapping  strategies.  Through practice,  the head gestures 

and the body weight shifts acquired distinct connections 

to different sound parameters: the head movements linked 

well to minute, relatively high frequency variations of the 

sound's spectrum and space, while the weight shifts were 

used for slower and more important transformations of the 

soundscape.  Following  are  some  examples  of  the 

applications:

   • Spectral panning: Body weight shifts were mapped to 

two physical models driving a four-section spectral stereo 

panning  effect.  Weight  shifts  would  induce  increased 

stereo field motion of the spectral divisions, while absence 

of motion would bring the soundscape to a standstill at the 

center. Head movements were mapped to the gain of an 

unobtrusive stereo delay,  increasing the kinetic effect of 
the panning.
   • Autofilter: A combination of an adaptative audio effect 

(A-DAFX) and non-direct gestural control. The autofilter 

would respond to the amplitude of the notes played, while 

the ancillary gestures would modulate the behavior of the 

filter.  The weight  shifts  were mapped to  the  filter  base 

cutoff  frequency and the head movements to the filter's 

"slope"  (Q).  This  produced  a  lively  and  musically 

rewarding autofilter application for the instrumentalist.

  •  Drive  and  granulation:  This  application  sought  to 

induce subtle variations in the saturation or "drive" of the 

sound; an important timbre element of the electric guitar. 

Weight balance was connected to the saturation level, and 
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head movements to the Q of a low pass filter. A variation 

of  the  effect  was  implemented  with  the  msp  munger~ 

object,  working  on  the  sound's  granularity  instead  of 

saturation.

   •  Stereo delay: Weight shifts were used to control the 

stereo  spread  of  two  delay  channels,  similarly  to  the 

spectral panning application. The head movements were 

mapped to  an  amplitude modulation (tremolo)  affecting 

the delay lines.

Gesture type DSP parameters

Weight shifts

(left/right & front/rear)

- Spectral panning width

- Autofilter base cutoff freq.

- Overdrive/granulation level

- Stereo delay spread

Head movements - Delay gain

- Autofilter Q

- Lowpass filter Q

- Tremolo amplitude

Table  1. The  ancillary  movements  and  their 

corresponding  DSP  parameters  used  in  the  test 

sessions

The possibilities  are  numerous,  and the system may be 

adapted to any instrument using digital signal processing. 

A case-specific  study  of  the  instrument's  characteristic 

ancillary gestures is nevertheless necessary
1
. 

Figure 3. A still image from the filmed test sessions 
with the sensor board and head accelerometer

6.CONCLUSION AND FUTURE WORK

In this paper we presented a system connecting guitarist's 

ancillary  and  sound-accompanying  gestures  to  subtle 

variations of the digitally processed sound. The resulting 

gesture-sound relationship is designed to be "loose", i.e. 

not  requiring conscious control  from the instrumentalist 

while  providing  gesture-driven  sonic  variations.  The 

adopted strategy  uses  multi-layer  mapping  and physical 

models  to  establish  a  non-direct  control  of  the  DSP 

parameters.  The initial  results  were  musically  inspiring, 

and they point to a vast domain of research on ancillary 

gesture-sound  relationships,  their  perception  (both  from 

the musician's and the public's perspective), and their use 

1
Video examples of the augmentations can be viewed at:

http://lahdeoja.org/ftplahdeoja/ancillary_gesture/

in  performance.  These  results  suggest  that  a  well-

integrated  ancillary  gesture  based  control  system  for 

enhancing the liveliness of digitally processed sound is a 

promising perspective for instrument augmentation.
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ABSTRACT

In this paper we present a salience function for melody and
bass line estimation based on chroma features. The salience
function is constructed by adapting the Harmonic Pitch Class
Profile (HPCP) and used to extract a mid-level represen-
tation of melodies and bass lines which uses pitch classes
rather than absolute frequencies. We show that our salience
function has comparable performance to alternative state of
the art approaches, suggesting it could be successfully used
as a first stage in a complete melody and bass line estimation
system.

1 INTRODUCTION

With the prevalence of digital media, we have seen substan-
tial growth in the distribution and consumption of digital
audio. With musical collections reaching vast numbers of
songs, we now require novel ways of describing, indexing,
searching and interacting with music.

In an attempt to address this issue, we focus on two im-
portant musical facets, the melody and bass line. The melody
is often recognised as the ’essence’ of a musical piece [11],
whilst the bass line is closely related to a piece’s tonality [8].
Melody and bass line estimation has many potential appli-
cations, an example being the creation of large databases for
music search engines based on Query by Humming (QBH)
or by Example (QBE) [2].

In addition to retrieval, melody and bass line estimation
could facilitate tasks such as cover song identification and
comparative musicological analysis of common melodic and
harmonic patterns. An extracted melodic line could also be
used as a reduced representation (thumbnail) of a song in
music applications, or on limited devices such as mobile
phones. What is more, a melody and bass line extraction
system could be used as a core component in other music
computation tasks such as score following, computer par-
ticipation in live human performances and music transcrip-
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tion systems. Finally, the determination of the melody and
bass line of a song could be used as an intermediate step
towards the determination of semantic labels from musical
audio, thus helping to bridge the semantic gap [14].

Much effort has been devoted to the extraction of a score
representation from polyphonic music [13], a difficult task
even for pieces containing a single polyphonic instrument
such as piano or guitar. In [8], Goto argues that musical
transcription (i.e. producing a musical score or piano roll
like representation) is not necessarily the ideal representa-
tion of music for every task, since interpreting it requires
musical training and expertise, and what is more, it does
not capture non-symbolic properties such as the expressive
performance of music (e.g. vibrato and ornamentation). In-
stead, he proposes to represent the melody and bass line as
time dependent sequences of fundamental frequency values,
which has become the standard representation in melody es-
timation systems [11].

In this paper we propose an alternative mid-level repre-
sentation which is extracted using a salience function based
on chroma features. Salience functions provide an estima-
tion of the predominance of different fundamental frequen-
cies (or in our case, pitch classes) in the audio signal at every
time frame, and are commonly used as a first step in melody
extraction systems [11]. Our salience function makes use
of chroma features, which are computed from the audio sig-
nal and represent the relative intensity of the twelve semi-
tones of an equal-tempered chromatic scale. As such, all
frequency values are mapped onto a single octave. Different
approaches to chroma feature extraction have been proposed
(reviewed in [5]) and they have been successfully used for
different tasks such as chord recognition [4], key estimation
[6] and similarity [15].

Melody and bass line extraction from polyphonic mu-
sic using chroma features has several potential advantages
– due to the specific chroma features from which we derive
our salience function, the approach is robust against tun-
ing, timbre and dynamics. It is efficient to compute and
produces a final representation which is concise yet main-
tains its applicability in music similarity computations (in
which an octave agnostic representation if often sought af-
ter, such as [10]). In the following sections we present the
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proposed approach, followed by a description of the eval-
uation methodology, data sets used for evaluation and the
obtained results. The paper concludes with a review of the
proposed approach and consideration of future work.

2 PROPOSED METHOD

2.1 Chroma Feature Computation

The salience function presented in this paper is based on the
Harmonic Pitch Class Profile (HPCP) proposed in [5]. The
HPCP is defined as:

HPCP (n) =
nPeaks∑

i=1

w(n, fi) · a2
i n = 1 . . . size (1)

where ai and fi are the linear magnitude and frequency of
peak i, nPeaks is the number of spectral peaks under con-
sideration, n is the HPCP bin, size is the size of the HPCP
vector (the number of HPCP bins) and w(n, fi) is the weight
of frequency fi for bin n. Three further pre/post-processing
steps are added to the computation. As a preprocessing step,
the tuning frequency is estimated by analyzing frequency
deviations of peaks with respect to an equal-tempered scale.
As another preprocessing step, spectral whitening is applied
to make the description robust to timbre. Finally, a post-
processing step is applied in which the HPCP is normalised
by its maximum value, making it robust to dynamics. Fur-
ther details are given in [5].

In the following sections we detail how the HPCP com-
putation is configured for the purpose of melody and bass
line estimation. This configuration allows us to consider the
HPCP as a salience function, indicating salient pitch classes
at every time frame to be considered as candidates for the
pitch class of the melody or bass line.

2.2 Frequency Range

Following the rational in [8], we assume that the bass line
is more predominant in the low frequency range, whilst the
melody is more predominant in the mid to high frequency
range. Thus, we limit the frequency band considered for
the HPCP computation, adopting the ranges proposed in [8]:
32.7Hz (1200 cent) to 261.6Hz (4800 cent) for bass line, and
261.6Hz (4800 cent) to 5KHz (9907.6 cent) for melody. The
effect of limiting the frequency range is shown in Figure 1.
The top pane shows a chromagram (HPCP over time) for the
entire frequency range, whilst the middle and bottom panes
consider the melody and bass ranges respectively. In the
latter two panes the correct melody and bass line (taken from
a MIDI annotation) are plotted on top of the chromagram as
white boxes with diagonal lines.

Figure 1. Original (top), melody (middle) and bass line
(bottom) chromagrams

2.3 HPCP Resolution and Window Size

Whilst a 12 or 36 bin resolution may suffice for tasks such
as key or chord estimation, if we want to properly capture
subtleties such as vibrato and glissando, as well as the fine
tuning of the singer or instrument, a higher resolution is
needed. In Figure 2 we provide an example of the HPCP for
the same 5 second segment of train05.wav from the MIREX
2005 collection, taken at a resolution of 12, 36, and 120 bins.
We see that as we increase the resolution, elements such as
glissando (seconds 1-2) and vibrato (seconds 2-3) become
better defined. For the rest of the paper we use a resolution
of 120 bins.

Figure 2. HPCP computed with increasing resolution

Another relevant parameter is the window size used for
the analysis. A smaller window will give better time resolu-
tion hence capturing time-dependent subtleties of the melody,
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whilst a bigger window size gives better frequency resolu-
tion and is more robust to “noise” in the analysis (single
frames in which the melody is temporarily not the most
salient). We empirically set the window size to 186ms (due
to the improved frequency resolution given by long win-
dows, their use is common in melody extraction [11]).

2.4 Melody and Bass Line Selection

Given our salience function, the melody (or bass line de-
pending on the frequency range we are considering) is se-
lected as the highest peak of the function at every given
time frame. The result is a sequence of pitch classes (us-
ing a resolution of 120 HPCP bins, i.e. 10 cents per pitch
class) over time. It is important to note that no further post
processing is performed. In [11] a review of systems partic-
ipating in the MIREX 2005 melody extraction task is given,
in which a common extraction architecture was identified.
From this architecture, we identify two important steps that
would have to be added to our approach to give a com-
plete system: firstly, a postprocessing step for selecting the
melody line out of the potential candidates (peaks of the
salience function). Different approaches exist for this step,
such as streaming rules [3], heuristics for identifying melody
characteristics [1], Hidden Markov Models [12] and track-
ing agents [8]. Then, voicing detection should be applied to
determine when the melody is present.

3 EVALUATION METHODOLOGY

3.1 Ground Truth Preparation

For evaluating melody and bass line estimation, we use three
music collections, as detailed below.

3.1.1 MIREX 2004 and 2005 Collections

These collections were created by the MIREX competition
organisers for the specific purpose of melody estimation eval-
uation [11]. They are comprised of recording-transcription
pairs, where the transcription takes the form of timestamp-
F0 tuples, using 0Hz to indicate unvoiced frames. 20 pairs
were created for the 2004 evaluation, and another 25 for the
2005 evaluation of which 13 are publicly available 1 . Ta-
bles 1 and 2 (taken from [11]) provide a summary of the
collection used in each competition.

3.1.2 RWC

In an attempt to address the lack of standard evaluation ma-
terial, Goto et al. prepared the Real World Computing (RWC)
Music Database [7]. It contains several databases of differ-
ent genres, and in our evaluation we use the Popular Music

1 http://labrosa.ee.columbia.edu/projects/melody/

Category Style Melody Instrument
Daisy Pop Synthesised voice
Jazz Jazz Saxophone
MIDI Folk, Pop MIDI instruments
Opera Classical Opera Male voice, Female voice
Pop Pop Male Voice

Table 1. Summary of data used in the 2004 melody extrac-
tion evaluation

Melody Instrument Style
Human voice R&B, Rock, Dance/Pop, Jazz
Saxophone Jazz
Guitar Rock guitar solo
Synthesised Piano Classical

Table 2. Summary of data used in the 2005 melody extrac-
tion evaluation

Database. The database consists of 100 songs performed in
the style of modern Japanese (80%) and American (20%)
popular music typical of songs on the hit charts in the 1980s
and 1990s.

At the time of performing the evaluation the annotations
were in the form of MIDI files which were manually created
and not synchronised with the audio 2 . To synchronise the
annotations, we synthesised the MIDI files and used a local
alignment algorithm for HPCPs as explained in [15] to align
them against the audio files. All in all we were able to syn-
chronise 73 files for evaluating melody estimation, of which
7 did not have a proper bass line leaving 66 for evaluating
bass line estimation (both collections are subsets of the col-
lections used for evaluating melody and bass line transcrip-
tion in [13] 3 ).

3.2 Metrics

Our evaluation metric is based on the one first defined for
the MIREX 2005 evaluations. For a given frame n, the es-
timate is considered correct if it is within ± 1

4 tone (±50
cents) of the reference. In this way algorithms are not pe-
nalised for small variations in the reference frequency. This
also makes sense when using the RWC for evaluation, as
the use of MIDI annotations means the reference frequency
is discretised to the nearest semitone. The concordance error
for frame n is thus given by:

errn =
{

100 if |fest
cent[n] − fref

cent[n]| > 50
0 otherwise

(2)

2 A new set of annotations has since been released with audio synchro-
nised MIDI annotations.

3 With the exception of RM-P034.wav which is included in our evalua-
tion but not in [13].
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The overall transcription concordance (the score) for a
segment of N frames is given by the average concordance
over all frames:

score = 100 − 1
N

N∑
n=1

errn (3)

As we are using chroma features (HPCP) to describe melody
and bass lines, the reference is mapped onto one octave be-
fore the comparison (this mapping is also used in the MIREX
competitions to evaluate the performance of algorithms ig-
noring octave errors which are common in melody estima-
tion):

fchromacent = 100 + mod(fcent, 1200) (4)

Finally it should be noted that as voicing detection is not
currently part of our system, performance is evaluated for
voiced frames only.

4 RESULTS

In this section we present our melody and bass line esti-
mation results, evaluated on the three aforementioned mu-
sic collections. For comparison we have also implemented
three salience functions for multiple-F0 estimation proposed
by Klapuri in [9] which are based on the summation of har-
monic amplitudes (henceforth referred to as the Direct, Iter-
ative and Joint methods). The Direct method estimates the
salience s(τ) of a given candidate period τ as follows:

s(τ) =
M∑

m=1

g(τ,m)|Y (fτ,m)| (5)

where Y (f) is the STFT of the whitened time-domain sig-
nal, fτ,m = m · fs/τ is the frequency of the mth harmonic
partial of a F0 candidate fs/τ , M is the total number of
harmonics considered and the function g(τ,m) defines the
weight of partial m of period τ in the summation. The Iter-
ative method is a modification of the Direct method which
performs iterative estimation and cancellation of the spec-
trum of the highest peak before selecting the next peak in the
salience function. Finally the Joint method is a further mod-
ification of the Direct method which attempts to model the
Iterative method of estimation and cancellation but where
the order in which the peaks are selected does not affect the
results. Further details are given in [9]. The three methods
were implemented from the ground up in Matlab, using the
parameters specified in the original paper, a window size of
2048 samples (46ms) and candidate periods in the range of
110Hz-1KHz (the hop size was determined by the one used
to create the annotations, i.e. 5.8ms for the MIREX 2004
collection and 10ms for the MIREX 2005 and RWC collec-
tions).

4.1 Estimation Results

The results for melody estimation are presented in Table 3.

Collection HPCP Direct Iterative Joint
MIREX04 71.23% 75.04% 74.76% 74.87%
MIREX05 61.12% 66.64% 66.76% 66.59%
RWC Pop 56.47% 52.66% 52.65% 52.41%

Table 3. Salience function performance

We note that the performance of all algorithms decreases
as the collection used becomes more complex and resem-
blant of real world music collections. A possible explana-
tion for the significantly decreased performance of all ap-
proaches for the RWC collection could be that as it was
not designed specifically for melody estimation, it contains
more songs in which there are several lines competing for
salience in the melody range, resulting in more errors when
we only consider the maximum of the salience function at
each frame. We also observe that for the MIREX collections
the HPCP based approach is outperformed by the other algo-
rithms, however for the RWC collection it performs slightly
better than the multiple-F0 algorithms.

A two-way analysis of variance (ANOVA) comparing our
HPCP based approach with the Direct method is given in
table 4.

Source SS df Mean F-ratio p-value
Squares

Collection 11,971.664 2 5,985.832 41.423 0.000
Algorithm 75.996 1 75.996 0.526 0.469

Collection* 705.932 2 352.966 2.443 0.089
Algorithm

Error 29,768.390 206 144.507

Table 4. ANOVA comparing the HPCP based approach to
the Direct method over all collections

The ANOVA reveals that the collection used for evalua-
tion indeed has a significant influence on the results (p-value
< 10−3). Interestingly, when considering performance over
all collections, there is no significant difference between the
two approaches (p-value 0.469), indicating that overall our
approach has comparable performance to that of the other
salience functions and hence potential as a first step in a
complete melody estimation system 4 .

We next turn to the bass line estimation results. Given
that the multiple-F0 salience functions proposed in [9] are
not specifically tuned for bass line estimation, only the HPCP
based approach was evaluated. We evaluated using the RWC

4 When comparing the results for each collection separately, only the
difference in performance for the RWC collection was found to be statisti-
cally significant (p-value 0.016).
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collection only as the MIREX collections do not contain
bass line annotations, and achieved a score of 73%.

We note that the performance for bass line is significantly
higher. We can attribute this to the fact that the bass line
is usually the most predominant line in the low frequency
range and does not have to compete with other instruments
for salience as is the case for the melody.

In Figure 3 we present examples in which the melody
and bass line are successfully estimated. The ground truth is
represented by o’s, and the estimated line by x’s. The scores
for the estimations presented in Figure 3 are 85%, 80%, 78%
and 95% for daisy1.wav (MIREX04), train05.wav (MIREX05),
RM-P014.wav (RWC, melody) and RM-P069.wav (RWC,
bass) respectively.
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Figure 3. Extracted melody or bass line (x’s) against its
reference (o’s) for each of the collections

In order to evaluate what are the best possible results our
approach could potentially achieve, we have calculated es-
timation performance considering an increasing number of

peaks of the salience function and taking the error of the
closest peak to the reference frequency (mapped onto one
octave) at every frame. This tells us what performance could
be achieved if we had a peak selection process which always
selected the correct peak as long as it was one of the top n
peaks of the salience function. The results are presented in
Figure 4.
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Figure 4. Potential performance vs peak number

The results reveal that our approach has a “glass ceiling”
– an inherent limitation which means that there are certain
frames in which the melody (or bass line) is not present in
any of the peaks of the salience function. The glass ceiling
could potentially be “pushed up” by further tuning the pre-
processing in the HPCP computation, though we have not
explored this in our work.

Nonetheless, we see that performance could be signifi-
cantly improved if we implemented a good peak selection
algorithm even considering just the top two peaks of the
salience function. By considering more peaks performance
could be improved still, however the task of melody peak
tracking is non trivial and we cannot assert how easy it would
to get close to these theoretical performance values.

5 CONCLUSION

In this paper we introduced a method for melody and bass
line estimation using chroma features. We adapt the Har-
monic Pitch Class Profile and use it as a salience function,
which would be used as the first stage in a complete melody
and bass line estimation system. We showed that as a salience
function our approach has comparable performance to that
of other state of the art methods, evaluated on real world
music collections. Future work will involve the implemen-
tation of the further steps required for a complete melody
and bass line estimation system, and an evaluation of the
extracted representation in the context of similarity based
applications.
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ABSTRACT

This paper proposes a new type of interactive sound 

instrument for use with audiences in sound installations 

and musical performances. The Interactive Infrasonic 

Environment allows users to perceive and experiment with 

the vibration and acoustic energy produced by infrasound. 

This article begins with a brief overview of infrasound and 

examines its generation, human perception, areas of 

application and some odd myths. Infrasound is sound with 

a frequency lower than 20 hertz (20 cycles per second) – 

outside the normal limits of human hearing. Nevertheless 

the human body can perceive such low frequencies via 

cross-modal senses.   

This paper describes three key aspects of infrasonic sound 

technologies: the artificial generation of infrasound, the 

human perception of infrasound, and the interactive 

environment for sound installations and musical 

performances.

Additionally we illustrate these ideas with related works 

from the field of sound art and interactive art.

Keywords

sound installation, interactive environment, infrasound, 

video tracking system.

1. INTRODUCTION

Our idea for building an interactive system that uses 

infrasound came from the myth of “Demutspfeife” in 

which a single tone from an organ brings humility to its 

listeners. The legend says that these big organ pipes are 

often used in churches to subdue people. While 

researching the field of infrasound further myths about the

affects of infrasound on humans were found. We focused 

on the possibility for bringing infrasound to audiences in 

sound installations and musical performances wherein the 

users could experiment with infrasound on their own 

bodies. With this project we attempt to increase acoustic 

awareness by sensitizing people to very low sound 

frequencies. This sense is still underdeveloped in our 

culture.

A main problem was just how to generate infrasound. 

There are only a few possibilities and most of them would 

be unsuitable for an audience in a sound installation. Due 

to the fact that sound installations tend to be difficult to 

perceive and understand for the audience we wanted to 

create a simple interactive environment that offers a great 

deal of creative freedom and options for the users.

We could not find many artistic projects relating to the 

field of infrasound but there have been a number of studies 

from several areas of study such as medicine, weaponry 

and noise reduction. There are too many facets to this 

research and far too much speculation on infrasound to fit 

within the scope of this paper.

2. INFRASOUND

Infrasound is sound that is lower than 20 cycles per 

second. This is sound that is just below the lower limit of 

the human sense of hearing.

Sound range Frequency Wave length

Infrasound            1 Hz < ƒ < 20 Hz      1 Hz = 1125 ft = 342,9 m

Hearable sound  20 Hz < ƒ < 16 kHz     20 Hz = 56 ft = 17 m 

SMC 2009, July 23-25, Porto, Portugal

Copyrights remain with the authors

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 337



2.1. The Generation of Infrasound

Table 1. Sources of infrasound

2.2. The Human Perception of Infrasound

Hearing does not abruptly stop below 20 Hz. As careful 

measurements have shown, with high enough sound 

pressure the ear can register infrasound down to about 1 

Hz. [1] Infrasound perceived as a mixture of auditory and 

tactile sensation at a high threshold level.  

Sense Perception

- Ear

- Skin 

- Viscera

- Sinuses, nares, chest, bowel

- Eye

- Feeling of pressure

- Pulsation and vibration

- Resonance vibration

- Barometric variation

- Vibration

Table 2. The human perception with cross-modal senses

Infrasound especially affects the cavities of the human 

body though its affect on air pressure. Different pitches and 

intensities of infrasound can be perceived as changes in 

pressure and vibration. The effects of very low frequency 

noises such as infrasound on human beings have been 

documented in many articles; these include: temporary 

hearing threshold shifts, changes in blood pressure, 

changes in heart rate, changes in respiratory rate, balance 

disturbances, cognition disturbances. [2]

During medical research at the Hellersen Hospital in 

Lüdenscheid (Germany) the psychosomatic effects of 

infrasound were tested on people with chronic pain. Six 

inpatients suffering with chronic pain were exposed to 

infrasound at 9 Hz for 20 min per day. After one week 

they concluded that infrasound activates the autonomic 

nervous system and has positive effects on stress and also 

has a palliative effect on pain. [3] If the sound pressure of 

infrasound is higher than 120 dB, negative effects of 

infrasound appear: headache, breathing problems, changes 

in heart rate and general stress. Constant pressure (more 

than 10 minutes) with infrasound at more than 170 dB 

causes the death of the test animals. [4] Additionally there 

is an additional impressive effect, which is produced by 

infrasound. A NASA technical report mentions a resonant 

frequency for the eyes of 18 Hz (NASA Technical Report 

19770013810). In this case the eyeball would begin 

vibrating which would cause a notable “smearing” of 

vision. [5] Vic Tany outlines the idea that a standing wave 

of 19Hz could, under certain conditions, generate sensory 

phenomena suggestive of a ghost in his paper “The Ghost 

in the Machine” from 1998.

2.3. The Areas of Application for Infrasound

Infrasound is currently being utilized in various fields. A 

relatively new discipline is the medical use of infrasound 

therapy. It is useful in treating chronic pain and 

arteriosclerosis wherein vibrating medical devices are 

attached to the body.  

Interest in atmospheric infrasound peaked during the Cold 

War, as it is one of several ways to detect, locate, and 

classify nuclear explosions at very great distances. At 

present the Comprehensive Test Ban Treaty requires a 

more sophisticated global sensor network to monitor 

compliance. [6] 

A global network of infrasonic detectors has been installed 

to observe the atmosphere. The intention is the early 

detection of meteorites, tornados, earthquakes and volcanic 

eruptions. In the 1970s, the National Oceanic and 

Atmospheric Administration began a study of atmospheric 

infrasound to determine whether it could be used to 

improve warning capabilities for severe weather events 

such as tornadoes. [7] They found that many thunderstorms 

radiated infrasound, which could be detected by 

observatories more than thousand miles away.   

2.4. Infrasound Myths

The most bizarre myth about infrasound is the brown note.

As the name implies, it is assumed that this is an 

infrasound frequency, which causes humans to lose control 

of their bowels. There is no scientific evidence that such 

an infrasound note exists.

Another legend is about infrasound weapons. Some 

infrasound review articles mention the fact that several 

countries have investigated this possibility. Such an 

Natural sources: Artificial sources:

- Wind and atmospheric 

turbulence

- Earthquakes and 

volcanic eruption

- Waterfalls and breaking 

waves

- Animals (e.g. whales, 

elephants, rhinoceros, 

giraffes, okapi and 

alligators)

- Air conditioning systems 

- Wind energy turbines       - 

Gas turbine power stations

- Industrial facilities  (e.g. 

compressors, compactors)

- Buildings 

(e.g. skyscrapers, tunnels, 

bridges)

- Vehicles(cars and trucks, 

trains, ships, planes)

- Explosions

-Speaker systems 
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infrasound weapon would be a huge installation that could 

generate high-pressure low frequencies, which would 

cause anxiety, internal injuries and death to humans.  

Finally there is the myth of “Demutspfeife” that was 

mentioned earlier. It is a single organ pipe and part of a 

church organ, which brings humility to its listeners. Our 

Interactive Infrasonic Environment project strongly 

references this idea, but we do not intend to bring any 

negative effects of infrasound. We propose a strictly 

positive application of infrasound and low sound 

frequencies. 

3. INTERACTIVE INFRASONIC ENVIRONMENT

As there are so many fascinating aspects and also a few 

strange myths concerning infrasound, we started to 

develop an infrasonic installation in early 2007.  

The goal of the project was to make infrasound 

approachable for everyone. We attempted to build an 

installation where the audience can experiment with the 

perception of infrasound regardless whether it creates a 

positive or negative effect in their bodies. For this reason 

we soon realized that an important part of the installation 

would be a multiple-user interface through which all users 

can interact simultaneously and in real time. 

The Interactive Infrasonic Environment is the first 

interactive instrument that allows users to generate 

infrasound while moving around the space. It is an 

installation that overlaps auditory and tactile stimuli to 

increase the level of acoustic awareness.

3.1. The Organ Pipe

The installation hardware is based on a 19 ft wooden 

organ pipe placed in the center of the environment. The 

pitch of the pipe can be tuned with an adjuster at the end 

of the organ pipe. The wavelength of the pipe is modified 

to the characters and sizes of the room in which the 

installation is located. Adjustments are needed to get 

satisfying resonates from the specific architecture of the 

room. The organ pipe can generate sound frequencies 

down to 15 Hz, going beyond the limits of human hearing.

Figure 1. Dimensions and tone pitch of the organ pipe

3.2. Sound Generation

The sound of the pipe is produced via the vibration of air 

in the same way as a flute. The airflow is driven over an 

open aperture and against a sharp lip called a labium. The 

airflow begins fluttering and creates high and low pressure 

waves within the pipe's air column. The low sound wave 

generated has a frequency between 15 Hz and 17 Hz. As 

described earlier the tuning of the organ pipe depends on 

the size of the room. The vibration energies of infrasound 

are transmitted to the human body and the architectural 

space enhances the natural resonance of both. The source 

of a sound in an interactive computer based instrument is 

not some abstract or concrete concept, or even the 

algorithm(s) that have been written; it is the gesture of the 

performer, the excitation moment - it is fundamentally 

about that nature of excitation. [8]

 
3.3. Video Tracking System

Interaction with an instrument that uses video tracking is a 

particular case in point, for the nature of engagement is 

abstract, and as such is based not so much on the physical 

relationship of the self to the physical space that houses 

the instrument or interactive installation. [9] The project 

uses a video camera situated high on a wall, which 

continuously observes the surroundings of the organ pipe, 

tracking the position and movement of the users. The 

software is programmed in Max/MSP and uses the 

Cyclops object to receive and analyze video input. The 

program rasterizes the video input and analyses the

grayscales of predetermined zones. The users interact by 

moving around and changing their positions. These actions 

directly control the wind machine, which is fluently 

controlling the airflow and thus the volume and pitch of 

the organ pipe.
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Figure 2. Schematic view of the Interactive Infrasonic 

Environment

  

3.4. Experiments with Test Subjects

During the first testing phase we explored the sensations in 

the Interactive Infrasonic Environment with the help of ten 

participants. We performed separate individual 

experiments by using an exposure chamber. A single 

experiment consisted of three 5 min exposure periods and 

after each period a 15 min post exposure period, including 

a short interview of the test subject. The test was 

performed with a continuous tone at a frequency of 15 Hz 

and three different sound intensities: low, middle and high. 

The goal of these experiments was to establish the 

connection between the Interactive Infrasonic Environment 

and psychoacoustic human perception. The experiments 

showed that the low sound frequencies produced feelings 

of pressure, pulsation and vibration on cross-modal senses 

for all test persons. It was surprising that the threshold 

where the test persons started to feel uncomfortable varied 

from person to person. For two subjects the feeling of 

discomfort started at the second level of intensity and for 

five subjects it started at the highest level. For the other 

subjects (3) there were no uncomfortable feelings 

experienced during the entire test period. Physical contact

with the vibrating organ pipe was enjoyable for all test 

participants.

3.5. Present and Future Work

To date the Interactive Infrasonic Environment installation 

has been shown at several exhibitions. The feedback from 

the audience and the curators confirmed our intention to 

continue with and further expand this infrasonic project.

Figure 3. Interactive Infrasonic Environment, Sound 

Characters exhibition, Innsbruck, 2009 

We are currently working on and researching a musical 

performance using the Interactive Infrasonic Environment. 

We use infrasound to conduct a choir and likewise the 

members of the choir can control the infrasound through 

the installation. The first live performance was staged in 

May 2009 in Linz (Austria), the European Cultural Capital

at the time. The members of a women’s ensemble 

improvised to the accompaniment of the Interactive 

Infrasonic Environment. With certain sequences of 

movements, members of the choir could steer the tones 

produced by the organ pipe. The tones generated by the

organ pipe in turn provided the impetus for tonal 

variations in the choir’s singing.

Figure 4. Improvisation Concert for Choir and Organ 

Pipe, Linz, 2009
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4. RELATED WORKS

There have been a several studies and projects concerning 

infrasound in the field of media art. We want to highlight a 

few of the projects that inspired our vision of an 

interactive infrasonic installation. The last example refers 

to our video tracking system, which is a basis to a certain 

extent on the milestone of the interactive sound

installation. 

4.1. IIT

The Infrasonic Transmission Tube was designed and 

constructed by Laton, a research lab and record label 

based in Vienna. The prototype sound system was able to 

generate infrasound frequencies from 1 Hz to 20 Hz. They 

used the Infrasonic Transmission Tube for their realization 

of their self-titled "Infrasonic Music". The project was 

shown at the Ars Electronica Festival in 1996.

4.2. Live Room

Mark Bain developed the Live Room in 1998. It was a 

project that used small acoustic-intensifying machines, 

which were attached directly to the structure of a room. 

The installation incorporated the architecture by running 

impulsive energy throughout, creating sound and vibration 

in direct relation to the building and the dimensions of the 

space. With this work, I was interested in 

TRANSDUCING ARCHITECTURE, driving the space 

with external influences of a vibro-kinetic nature. .10/��
Bain was able to effectively tune a space by delivering the 

resonant frequency to its different parts. The Live Room 

also generated infrasonic sound, which brought strangeness 

to this project related to the production and injection of 

these unique low frequencies.

4.3. Very Nervous System

In 1982 the Canadian Artist David Rokeby started to 

develop his Very Nervous System, an interactive sound 

environment with a real time motion tracking system. 

Video cameras observed the users action and a computer 

analyzed the data and responds acoustically to the input. It 

was the intention to design a space in which the 

movements of one’s body create sound. David Rokeby 

was interested in creating a complex relationship between 

the user’s body and the system. “Because the computer is 

purely logical, the language of interaction should strive to 

be intuitive. Because the computer removes you from your 

body, the body should be strongly engaged. Because the 

computer's activity takes place on the tiny playing fields of 

integrated circuits, the encounter with the computer should 

take place in human-scaled physical space. Because the 

computer is objective and disinterested, the experience 

should be intimate.” .11/ In the early days of interactive 

art, the interaction with the Very Nervous System was very 

novel because the interface was invisible. The system was 

used in performances, exhibitions and additionally in 

music therapy applications.

5. CONCLUSION 

In summary, this paper provides a brief overview of 

infrasound, its generation, perception, areas of application 

and myths. We noted that there is a need to sensitize 

people to allow them to better register infrasound and that 

our project intends to increase acoustic awareness; this is 

still an underdeveloped sense in our culture.

This paper presented a new type of interactive sound 

instrument that allows users to experiment with the 

vibration and acoustic energies produced by infrasound. 

The challenge for this project was to construct a sound 

generator, which produces perceptible infrasound. As a 

final remark we would like to say that there is still much 

work to do in order to fully implement all of our ideas, 

especially those involving live musical performances. 
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ABSTRACT

This paper presents a singing synthesis system, VocaLis-

tener, that automatically estimates parameters for singing

synthesis from a user’s singing voice with the help of song

lyrics. Although there is a method to estimate singing syn-

thesis parameters of pitch (F0) and dynamics (power) from

a singing voice, it does not adapt to different singing synthe-

sis conditions (e.g., different singing synthesis systems and

their singer databases) or singing skill/style modifications.

To deal with different conditions, VocaListener repeatedly

updates singing synthesis parameters so that the synthe-

sized singing can more closely mimic the user’s singing.

Moreover, VocaListener has functions to help modify the

user’s singing by correcting off-pitch phrases or changing

vibrato. In an experimental evaluation under two different

singing synthesis conditions, our system achieved synthe-

sized singing that closely mimicked the user’s singing.

1 INTRODUCTION

Many end users have started to use commercial singing syn-

thesis systems to produce music and the number of listeners

who enjoy synthesized singing is increasing. In fact, over

one hundred thousand copies of popular software packages

based on Vocaloid2 [1] have been sold and various compact

discs that include synthesized vocal tracks have appeared

on popular music charts in Japan. Singing synthesis sys-

tems are used not only for creating original vocal tracks, but

also for enjoying collaborative creations and communica-

tions via content-sharing services on the Web [2, 3]. In light

of the growing importance of singing synthesis, the aim of

this study is to develop a system that helps a user synthe-

size natural and expressive singing voices more easily and

efficiently. Moreover, by synthesizing high-quality human-

like singing voices, we aim at discovering the mechanism of

human singing voice production and perception.

Much work has been done on singing synthesis. The

most popular approach for singing synthesis is lyrics-to-

singing (text-to-singing) synthesis where a user provides

note-level score information of the melody with its lyrics

to synthesize a singing voice [1, 4, 5]. To improve natu-
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ralness and provide original expressions, some systems [1]

enable a user to adjust singing synthesis parameters such as

pitch (F0) and dynamics (power). The manual parameter

adjustment, however, is not easy and requires considerable

time and effort. Another approach is speech-to-singing syn-

thesis where a speaking voice reading the lyrics of a song is

converted into a singing voice by controlling acoustic fea-

tures [6]. This approach is interesting because a user can

synthesize singing voices having the user’s voice timbre, but

various voice timbres cannot be used.

In this paper, we propose a new system named VocaLis-

tener that can estimate singing synthesis parameters (pitch

and dynamics) by mimicking a user’s singing voice. Since a

natural voice is provided by the user, the synthesized singing

voice mimicking it can be human-like and natural without

time-consuming manual adjustment. We named this ap-

proach singing-to-singing synthesis. Janer et al. [7] tried

a similar approach and succeeded to some extent. Their

method analyzes acoustic feature values of the input user’s

singing and directly converts those values into the synthe-

sis parameters. But their method is not robust with respect

to different singing synthesis conditions. For example, even

if we specify the same parameters, the synthesized results

always differ when we change to another singing synthesis

system or a different system’s singer database because of the

results’ nonlinearity. The ability to mimic a user’s singing

is therefore limited.

To overcome such limitations on robustness, VocaLis-

tener iteratively estimates singing synthesis parameters so

that after a certain number of iterations the synthesized

singing can become more similar to the user’s singing in

terms of pitch and dynamics. In short, VocaListener can

synthesize a singing voice while listening to its own gen-

erated voice through an original feedback-loop mechanism.

Figure 1 shows examples of synthesized voices under two

different conditions (different singer databases). With the

previous approach [7], there were differences in pitch (F0)

and dynamics (power). On the other hand, such differences

are minimal with VocaListener.

Moreover, VocaListener supports a highly-accurate

lyrics-to-singing synchronization function. Given the user’s

singing and the corresponding lyrics without any score

information, VocaListener synchronizes them automati-

cally to determine each musical note that corresponds to

a phoneme of the lyrics. We therefore developed an

originally-adapted/trained acoustic model for singing syn-
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Figure 1. Overview of VocaListener and problems of a previous

approach by Janer et al. [7].

chronization. Although synchronization errors with this

model are rare, we also provide an interface that lets a user

easily correct such errors just by pointing them out. In addi-

tion, VocaListener also supports a function to improve syn-

thesized singing as if the user’s singing skill were improved.

2 PARAMETER ESTIMATION SYSTEM FOR

SINGING SYNTHESIS: VOCALISTENER

VocaListener consists of three components, the

VocaListener-front-end for singing analysis and syn-

thesis, the VocaListener-core to estimate the parameters for

singing synthesis, and the VocaListener-plus to adjust the

singing skill/style of the synthesized singing.

Figure 1 shows an overview of the VocaListener system.

The user’s singing voice (i.e., target singing) and the lyrics
1

1
In our current implementation, Japanese lyrics spelled in a mixture of

Japanese phonetic characters and Chinese characters are mainly supported.

English lyrics can also be easily supported because the underlying ideas of

VocaListener are universal and language-independent.

are taken as the system input ( A©). Using this input, the

system automatically synchronizes the lyrics with the target

singing to generate note-level score information, estimates

the fundamental frequency (F0) and the power of the target

singing, and detects vibrato sections that are used just for the

VocaListener-plus ( B©). Errors in the lyrics synchronization

can be manually corrected through simple interaction. The

system then iteratively estimates the parameters through the

VocaListener-core, and synthesizes the singing voice ( C©).

The user can also adjust the singing skill/style (e.g., vibrato

extent and F0 contour) through the VocaListener-plus.

2.1 VocaListener-front-end: analysis and synthesis

The VocaListener-front-end consists of singing analysis and

singing synthesis. Throughout this paper, singing samples

are monaural recordings of solo vocal digitized at 16 bit /

44.1 kHz.

2.1.1 singing analysis

The system estimates the fundamental frequency (F0), the

power, and the onset time and duration of each musical note.

Since the analysis frame is shifted by 441 samples (10 ms),

the discrete time step (1 frame-time) is 10 ms. This paper

uses time t for the time measured in frame-time units.

In VocaListener, these features are estimated as follows:

Fundamental frequency: F0(t) is estimated using

SWIPE [8]. Hereafter, unless otherwise stated, F0(t)
are log-scale frequency values (real numbers) in relation

to the MIDI note number (a semitone is 1, and middle

C corresponds to 60).

Power: Pow(t) is estimated by applying a Hanning win-

dow whose length is 2048 samples (about 46 ms).

Onset time and duration: To estimate the onset time and

duration of each musical note, the system synchronizes

the phoneme-level pronunciation of the lyrics with the

target singing. This synchronization is called phonetic

alignment and is estimated through Viterbi alignment

with a phoneme-level hidden Markov model (mono-

phone HMM). The pronunciation is estimated by using

a Japanese language morphological analyzer [9].

2.1.2 singing synthesis

In our current implementation, the system estimates param-

eters for commercial singing synthesis software based on

Yamaha’s Vocaloid or Vocaloid2 technology [1]. For exam-

ple, we use software named Hatsune Miku (referred to as

CV01) and Kagamine Rin (referred to as CV02) [10] for

synthesizing Japanese female singing. Since all parameters

are estimated every 10 ms, they are linearly interpolated at

every 1 ms to improve the synthesized quality, and are fed

via a VSTi plug-in (Vocaloid Playback VST Instrument).

2.2 VocaListener-plus: adjusting singing skill/style

To extend the flexibility, the VocaListener-plus provides

functions, pitch change and style modification, which can
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modify the value of the estimated acoustic features of the

target singing. The user can select whether to use these

functions based on personal preference. Figure 2 shows an

example of using these functions.

2.2.1 Pitch change

We propose pitch transposition and off-pitch correction to

overcome the limitations of the user’s singing skill and pitch

range. The pitch transposition function changes the target

F0(t) just by adding an offset value for transposition during

the whole section or a partial section.

The off-pitch correction function automatically corrects

off-pitch phrases by adjusting the target F0(t) according to

an offset of Fd (0 ≤ Fd < 1) estimated for each voiced

section. The off-pitch amount Fd is estimated by fitting

a semitone-width grid to F0(t). The grid is defined as a

comb-filter-like function where Gaussian distributions are

aligned at one semitone intervals. Just for this fitting, F0(t)
is temporarily smoothed by using an FIR lowpass filter

with a 3-Hz cutoff frequency
2

to suppress F0 fluctuations

(overshoot, vibrato, preparation, and fine fluctuation) of the

singing voice [11, 12]. Last, the most fitted offset Fd is used

to adjust F0(t) to its nearest correct pitch.

2.2.2 Style modification

In this paper, vibrato adjustment and singing smoothing

are proposed to emphasize or suppress the F0 fluctuations.

Since the F0 fluctuations are important factors to character-

ize human singing [11, 12], a user can change the impres-

sion of singing. The F0(t) and Pow(t) of the target singing

are adjusted by interpolating or extrapolating between the

original values (F0(t) and Pow(t)) and their smoothed val-

ues obtained by using an FIR lowpass filter. A user can

separately adjust vibrato sections and other sections. The

vibrato sections are detected by using the vibrato detection

method [13].

2.3 VocaListener-core: estimating the parameters

Figure 3 shows the estimation process for VocaListener-

core. After acoustic features of the target singing (modi-

fied by VocaListener-plus, if necessary) are estimated, these

features are converted into synthesis parameters that are

then fed to the singing synthesis software. The synthe-

sized singing is then analyzed and compared with the target

singing. Until the synthesized singing is sufficiently close to

the target singing, the system repeats the parameter update

and its synthesis.

2.3.1 Parameters for singing synthesis

The system estimates parameters for pitch, dynamics, and

lyrics alignment (Table 1). The pitch parameters consist of

MIDI note number (Note#)3
, pitch bend (PIT), and pitch

2
We avoid unnatural smoothing by ignoring silent sections and leaps of

F0 transitions wider than a 1.8-semitone threshold.

3
For synthesis, each mora of Japanese pronunciation is mapped into a

musical note, where the mora representation can be classified into three

Adjusted by VocaListener-plus

time [s]

70
69

67

65

63
62

68

66

64

Correct off-pitch phrase well

Suppress vibrato extent

Target singing

F0
 [s

em
ito

ne
]

53 420 1 6

Figure 2. Example of F0(t) adjusted by VocaListener-plus.
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Select new
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         candidates

Pointed out by user
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      pitch parameters
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(1) Adjustment of voiced sections iteratively
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Pitch parameter estimation
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Dynamics parameter estimation
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If the correct boundary cannot be obtained,
  the user can point to it again or correct manually

A
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d o m a r u t o
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(iv) Estimate the note number and synthesize the singing

voiced

PIT

DYN
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VocaListener-core

Target singing and song lyrics ta chi do ma ru to ki

voiced / unvoiced sections (initial output)

Synthesized singing

U
pd

at
e

(i)
(ii)
(iii)

Figure 3. Overview of the parameter estimation procedure,

VocaListener-core.

bend sensitivity (PBS), and the dynamics parameter is dy-

namics (DYN). For the pitch (F0), the fractional portion (PIT)

is separated from the integer portion (Note#). PIT represents

a relative decimal deviation from the corresponding integer

note number (Note#), and PBS specifies the range (magni-

tude) of its deviation. The results of the lyrics alignment are

represented by the note onset (onset time) and its duration.

These MIDI-based parameters can be considered typical

and common, not specific to the Vocaloid software. A set

of these parameters, PIT, PBS, and DYN, are iteratively esti-

mated after being initialized to 0, 1, and 64, respectively.

types: “V”, “CV”, and “N”. “V” denotes vowel (a, i, ...), “C” denotes

consonant (t, ch, ...), and “N” denotes syllabic nasal (n).
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Table 1. Relation between singing synthesis parameters and acous-

tic features.

Acoustic features Synthesis parameters

F0 Pitch Note#, PIT, and PBS

Power Dynamics DYN

Phonetic Lyrics Note onset

alignment alignment Note duration

2.3.2 Lyrics alignment estimation with error repairing

Even if the same note onset and its duration (lyrics align-

ment) are given to different singing synthesis systems (such

as Vocaloid and Vocaloid2) or different singer databases

(such as CV01 and CV02), the note onset and note dura-

tion often differ in the synthesized singing because of their

nonlinearity (caused by their internal waveform concatena-

tion mechanism). We therefore have to adjust (update) the

lyrics alignment iteratively so that each voiced section of the

synthesized singing can be the same as the original voiced

section of the target singing. As shown in Figure 3 A©, the

last two steps (iii) and (iv) in the following four steps are

repeated:

Step (i) Given the phonetic alignment of the automatic synchro-

nization, the note onset and duration are initialized by using

its vowel.

Step (ii) If two adjacent notes are not connected but their sections

are judged to be a single voiced section, the duration of the

former note is extended to the onset of the latter note so

that they can be connected. This eliminates a small gap and

improves the naturalness of the synthesized singing.

Step (iii) By comparing voiced sections of the target and synthe-

sized singing, the note onset and duration are adjusted so

that they become closer to those of the target.

Step (iv) Given the new alignment, the note number (Note#) is

estimated again and the singing is synthesized.

Although the automatic synchronization of song lyrics

with the target singing is accurate in general, there are some-

times a few boundary errors that degrade the synthesized

quality. We therefore propose an interface that lets a user

correct each error just by pointing it out without manually

adjusting (specifying) the boundary. As shown in Figure

3 B©, other boundary candidates are shown on a screen so

that the user can simply choose the correct one by listening

to each one. Even if it is difficult for a user to specify the cor-

rect boundary from scratch, it is easy to choose the correct

candidate interactively. To generate candidates, the system

computes timbre fluctuation values of the target singing by

using ΔMFCCs, and several candidates with high fluctua-

tion values are selected. The system then synthesizes each

candidate and compares it with the target singing by using

MFCCs. The candidates are sorted and presented to the user

in the order of similarity to the target singing. If none of the

candidates are correct, the user can correct manually at the

frame level.

2.3.3 Pitch parameter estimation

Given the results of lyrics alignment, the pitch parameters

are iteratively estimated so that the synthesized F0 can be-

come closer to the target F0. After the note number of each

MIDI note number

62

68

66

64

10 20.5 1.5 time [s]
t a k it om ad och i r uLyrics

Target singing

F0
 [s

em
ito

ne
]

Figure 4. F0 of the target singing and estimated note numbers.

P
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DYN = 127
DYN = 96

DYN = 32

Target singing
Synthesized singing

time [s]
t a k it om ad och i r u

10 20.5 1.5
Lyrics

A

Figure 5. Power of the target singing and power of the singing

synthesized with four different dynamics.

note is estimated, PIT and PBS are repeatedly updated by

minimizing a distance between the target F0 and the synthe-

sized F0.

The note number Note# for each note is estimated by

Note# = argmax
n

(∑
t

exp

{
− (n − F0(t))

2

2σ2

})
, (1)

where n denotes a note number candidate, is set to 0.33,

and t is 0 at the note onset and continues for its duration.

Figure 4 shows an example of F0 and its estimated note

numbers.

The PIT and PBS are then estimated by repeating the fol-

lowing steps, where i is the number of updates (iterations),

F0org(t) denotes F0 of the target singing, and PIT and PBS

are represented by PIT(i)(t) and PBS(i)(t):

Step 1) Obtain synthesized singing from the current parameters.

Step 2) Estimate F0
(i)
syn(t) that denotes F0 of the synthesized

singing.

Step 3) Update Pb(i)(t) by

Pb(i+1)(t) = Pb(i)(t) +
(
F0org(t) − F0(i)

syn(t)
)

, (2)

where Pb(i)(t) is a log-scale frequency computed from

PIT(i)(t) and PBS(i)(t).

Step 4) Obtain the updated PIT(i+1)(t) and PBS(i+1)(t) from

Pb(n+1)(t) after minimizing PBS(i+1)(t). Since a smaller

PBS gives better resolution of the synthesized F0, PBS

should be minimized at every iteration as long as PIT can

represent the correct relative deviation.

2.3.4 Dynamics parameter estimation

Given the results of lyrics alignment and the pitch parame-

ters, the dynamics parameter is iteratively estimated so that

the synthesized power can be closer to the target power. Fig-

ure 5 shows the power of the target singing before normal-

ization and the power of the singing synthesized with four

different dynamics. Since the power of the target singing

depends on recording conditions, it is important to mimic

the relative power after normalization that is determined so
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Table 2. Dataset for experiments A and B and synthesis condi-

tions. All of the song samples were sung by female singers.

Exp. Song Excerpted Length Synthesis

No. No. section [s] conditions

A No.07 intro–verse–chorus 103 CV01

A No.16 intro–verse–chorus 100 CV02

B No.07 verse A 6.0 CV01, CV02

B No.16 verse A 7.0 CV01, CV02

B No.54 verse A 8.9 CV01, CV02

B No.55 verse A 6.5 CV01, CV02

that the normalized target power can be covered by the syn-

thesized power with DYN = 127 (maximum value). How-

ever, because there are cases where the target power exceeds

the limit of synthesis capability (e.g., Fig.5 A©), the synthe-

sized power cannot perfectly mimic the target. As a compro-

mise, the normalization factor α is determined by minimiz-

ing an error defined as a square error between αPoworg(t)

and PowDYN=64
syn (t), where PowDYN=64

syn (t) denotes the syn-

thesized power with DYN = 64.

The DYN is then estimated by repeating the following

steps, where Poworg(t) denotes the power of the target

singing:

Step 1) Obtain synthesized singing from the current parameters.

Step 2) Estimate Pow
(i)
syn(t) that denotes the power of the synthe-

sized singing.

Step 3) Update Db(i)(t) by

Db(i+1)(t) = Db(i)(t) +
(
αPoworg(t) − Pow(i)

syn(t)
)

, (3)

where Db(i)(t) is the actual power given by the current

DYN.

Step 4) Obtain the updated DYN from Db(i+1)(t) by using the

relationship between the DYN and the actual power val-

ues. Before these iteration steps, this relationship should be

investigated once by synthesizing the current singing with

five DYN values (= 0, 32, 64, 96, 127). The relationship

for each of the other DYN values is linearly interpolated.

3 EXPERIMENTAL EVALUATIONS

The VocaListener was tested in two experiments. Experi-

ment A evaluated the number of times manual corrections

had to be made, and experiment B evaluated the perfor-

mance of the iterative estimation under different conditions.

In these experiments, two singer databases, CV01 and

CV02, were used with the default software settings except

for the note-level properties of “No Vibrato” and “0% Bend

Depth”. Unaccompanied song samples (solo vocal) were

taken from the RWC Music Database (Popular Music [14]),

and were used as the target singing as shown in Table 2.

For the automatic synchronization of the song lyrics in

experiment A, a speaker-independent HMM provided by

CSRC [15] for speech recognition was used as the basic

acoustic model for MFCCs, ΔMFCCs, and Δpower. The

HMM was adapted with singing voice samples by applying

MLLR-MAP [16]. As in cross validation where one song

sample is evaluated as the test data and the other samples

are used as the training data, we excluded the same singer

from the HMM adaptation data.

3.1 Experiment A: interactive error repairing for lyrics

alignment

To evaluate the lyrics alignment, experiment A used two fe-

male songs that were over 100 s in length. Table 3 shows the

number of boundary errors that had to be repaired (pointed

out) and the number of repairs needed to correct those er-

rors
4

. For example, among 128 musical notes for song

No.16, there were only three boundary errors that should

be manually pointed out on our interface, and two of these

were pointed out twice. In other words, one error was cor-

rected by choosing the first candidate, and the other two er-

rors were corrected by choosing the second candidate. In

our experience with many songs, errors tend to occur around

/w/ or /r/ (semivowel, liquid) and /m/ or /n/ (nasal sound).

3.2 Experiment B: iterative estimation experiment

Experiment B used four song excerpts sung by four female

singers. As shown in Table 2, each song was tested with two

conditions — i.e., two singer databases, CV01 and CV02.

Since the experiment focused on the performance of the it-

erative estimation for the pitch and dynamics, we used the

hand-labeled lyrics alignment here. The results were evalu-

ated by the mean error value defined by

err
(i)
f0 =

1

Tf

∑
t

∣∣∣F0org(t) − F0
(i)
syn(t)

∣∣∣ , (4)

err
(i)
pow =

1

Tp

∑
t

∣∣∣20 log (αPoworg(t)) − 20 log
(
Pow

(i)
syn(t)

)∣∣∣ , (5)

where Tf denotes the number of voiced frames, and Tp de-

notes the number of nonzero power frames.

Table 4 shows the mean error values after each iteration

for song No.07, where the “×n” column denotes the number

of iterations before synthesis and the “×0” column denotes

initial synthesis without any iteration. Starting from large

errors of initial synthesis (“×0”), the mean error values were

monotonically decreased after each iteration and the syn-

thesized singing after the fourth iteration (“×4”) was most

similar to the target singing. The results for the other songs

also showed similar improvement as shown in Table 5. The

“Previous approach” column in Tables 4 and 5 denotes the

results of mapping acoustic feature values directly into syn-

thesis parameters (almost equivalent to [7]). The mean error

values after the fourth iteration were much smaller than the

previous approach. In fact, when we listened to those syn-

thesized results, the synthesized results after the fourth iter-

ation (“×4”) were clearly better than the synthesized results

without any iteration (“×0” and “Previous approach”).

3.3 Discussion

The results of experiment A show that our automatic syn-

chronization (lyrics alignment) worked well. Even if there

were a few boundary errors (eight errors among 166 notes

in No.07 and three errors among 128 notes in No.16), they

4
This table does not show another type of error where the global phrase

boundary was wrong. There were two such errors in No.16 and they could

also be corrected through simple interaction (just by moving roughly).
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Table 3. Number of boundary errors and number of re-

pairs for correcting (pointing out) errors in experiment A.

Song Synthesis Number
Number of boundary

errors after each repair
No. conditions of notes ×0 ×1 ×2 ×3

No.07 CV01 166 8 5 2 0

No.16 CV02 128 3 2 0 —

Table 4. Mean error values after each iteration for song No.07 in experiment B.

Synthesis
Mean error values (err

(i)
f0 [semitone] and err

(i)
pow [dB])

Parameters Previous VocaListener
conditions

approach ×0 ×1 ×2 ×3 ×4
Pitch CV01 0.217 0.386 0.091 0.058 0.042 0.034

Pitch CV02 0.198 0.352 0.074 0.041 0.029 0.024

Dynamics CV01 13.65 11.22 4.128 3.617 3.472 3.414

Dynamics CV02 14.17 15.26 6.944 6.382 6.245 6.171

could be easily corrected by choosing from the top three

candidates. We thus confirmed that our interface for correct-

ing boundary errors was easy-to-use and efficient. More-

over, we recently developed an original acoustic model that

was trained from scratch with singing voices including a

wide range of vocal timbres and singing styles. Although

we did not use this high-performance model in the above

experiments, our preliminary evaluation results suggest that

more accurate synchronization can be achieved.

The results of experiment B show that iterative updates

were an effective way to mimic the target singing under var-

ious conditions. In addition, we tried to estimate the param-

eters for CV01/CV02 using song samples synthesized with

CV01 as the target singing, and confirmed that the estimated

parameters for CV01 were almost same with the original

parameters and the synthesized singing with CV01/CV02

sufficiently mimicked the target singing. VocaListener can

thus be used not only for mimicking singing by human, but

also for re-estimating the parameters under different synthe-

sis conditions without time-consuming manual adjustment.

4 CONCLUSION

We have described a singing-to-singing synthesis system,

VocaListener, that automatically estimates parameters for

singing synthesis by mimicking a user’s singing. The exper-

imental results indicate that the system effectively mimics

target singing with error values decreasing with the number

of iterative updates. Although Japanese lyrics are currently

supported in our implementation, our approach can be uti-

lized for any other language.

In our experience of synthesizing various songs with Vo-

caListener using seven different singer databases on two dif-

ferent singing synthesis systems (Vocaloid and Vocaloid2),

we found the synthesized quality was high and stable
5

. One

benefit of VocaListener is that a user does not need to per-

form time-consuming manual adjustment even if the singer

database changes. Before VocaListener, this problem was

widely recognized and many users had to repeatedly adjust

parameters. With VocaListener, once a user synthesizes a

song based on the target singing (even synthesized singing

the user has adjusted in the past), its vocal timbre can be eas-

ily changed just by switching a singer database on our inter-

face. Since this ability is very useful for end users, we name

this meta-framework a Meta-Singing Synthesis System. We

hope that a future singing synthesis framework will support

this promising idea, thus expediting wider use of singing

5
A demonstration video including examples of synthesized singing is

available at http://staff.aist.go.jp/t.nakano/VocaListener/.

Table 5. Minimum and maximum error values for all four songs

in experiment B.

Mean error values (min−max)

Parameters Previous VocaListener

approach ×0 ×4
Pitch 0.168−0.369 0.352−1.029 0.019−0.107

Dynamics 9.545−15.45 10.46−19.04 1.676−6.560

synthesis systems to produce music.
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ABSTRACT 

Jazz harmony has during jazz history mainly been 
functionally based on principles of tonality derived from 
the classical and romantic periods of the 18th and 19th 
centuries. In the Evolutionary Jazz Harmony project we 
introduced a functionless harmony system that impacted 
the musical feeling in jazz compositions to imitate the 
harmonic feeling in an avant-garde way. The main features 
of that new harmony system were chords not built on any 
specific base note and not necessarily connected to the 
major/minor concept. In this project we introduce an 
automatic evaluation of the produced harmony sequences 
that both looks at each individual chord and the chord 
progression. A population of chord progressions is 
evaluated and the highest ranked ones will most likely be 
used for breeding of the offspring. 

This project is one of the sub-projects of the EJI 
(Evolutionary Jazz Improvisation) project, where we 
explore various aspects of jazz music; improvised solo, 
harmony, tune creation, algorithmic creation of piano, bass 
and drum accompaniment, communication between 
instruments etc. The results have been evaluated by a live 
jazz group consisting of professional jazz musicians. 

1. INTRODUCTION 

Jazz harmony has since the birth of jazz been functionally 
based, which means that each chord has been related to a 
base note and classified as minor or major, and optionally 
also enriched with colouring, such as: 
 
Cm, Eb7, G13b9, A7#11 
 
This situation has prevailed throughout jazz history, with 
some exceptions however. The earliest experiments with 
other kinds of harmony were made in the 1950’s by 
advanced and forward-thinking musicians like Ornette 
Coleman, Cecil Taylor, Don Cherry and others. 
Experiments have also been made during the 60’s and 70’s 
by e.g. Herbie Hancock, Miles Davis and fusion musicians 
like the Brecker Brothers. Not to mention all the 
experiments in the classical music domain during the 20th 
century from Schoenberg and onwards. 

However, from the last quarter of the 20th century a 
stagnation of the harmonic development in jazz ensued, 
and very little harmonically essential has occurred. The 
Automatic Jazz Harmony Evolution project is an attempt to 
break the ice and open new dimensions in harmonic 
thinking. Persichetti [11] has made a harmony study that 
has been a valuable resource in this project. Pachet [10] 
has designed a system for rhythm and harmony evolution, 
however without the automatic evaluation feature of this 
project. 
The Automatic Jazz Harmony Evolution project uses a 
non-functional harmony philosophy (no specific base note 
and not necessarily connected to the major/minor concept), 
where the “chords” are built up by means of the computer 
using evolutionary principles. 
The produced chord progressions are used by the 
automatic jazz composer function described in another 
paper to produce tunes, and by the generative jazz 
improvisation program to produce jazz solos based on this 
kind of harmony. Some of these papers are still work in 
progress but others have been published. There are some 
publications written by the author that provide valuable 
background information to this project [1,2,3]. 
Dahlstedt [4,5], Dean [7], and Thywissen [14] have made 
valuable contributions in the same area and have been 
sources of inspiration for this project. 

2. BACKGROUND 

The harmony organization in jazz has already from the 
beginning and during its first two decades of the 20th 
century been systematically organized around a tonal 
centre by fifth progressions, see Levine [8]. Blues and 
ragtime harmony mainly used simple major/minor triads at 
a distance of fifths. Swing music enriched the chords with 
sixths and ninths but the chord progressions were mainly 
the same. Bebop further enhanced the chords with 
colouring such as b9, #9, #11, 13, b13 etc. and exchanged 
some chord progressions by inserting an extra subdominant 
parallel, e.g. G7 – C was replaced by Dm7 – G7 – C. 
However the focus was still on major/minor and fifth 
progressions. The main harmonic contribution of cool jazz 
and hardbop during the 50’s meant further advanced chord 
colouring. A few forward-thinking musicians began at the 
end of the 50’s to split up the harmonic foundation 
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prevailing until then, and this development continued 
during the subsequent decades under the stylistic 
classification of “modal jazz”, “avant-garde”, “free form” 
etc. To some extent current jazz musicians have adopted 
this break-up tendency. 
However, mostly in the “modern” jazz styles some 
remainders of the functional harmony principles and the 
fifth circle basis can be traced. When traditional musicians 
create compositions with new harmony, there is still a risk 
of getting stuck in conventions dictated by routine 
behaviour and idiomatic properties of the instrument. An 
evolutionary algorithm has no such restrictions but creates 
harmonies controlled by the algorithms having been 
programmed. The aim is to free oneself from traditional 
thinking and create other kinds of harmony. 
 

3. AUTOMATIC EVOLUTION 

A typical evolutionary algorithm process starts with a basic 
set of parameters, from which it creates an initial random 
population of pictures, melodies, chord progressions or 
whatever. The evaluation function then examines the 
population individuals and gives each one a score. 
Individuals with the highest score have the highest 
probability of becoming parents of the next generation. 
The breeding is done by combining the genome of two or 
more parents, optionally by applying a mutation 
somewhere in the genome. The mutation might imply a 
shift between two genome values, or a slight modification 
of a genome value. 
The principle of using evolutionary algorithms to develop 
new artistic production, enhance artistic thinking and 
stimulate creativity, first started on a broader scale in the 
digital graphics area, by forerunner Karl Sims [13]. The 
evolutionary algorithms principle is well accommodated to 
that area because when using interactive evaluation of a 
created generation, as described by Dawkins [6], you can 
swiftly scan a great number of pictures and select the best 
according to your personal preference. With audio 
material, however, the evaluation procedure is much 
slower since you will have to listen through each music 
individual produced in a generation, one at a time. The first 
experiments in the music area were made by Collin 
Johnson and Palle Dahlstedt. 
The evaluation, selection and breeding is repeated 
generation by generation until you arrive at a genome good 
enough to be used for the reproduction of artworks 
(pictures / melodies etc.). 
This process is much the same as the genetic process of 
creating a new species generation in nature, only that it 
must be sped up considerably to have a chance of being 
completed in the proper time. The number of generations 
used for one evolution session must be limited, the 
calculation of parameter values must be optimized and 

efficient to allow for a rapid development towards a good 
genome, and the fitness function must be user friendly to 
minimize tedious manual intervention. Therefore, to take 
full advantage of the strength of the evolution process in 
terms of a large population and a great number of 
generations, we have in this project made an automatic 
process, which has required a careful analysis of abstract 
items such as tension, climax, phrasing, musicality etc. 
Such a function has also been developed by the author for 
jazz improvisation solos [3]. 
The genome in this project consists of parameter values 
specifying the internal structure of each chord and the 
progress from one chord to the next. For each new 
generation one parent chord progression is combined with 
another by selecting various portions of each of the 
parents’ genomes. For each child different sections of the 
parents’ genomes are selected, optionally also by 
performing a mutation which might consist of a slight 
modification of some genome parameter values. 
 

4. METHOD 

There are a number of parameters controlling the overall 
behaviour of the genetic evolution process: 
- Number of notes per chord (4-5)- Number of notes to 
change from chord to chord (1-5). A higher value gives 
abrupt chord changes, while a lower value gives a more 
homogenous chord sequence. 
- Maximum number of half-note steps to be allowed when 
a voice moves from chord to chord; 1, 2 or 4. Also in this 
case, greater tolerance gives more abrupt chord changes. 
These parameter values can be manually set prior to 
starting an evaluation session. We have experimented with 
different settings, where the following seems to produce 
the best result: 4 notes per chord, 2 notes changed per 
chord, maximum 2 half-note steps. 
A genome consists of the absolute MIDI pitches for the 
initial chord. The pitches are randomly created within a 
specific pitch range around middle C. For each chord 
change the genome holds the number of half-note steps per 
note (fig. 1). 
 
 
 
 
 
 
 
 
 
 
Figure 1. Chord genome 
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In this case the genome will be: 
59 60 63 68 -1 0 +1 0 -1 0 -2 0 … 
 
From the beginning, an initial population of 100 
individuals (chord sequences) is created. 
Each individual is then evaluated. The evaluation of a 
chord sequence is based on the principles that small 
chromatic steps from chord to chord have the strongest 
emotionally pushing character, and that upward intervals 
tend to increase the intensity at most. Therefore, such 
characteristics will be favoured (table 1). 
 

Type of interval Contribution 
Upward minor second 3 
Upward major second 1 
Downward minor 
second 

2 

 
Table 1. Voice step scoring. 
 
The internal structure of each chord is also evaluated, 
where intervals like small seconds and quarters are 
premiered, since they tend to avoid tonal centres, while 
intervals like thirds and fifths are avoided for the same 
reason. However, within one chord, only one small second 
is allowed to avoid cluster chords. The same applies to 
quarters. Table 2 shows the contribution figures from the 
internal chord analysis. 
 

Type of interval Contribution 
Minor second 3 
Major second 2 
Fourth 1 

 
Table 2. Internal chord interval scoring. 
 
The contribution total for the entire chord sequence is 
saved for each individual of the population. The 
individuals with the highest score will most likely be 
subject to parentship for the next generation. A probability 
figure corresponding to the score of the individual impacts 
the random selection of parents. 
On breeding, the crossover is made by combining different 
sections of two parents’ genomes just like the process of 
combining DNA for species. The two parents are randomly 
selected with consideration to their probability figure based 
on their evaluation score. This means that the figures (e.g. -
1, 0, 1, 0) are taken from one of the parents from the 
beginning of the genome, up to the randomly selected 
break point, from where the remaining figures are taken 
from the other parent. 
At the end of the breeding a mutation is made by amending 
a few values one step up or down, so -1 might be -2 or 0, 
etc. 

When a child has been created in this way, it is evaluated 
as described above. If the child's score exceeds that of the 
worst parent, it will replace that parent, which is discarded. 
If the created child is worse than the worst individual of the 
population, the child will be discarded. Thus, the elitism 
principle is used, which means that a created child, if kept, 
will always improve the quality of the entire population. 
In this experiment 1000 iterations are used in each run. The 
solution acquired should not be considered a global 
optimum. In relation to the evaluation function we can not 
even be sure that we have arrived at a local optimum, since 
further iterations might have given still a better score. 
Maybe a larger number of iterations could result in a still 
better solution, but by experimentation we have found 
1000 iterations enough. 
At each run we arrive at a new “near-local-optimum”, and 
selection of the best of all solutions is a question of 
personal taste.  
The program code is written in C++, including the MIDI 
compiler function, which makes it possible to use any 
media player to listen to the produced MIDI files, and also 
import them into a note editing program, such as Sibelius. 
The resulting chord progression is also stored in an ASCII 
file in a format possible to copy to the project folder for 
jazz improvisation solos [1,3]. 

5. EXPERIMENT EXAMPLE 

In this test run, one of the initial individuals had the 
genome shown in table 3. 
 
 
58 
59 
62 
69 

-1 
-1 
 1 
 0 

1 
1 
0 
0 

0 
0 
1 
0 

-1 
 0 
 0 
 0 

-1 
-1 
-1 
 2 

-1 
 0 
 0 
 0 

 0 
-1 
 0 
 0 

 0 
 1 
 0 
 0 

-1 
 1 
 1 
-1 

 1 
 0 
 0 
 0 

 1 
 0 
 0 
 0 

 
 1 
 1 
-1 
 0 

-1 
 0 
 0 
 1 

 0 
 1 
 0 
-1 

0 
1 
0 
1 

1 
0 
0 
0 

0 
0 
1 
0 

0 
1 
0 
0 

 0 
-1 
 0 
 0 

 0 
 1 
 0 
 0 

 1 
 0 
 0 
 0 

 0 
 0 
 1 
 0 

 0 
 0 
 1 
 0 

 
Table 3. Experiment genome example. 
 
The genome example corresponds to the first bars of the 
score shown in figure 2. 
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Figure 2. Experiment genome example. 
 
Here is a link to the sound file: 
http://oden.ei.hv.se/kjell/porto/Chords1.wav 
Figure 3 shows the score after mutation (the mutations are 
indicated by X in the score). 
 

 
Figure 3. Score after mutation. 
 
Here is a link to the mutated sound example: 
http://oden.ei.hv.se/kjell/porto/Chords2.wav 
Figure 4 shows the score after 1000 iterations. 
 

 
Figure 4. Score after 1000 iterations. 
 
The sound file link for the score in figure 4 is: 
http://oden.ei.hv.se/kjell/porto/Chords3.wav 
 
The system also creates a scale per chord, which is used as 
basis for creating the tune and as basis for improvisations. 
Figure 5 shows the scales for the first chords. 

 

 
 
 
Figure 5. Scales for the first chords. 
 
One of the EJI sub-projects uses an algorithm for creation 
of a tune based on the chord progression and scales. That 
sub-project has not yet been completed, but a prototype has 
been developed, and the full algorithm will be documented 
in the future. Figure 6 shows the score for a tune generated 
by the prototype: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The generated tune. 
 
The following link gives the complete tune with chords, 
melody and improvised solos: 
http://oden.ei.hv.se/kjell/porto/Tune.mid 
The drum, bass and piano accompaniment in this sound 
example are algorithmically created. The procedure for this 
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is documented in a paper not yet published. Further 
documentation will follow on this link: 
http://oden.ei.hv.se/kjell/eji/eji.htm 
A similar tune has been rehearsed and recorded by our live 
jazz group. The following link gives a recorded jam 
session: 
http://oden.ei.hv.se/kjell/trio/Random2.mp3 

6. RESULTS 

Chord progressions created this way provide the feeling of 
a continuous progress towards new heights without arriving 
at rest points, which is the case with traditional functional 
harmony, where some chords have a striving character to 
dissolve into tonics. Compare the chord sequence of a tune 
like ‘Autumn Leaves’: 
 
Am7 D7 Gmaj7 Cmaj7 
 
F#m7b5 H7b9 Em7 Em7 
 
There is an intermediate rest point at the chord Cmaj7 and 
then a final rest point at Em7. These rest points provide a 
relaxation at various positions of the tune, which gives a 
periodic character. Such relaxation points are not found in 
tunes with the new kind of harmony. Whether this depends 
on what people have been used to for a long time, or real 
built-in features of the functional harmony, is another topic 
not discussed here. Our conclusion is that this new kind of 
harmony has an on-going forward-striving feature not 
prevalent in standard jazz harmony. 
Compared to manual evaluation, where you have to listen 
to each generated individual, one at a time, the automatic 
evaluation has a number of advantages. We can have a 
much larger population, the evaluation criteria are kept 
strictly constant i.e. we do not change focus on the 
objectives of our evolution process, and the evolution 
process is rapid. Of course there are also drawbacks with 
automatic evaluation. It is difficult, if at all possible, to 
make the computer evaluate abstract concepts such as 
musicality, tension, expectation, climax, relaxation etc. 
Anyway, with the automatic evaluation we obtain results 
that might not otherwise have been discovered. 
When jamming with a jazz group on tunes with this new 
type of harmony, it has the effect on the soloist of 
continuously proceeding towards a climax never 
completely reached. The soloist is compelled to go on and 
on and on. The listener will be involved in this forward-
striving feeling of wanting more all the time, and this is an 
interesting feature that some people might find valuable. 
When I experimented with these ideas in a live jazz group, 
it turned out that the musicians had apparent difficulties in 
keeping chords and scales in their minds during their solos, 
since they had to learn completely new chords and scales. 
The harmony was of a kind that they could not apply their 

current knowledge and personal routine and not trust old 
learnt patterns of behaviour. Clever and experienced 
musicians appeared to be relative beginners, at least during 
the first rehearsals. Difficulties became obvious especially 
when playing tunes with an odd periodicity where a chord 
could last for 3 bars and the next chord for 2 ½ bar, etc. So 
the time required for rehearsal tended to grow remarkably. 
For example the bassist, who normally bases his walking 
bass paths on a base note accentuated at the first beat of 
each bar and scale walking at the remaining beats, got into 
problems when there was no specific base note. Learning 
to play this new kind of music is a laborious task that 
requires a new way of thinking and a lot of practice and 
patience. 
Furthermore, to find the most adequate way of playing, a 
lot of time in discussion and reflection has been used in the 
acoustic live jazz group. For instance, a great deal of 
cooperative work has been spent by accommodating the 
bassist’s notes and the piano chord layout to each other. 

7. CONCLUSIONS AND FUTURE WORK 

Do evolutionary algorithms provide any valuable artistic 
material? At least some sounding examples are of interest 
and provide unpredictable and novel artistic output. A jazz 
tune composer often uses standard chord progressions 
learnt during a long time of practicing and concerting. He 
relies on routines built up through repeated usage of similar 
chord colouring. 
The new harmonic system presented in this paper provides 
a tool for creating a new kind of harmonic base by means 
of evolutionary algorithms and automatic evaluation, 
enabling us to take full advantage of the powerful 
evolution process by virtue of hugh populations and a large 
number of generations. The resulting harmonic schemes 
can be used as a foundation for new jazz tunes and for 
exploring the world of jazz improvisation. 
It may appear paradoxical to use tonal rules to build atonal 
music as implemented in the evaluation process (avoiding 
thirds and fifths), but since we during several hundred 
years have grown accustomed to tonal music, we have 
chosen to originate from that culture when designing the 
evaluation rule system. This may however be changed in 
future development, and we will welcome any feedback 
from the reader about the design of the evaluation process. 
The main purpose of using computer based support to 
produce jazz music is that it opens your mind to new ways 
of thinking and frees you from old habits of reflection. 
Hopefully it can enrich your harmonic and improvisation 
style with new kinds of musical material. 
However, introducing a new way of thinking revolutionizes 
the musical habits of experienced musicians. Such a new 
system requires considerable time for reflection and 
rehearsal, which has been proved by experience and 
discussions in the live jazz group. However, Psyche et al 
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[12] verify that learning a new musical grammar could be 
done by repeated exposure. 
The project described in this paper is a subproject to the 
entire EJI (Evolutionary Jazz Improvisation) project, where 
we work with algorithmic production of jazz harmony, jazz 
tunes and jazz improvisation. The results of this subproject 
will be used for future EJI work which will be documented 
on the EJI web page http://oden.ei.hv.se/kjell. 
Our plans are for instance to experiment with the 
application of PSO (partical swarm optimization), ACO 
(ant colony optimization), simulated annealing, 
multiobjective optimization, neural networks, artificial 
intelligence and other types of heuristics in jazz music 
creation. This work has been initiated with promising 
results. 
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ABSTRACT 

Different aspects of music performance have been 

quantified by a set of descriptor parameters, which try to 

incorporate the resources used by the performer to 

communicate his/her intention of expressiveness and 

intelligibility. The quality of note transitions are quite 

important in the construction of an interpretation. They are 

manipulated by the performer by controlling note 

durations and the quality of attacks and note groupings. 

These characteristics can be modeled by parameters that 

may describe what happens between the notes of a musical 

sentence, which attempt to represent how we perceive note 

articulations and groupings of legato or detached notes. On 

the other hand, the quality of transitions between legato 

notes may be related to the musician's abilities, to the 

reverberation characteristics of the performance room and 

to the acoustic characteristics of the instrument. This text 

illustrates methods of extraction and definition of 

descriptor parameters related to the quality of transitions 

between notes, which are capable to reveal relevant 

aspects about the accomplishment of these transitions. The 

procedures here described integrate a model of analysis of 

the expressiveness of performance in monophonic musical 

instruments. The samples used consist of recordings of 

interpretations of excerpts of the classic repertoire for solo 

clarinet. 

1. INTRODUCTION 

The comprehension of the processes involved in the 

production and perception of an expressive performance 

has been approached by models that quantify the player’s 

expressive intentions upon acoustic information. Studies 

on musical expressiveness have demonstrated that 

musicians use small variations of duration, articulation, 

intensity, pitch and timbre to communicate to the listener 

aspects of the music that they interpret [2, 3]. By 

comparing performances of different musicians as well as 

different interpretations by the same musician, these 

deviations can be perceived with a surprising clarity, even 

by non specialized listeners. The quantification of the 

interpreter’s expressive intentions upon such deviations 

involves the identification and measurement of a set of 

descriptor parameters defined and calculated from 

information extracted from the audio signal of the 

recorded musical performance. In order to incorporate 

different aspects of the resources used by the performer to 

communicate his/her intention of expressiveness and 

intelligibility, these parameters may be established for 

different segmentation levels, such as musical notes, 

groups of notes, specific areas in the extent of a same note 

or in the transition between consecutive notes. 

1.1. Transitions between Consecutive Notes 

Characteristics related to the quality of the transitions 

between consecutive notes are decisive in the construction 

of an interpretation. They are manipulated by the 

performer by controlling note durations and the quality of 

attacks and note groupings. These characteristics can be 

modeled by parameters that try to describe the ephemeral 

sonorities that happen between the notes of a musical 

sentence, as an attempt to represent how we perceive note 

articulations and groupings of legato or detached notes. 

The quality of transitions between notes may be related not 

only to the performer’s intention, but also to his/her 

musical skills, to reverberation characteristics of the 

performance room and to acoustic characteristics of the 

instrument.  

During the short period of time of a transition between 

two consecutive notes of a musical phrase, inharmonic 

sounds or strange frequencies to both of the involved notes 

can occur. On the clarinet, occurrences of lower 

frequencies in low levels of intensity are very common in 

passages of fast and long range leaps or between different 

registers. This kind of sonority was explored by Carl 

Maria von Weber in the Minuet of his Grand Quintetto in 

B flat Major op. 34 for clarinet and string quartet. The 

clarinet plays a three-note arpeggio, in which a leap from 

B 4
1
 (the instrument’s longest vibration mode), to A 5 

(vibration mode confined in a small portion of the tube) 

                                                          
1

As written for B flat clarinet.
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produces an F 4, that seems to be a sub-harmonic of A 5. 

While this is not well perceived as a pitch, this three-note 

arpeggio enhances the color of a dominant seventh chord 

(G-B-D-F), in which the A 5 on the clarinet works as a 

passing tone. Weber repeats the same arpeggio transposed 

up a minor third, a passage acoustically similar and with 

the same characteristic sonority. Did Weber hear this "sub-

tone" as a the seventh of this dominant chord (Figure 1)? 

Figure 1. Sonogram of three-note arpeggio of the Minuet 

of the Grand Quintetto in B flat Major op. 34 for clarinet 

and string quartet by Carl Maria von Weber, showing a 

sub-harmonic pitched F during the leap from B 4
1
 to A 5 

(indicated by arrows).  

Such sonorities can be found quite often in the clarinet 

repertoire. Bohuslav Martinu in his Sonatina for Clarinet 

and Piano and Alban Berg in the last of the Four Pieces 

for Clarinet and Piano Op. 5, explored the sound of fast 

passages between the lower and mid registers of the 

instrument. In Clarinet Threads for clarinet and tape, 

Denis Smalley explores the spectral morphologies of these 

sonorities by asking the player to reduce air and lips 

pressure. These sub-tones, which constitute the thematic 

material of the work, can only be produced in very low 

intensity levels. The balance of dynamic level is 

guaranteed by electronic amplification of these sounds. 

                                                          
1

As written for B flat clarinet.

This text illustrates methods of extraction and definition 

of descriptor parameters related to the quality of 

transitions between consecutive notes, that may describe 

not only the degree of the musician's intentional 

manipulation of note articulations, but also aspects related 

to the musician's ability in accomplishing legato transitions 

and to acoustic characteristics of the instrument. The 

procedures here described integrate a model of analysis of 

the expressiveness of performance in monophonic musical 

instruments. The used samples consist of recordings of 

interpretations of excerpts of two major pieces from the 

traditional classic repertoire for solo clarinet. 

2. METHODS 

2.1. Materials 

The compositions used in this study were the Quintet for 

Clarinet and String Quartet in A Major Kv 588 and the 

Concert for Clarinet and Orchestra in A Major Kv 622, 

both by W. A. Mozart. 

Different solo performances of excerpts from these 

pieces were recorded without the accompaniment, in the 

same day, under the same conditions of acoustic 

environment and equipment. Four different professional 

clarinetists, 2 of them members of the Philharmonic 

Orchestra of …(my state), performed each excerpt 3 times, 

in different ways, according to the instructions:  

- Performance P1 – an expressive performance, as 

in a concert situation, in which the piece would 

be played entirely. 

- Performance P2 - without any expression 

intention, but trying to adopt the same tempo of 

P1.

- Performance P3 - an expressive performance, as 

in the first execution, however with different 

expressive intentions. 

2.2. Segmentation 

The first step for an appropriate estimate of descriptor 

parameters is to segment the signal into events to be 

analyzed, such as musical notes, note groups, or specific 

regions within a single note. Segmentation is not a trivial 

problem, even on monophonic musical signals, especially 

if we consider the subjectivity in the discrimination of 

these events. Note onsets and offsets were detected on the 

RMS envelope averaged for 23 ms using an adaptive 

threshold, as suggested by De Poli [1], calculated as the 

average energy in a certain neighborhood (1 s for a step of 

6 ms) of each point of the RMS. Onset and offsets are 

detected by searching the minimum RMS between two 

consecutive values crossed by this dynamic threshold. The 
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estimate of the fundamental frequency changes, with a 

pitch threshold below a half tone, helped the segmentation 

in cases where the detection of onsets and offsets was not 

possible by means of energy level only, such as legato 

notes. 

Figure 2. Detection of note onsets and offsets on the 

RMS envelope using a dynamic threshold calculated as 

the average energy surrounding each point of the RMS   

(1 s for a step of 6 ms). Onset and offsets are detected by 

searching the minimum RMS between two consecutive 

values crossed by this threshold. 

The end of attack was defined as the first amplitude 

maximum after the note onset, and the beginning of 

release, as the first amplitude maximum before the note 

offset. These points were detected by searching for 

maximum variations of the first derivative of the RMS 

signal. It doesn't exist in the literature a measurement 

method that can describe the attack unequivocally [4]. This 

definition of attack is adequate to describe the attack in 

most situations, but further consideration was necessary in 

cases where maximum amplitude was reached much later 

in the sustained segment of the note.  

The presence of transients during note transitions makes 

possible the use of spectral flux to detect the end of attack, 

since this point can be related to the reestablishment of 

harmonics amplitude correlation after note transitions: 
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where rp,p-1 is the correlation coefficient among spectral 

amplitudes calculated at instants  tp and tp-1 of the signal of 

duration T.

The spectral flux confirmed most of the end of attack 

estimated by energy local maxima and was also able to 

detect these points where the energy method was not.   

2.3. Descriptors for Note Transitions 

In order to analyze the quality of the transition between 

consecutive notes two descriptors were defined: 

articulation index and legato index. Some aspects of the 

quality of note transitions are related to the performer’s 

intentional manipulations of note articulations, which are 

well controlled by the musician by manipulating note 

durations and attack quality. Hence, articulation is 

considered to be closely related to the performer’s 

intentions of expressiveness and intelligibility. 

The articulation index, defined as the ratio between note 

duration DR (time interval between note onset and offset) 

and the time interval between both note onsets (known as 

intra-onset-interval - IOI), was used to describe the 

intentional manipulation of note duration, by the 

performer: 
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This index is appropriate to describe transitions 

between detached notes, usually produced in the clarinet 

with abrupt interruptions of the air flow by slightly beating 

the tongue on the reed. With this action, the player 

controls the quality of the attacks as well as the duration of 

each note. It should be pointed that the performer’s ability 

to control note duration depends closely on the ambience 

reverberation conditions. 

On the other hand, this index is not adequate for 

describing the legato transitions, since it assumes values 

close to 0 for most legato notes. 

2.4. Legato Index 

Legato notes on the clarinet are produced by means of a 

single blow without interrupting the air flow during the 

transition. To investigate the quality of transitions between 

notes played with the intention to be legato, we used a 

descriptor suggested by Maestre [4], defined as a 

comparison to an ideal legato between 2 notes without any 

decrease of energy, represented by the straight line traced 

from the beginning of release of a note to the end of attack 

of the subsequent note. The index is calculated by means 

of the area A1 between this line and the energy curve and 

the total area A1 + A2 below this straight line: 
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r being the line traced from the beginning of release of a 

note to the end of attack of the subsequent note. 

This index appears to be related to the musician's 

abilities, to the ambience reverberation conditions and to 

the acoustic characteristics of the instrument.  
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3. DISCUSSION 

3.1. Articulation Index 

The capability of these two descriptors to represent the 

note transitions of a musical phrase played in a 

monophonic instrument is illustrated below with the first 

sentence of the main theme of the first movement of the 

Quintet for Clarinet and String Quartet in A Major Kv 588 

by W. A. Mozart, bars 118 through 124 (Figure 3). 

Figure 3. First sentence of the main theme of the first 

movement of the Quintet for Clarinet and String Quartet in 

A Major Kv 588 by W. A. Mozart (bars 118 through 124). 

Figure 4 shows the evolution of the articulation index of 

the note transitions along performances P1 and P2 of the 

first five bars of the phrase of Figure 3, by one of the 

clarinetists. It can be observed that all transitions up to 13 

(between the first 2 eighth triplets G-C of the 5
th

 bar) 

present index values below 10 % for both performances. 

This is because all these notes were played legato, with the 

exception of some soft articulations. Transitions 14 

through 18 of performance P1 presented index values 

varying from 15 % to 26 %. In this performance, all these 

notes were articulated, while in performance P2 the triplets 

arpeggio was played legato up to the high C (adopted 

articulation is shown in the upper part of Figure 4). 

P1

P2

Figure 4. Articulation index of performances P1

(continuous line) and P2 (traced line) of the first 5 bars of 

the main theme of the first movement of Mozart Clarinet 

Quintet Kv 588, by the same musician (adopted 

articulation shown on the top). 

As expected, this index was not adequate for describing 

transitions between legato notes, as the smooth 

articulations performers use to define phrase boundaries, 

such as transition 8 (D of the end of third bar to B of the 

beginning of the fourth bar). Despite the perceptual 

evidence of the articulation produced in performance P1 in 

this transition, the index scored only 7 %, which appears to 

show that this index is not adequate for describing quasi 

legato articulations. 

3.2. Legato Index 

Figure 5 shows the legato index of performances P2 

(musician instructed to play with no expression) and P3 of 

the first 4 bars of the same excerpt and by the same 

clarinetist of Figure 4. Lower values of this index confirm 

the phrase articulations at transitions 4 and 8, evident in 

both performances. Performance P3 presented over all 

lower values than performance P2. This might be 

explained by consistent energy variation along the whole 

sequence of legato notes in performance P3 (played with 

expression), which was not only clearly audible, but also 

confirmed by the RMS curve. Although it is well known 

that a good legato on the clarinet is achieved with a very 

uniform blow with minimal fluctuation of the air pressure, 

consistent intensity variation, as heard in performance P3,

is not rare in “molto expressive” performances, in which 

the varying air pressure compromises the legato quality.  

Figure 5. Legato index of performances P2 (continuous 

line) and P3 (traced line) of the first 4 bars of the main 

theme of the first movement of Mozart Clarinet Quintet 

Kv 588, by the same musician. 

A sudden increase of the legato quality could be 

observed at transitions 5 and 9, which come right after 

both articulations phrase at transitions 4 and 8. Such 

increase, observed in several alike passages, might be 

explained by the fact that right after an interruption of the 

air flow to produce the articulation, it seems to be easier to 

build a more uniform air pressure for the subsequent note 

transition. Figure 6 shows another example of this at 
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transition 5 of both performances P2 and P3 of the same 

excerpt by another clarinetist. Note that this player decided 

not to articulate transition 8, despite the natural articulation 

of this phrase, marked by harmony change to the 

dominant. 

Figure 6. Legato index of performances P2 (continuous 

line) and P3 (traced line) of the first 4 bars of the main 

theme of the first movement of Mozart Clarinet Quintet 

Kv 588, by a second clarinetist. 

Figure 7 illustrates another example of such behaviors 

of this index in fast note transitions (6/8
th

 measure at 96 

BPM): performances P1 and P2 of the first sentence (6
th

 to 

13
th
 notes) of the third movement of Mozart Clarinet 

Concerto Kv 622, played by the second clarinetist. Better 

legato quality could be also observed in the non expressive 

performance, as well as at transition 7, which comes right 

after the phrase articulation of transition 6. 

Figure 7. Legato index of fast note transitions: 

Performances P1 (continuous line) and P2 (traced line) of 

notes 6
th

 through 13
th
 of the third movement of Mozart 

clarinet Concerto, played by the second clarinetist (6 / 8
th

measure at 96 BPM). 

4. CONCLUSION 

This paper presented quantitative ways (namely, 

articulation index and legato index) to measure and 

compare transitions between notes, as performed by four  

clarinetists in three different ways. The articulation index 

allowed a description of the degree of the musician's 

intentional manipulation in the accomplishment of 

articulation between notes. 

Measures of the legato index made possible to infer 

about the quality of transitions between notes executed 

with the intention to be legato. These results suggest a 

dependence of the value of this index to aspects related to 

the musician's ability to play legato notes as well as to 

acoustic characteristics of the instrument, as it 

corroborates many aspects of practical experiences in 

playing and perceiving legato notes. 

Higher variance of the legato index was evident for all 

expressive performance, when compared with non 

expressive performances. However no single pattern could 

be derived from these variations. Possible correlation 

between this index with the degree of some aspect of 

musical expressiveness, may suggest the adequacy of this 

descriptor for music expression investigations. 
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ABSTRACT

This paper presents a novel system that allows the user to

customize playback facilities in our computer-assisted envi-

ronment, PWGL. The scheme is based on a class hierarchy.

The behavior of an abstract root playback class containing a

set of methods can be customized through inheritance. This

procedure is demonstrated by a subclass that is capable of

playing MIDI data. This playback device allows to realize

automatically multi-instrument and micro-tonal scores by

using pitchbend setups and channel mappings. Also contin-

uous control information can be given in a score by adding

dynamics markings and/or special Score-BPF expressions

containing break-point functions. We give several complete

code examples that demonstrate how the user could further

change the playback behavior. We start with a simple play-

back device that allows to override channel information.

Next we discuss how to implement the popular keyswitch

mechanism in our system. This playback device is capable

of mapping high-level score information with commercial

orchestral database supporting keyswitch instruments. Our

final example shows how to override the default MIDI out-

put and delegate the play events to an external synthesizer

using OSC.

1 INTRODUCTION

Computer-assisted composition (CAC) systems ([1], [2],

[3]) have not focused on advanced playback facilities. Users

can typically audition scores and other musical raw-material

through basic MIDI playback routines that support simple

note-on, note-off, pitch and velocity data. A notable ex-

ception of this rule are special cases to handle micro-tonal

playback which is not well supported by the MIDI standard.

Commercial notation software packages (Sibelius, Fi-

nale, Igor), by contrast, do support tools that allow the user

to audition orchestral scores. With the advent of recent high-

quality orchestral sample databases (EastWest, Vienna In-

struments, Garritan) and/or instrument synthesizers (Wal-

lander Instruments, Synful) orchestral simulations are get-

ting more and more convincing. Thus notation software

SMC 2009, July 23-25, Porto, Portugal

Copyrights remain with the authors

systems combined with orchestral playback facilities have

quickly become everyday tools for composers and arrangers

not only in the film industry but also for musicians belong-

ing to the contemporary music genre.

In this paper we investigate possibilities that would al-

low the user to combine various playback options, such as

micro-interval playing and orchestral simulation in a CAC

environment. Also the output would not be bound to a given

orchestral database (as is the case in several notation sys-

tems where the samples are bundled with the application).

The user should be able to customize playing routines for

different libraries and synthesizers, and the control output

does not necessarily have to be MIDI-oriented.

PWGL has a long history in controlling physics-based

instruments [4] using our notation package ENP [5]. This

research has resulted in several tools that allow to enrich

basic score information, such as performance rules, script-

ing, tempo functions, and an enhanced set of expressions

that can be inserted in the score either algorithmically or

by hand. Other special extensions, such as the macro-note

scheme [6], allow the user to further modify and enrich ba-

sic score information. Sound examples can be found at:

www.siba.fi/pwgl/pwglsynth.html.

In the following we will concentrate on a novel extension

of the PWGL system that allows the user to define the be-

havior of the playback engine. Each time the user starts to

play a score the current playback device is evoked. PWGL

contains a library of predefined playback devices. This li-

brary is written in Common Lisp and CLOS and it can be

extended by subclassing one of the existing playback device

classes. Multiple inheritance can also be used to combine

features from several superclasses in the system. All play-

back devices support a standard protocol having four main

steps: (1) the system first calls an initial preparation method,

(2) then it collects the actual playback information, (3) next

a setup method is called, and finally (4) the collected data is

sent to the current output device.

The rest of the paper is organized as follows. First we

give some background information concerning the general

playback device scheme in PWGL. Then we discuss in more

detail the current status, and enumerate which devices are

already present in the system. After this we describe case

studies that will show how the user can override the default

behavior in order to customize her/his needs for auditioning
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of musical scores.

2 GENERIC PLAYBACK DEVICE CLASS AND ITS

METHODS

Our playback system is based on a hierarchy of CLOS

classes. At the root we have a generic class called ’pwgl-

playback-device’. This class definition contains a set of pri-

mary methods to support the four main steps used by the

playback scheme. Typically, the user should not override

the primary methods (although this is also possible), but

should instead redefine the secondary methods. The sec-

ondary methods have identical names as the primary ones

except for an extension ’*’ at the end of the name. Next we

enumerate the most commonly used methods in the play-

back scheme.

The method ’prepare-playback’ is used to prepare score

playback before event calculation. This method can be used

to open a sample player application, load sound samples,

prepare an instrument setup, etc.

After this initial phase the system starts to collect play

data. By default it checks whether the current score has a

selection or not (note that ENP also supports discontinuous

selections). If a selection is found then only those notes that

belong to the selection are considered, otherwise all notes

are collected.

After this the system calls for each collected note the

methods ’add-playback-cc-events’ and ’add-playback-note-

event’. The first one is used to collect continuous control

information, and the second one is used for note events. (Be-

fore the ’add-playback-note-event’ also the special method

’add-playback-note-pre-event’ is called; we will come back

to this method later in this paper in Section 5.) These meth-

ods are similar as they should at the end collect association

lists (a list containing keyword/data pairs) that are meaning-

ful for the current playback output. For instance if the play

information is sent to MIDI then a note event list should

contain information dealing with bus (port), status, key and

velocity. Internally the ’add-playback-note-event’ method

calls the ’calc-playback-event’ method that builds the asso-

ciation list based on the data that is returned from the ’calc-

playback-chan/midi’ and ’calc-playback-vel’ methods.

Next, the system calls the ’setup-playback’ method that

is called after event calculation and before playback. This

method can be used, for instance, to send volume and pitch-

bend information just before playback.

Finally, the realtime playback starts and for each event

data list the system calls ’send-playback-event’. Normally

the method simply utilizes the pre-calculated association

lists and sends the appropriate information to the current

playback output.

3 THE DEFAULT PLAY DEVICE

As such ’pwgl-playback-device’ is an abstract class and

should be subclassed in order to be functional. In this sec-

tion we outline a typical subclass that is specialized for

MIDI output. This class is called ’midi-playback-device’,

and it is in fact the default play device in PWGL. ’midi-

playback-device’ has several options for output. First, the

final output can either be a realtime stream of MIDI events

or a MIDI file. Second, PWGL supports also a special mode

for Mac OS X users where play data can be sent directly to

a QuickTime synthesizer.

3.1 Micro-tonal playing

’midi-playback-device’ supports up to eight MIDI buses or

ports (in PWGL a note can have a channel number ranging

from 1 to 128, where by default channels from 1 to 16 are

sent to port 1, channels 17-32 to port 2, and so on).

During the setup phase ’midi-playback-device’ calls the

’setup-playback’ method that has two main tasks. First, the

user has an option to send a default MIDI volume value to

each channel. Second, ’setup-playback’ sends pitch-bend

data to detune channels in order to support micro-tonal play-

ing. This is done by first analyzing the pitch information of

the current score. If the score requires quarter-tone tuning

then even-numbered channels are detuned by 50 cents; in

case of eighth-tone tuning cannel 2 is detuned by 50 cents,

channel 3 by 25 cents and channel 4 by 75 cents, and so

on. Based on the micro-tonal content the mapping of MIDI

channels is done as follows: if the score is in equal tem-

perament (i.e. there are no micro-tones), then note channel

numbers will not change, i.e. channel 1 is played on chan-

nel 1, and so on; if the score requires quarter-tone resolution

then notes with channel number 1 are delegated either to

channel 1 or 2 depending on the pitch content, notes with

channel 2 are delegated to channel 3 and 4, and so on; in

case of eighth-tone resolution notes with channel number 1

are delegated to channel 1, 2, 3 and 4 depending on the pitch

content, and so on.

This scheme with detuning and channel delegation is

transparent to the user and it allows to play micro-tonal

and multi-instrument scores automatically. As the system

supports 128 channels we have a theoretical upper limit of

1/256-tone resolution for micro-tonal tuning. If the user

needs multi-instrument scores, this limit is of course low-

ered as each instrument needs a dedicated set of channels in

a micro-tonal context.

During the event data collection phase ’midi-playback-

device’ calls the method ’calc-playback-event’ that per-

forms MIDI port, channel and pitch mapping as described

above and returns an association list of raw MIDI data that is

optimized for realtime playing. Finally, the ’send-playback-

event’ method utilizes this information and calls in realtime
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/midi-cc

Figure 1. Continuous control options in ENP: (1) crescendo

and diminuendo expressions, (2) Score-BPF expression

containing a break-point function.

the low-level MIDI event routines in order to output the final

MIDI data.

3.2 Continuous control

’midi-playback-device’ supports also MIDI continuous con-

trol information. The PWGL preference pane has an option

that allows to convert automatically ENP expressions to a

stream of continuous control MIDI events. Figure 1 shows

a two-part score that has several interleaved crescendo and

diminuendo markings. When a dynamics expression is en-

countered in the score during the event calculations phase

the ’add-playback-cc-events’ method will be evoked. There

are two basic options how the dynamics expressions are in-

terpreted: (1) the system creates automatically a ramp that is

sampled to get discrete MIDI continuous control events; or

(2) the expression contains internally a break-point function

that has been edited by the user (ENP allows to open the ex-

pression and edit the internal breakpoint function with the

mouse). Continuous control information playback is also

supported by the special Score-BPF expression (see in Fig-

ure 1 the Score-BPF expression above the first staff with the

label ’midi-cc’). A Score-BPF can have up to three break-

point functions each with individual continuous control des-

ignations.

4 CHANNEL PLAYBACK DEVICE

In the following sections we discuss various case studies

where we change the behavior of the default PWGL play

device. For each case we give a class definition followed

by a redefinition of one of the methods discussed in Section

2. Finally we call ’add-playback-device’ in order to add the

new device to the PWGL playback device library.

We start with a simple case where the idea is to disregard

the standard channel information. Instead we check the ’in-

strument’ slot of the note whether it is found in a list of

woodwind and brass instruments. Working with symbolic

instrument names in conjunction with our notation tools is

often more convenient than working with abstract channel

numbers (see Figure 2). We use the Lisp function ’position’

Figure 2. A chord where each note has a different instru-

ment assignment.

to calculate the channel number (thus here ’flute’ will be

mapped with channel 1, ’oboe’ with 2, etc.).

(defclass channel-player (midi-playback-device) ())

(defmethod calc-playback-chan/midi*
((device channel-player ) (note note))

(let ((chan (position (instrument note)
’(:flute :oboe :clarinet :bassoon :trumpet
:french-horn :trombone :tuba))))

(values (if chan (1+ chan) (chan note)) (midi note))))

(add-playback-device ’channel-player "channel-player")

5 ENP EXPRESSIONS AND KEYSWITCH EVENTS

Next we discuss a generic playback class, called ’keyswitch-

player’, that is useful when working in conjunction with

orchestral databases. ’keyswitch-player’ is a subclass of

’midi-playback-device’ and thus inherits all features from

that class. The idea is to add support to the keyswitch mech-

anism supported by several commercial sample databases.

A keyswitch event is an additional note-on event where the

key value is outside the normal range of an instrument. The

keyswitch event is normally sent just before the actual note-

on event. This allows to instruct the sample database ap-

plication which specific articulation should be used for the

next normal note event. Thus, typically, a keyswitch event

having the low C0 as key value for a flute part could mean

’legato’, while D0 could mean ’staccato’, and so on.

The keyswitch mechanism is straightforward to imple-

ment in our scheme due to the ’add-playback-note-pre-

event’ method that is called just before the actual note event

calculation (Section 2). Furthermore, it fits nicely in our sys-

tem as ENP supports a wide range of expressions (see Figure

3). ’keyswitch-player’ adds two new generic methods to the

system called ’ksw-expression-no’ and ’ksw-offset-no’ that

should be refined by a subclass of ’keyswitch-player’. These

methods are used to calculate the final key value needed for

the keyswitch event.

Next we discuss a concrete problem how we can map an

instrumental score with expressions denoting various play-

ing techniques and articulations with a keyswitch instrument

found in the commercial EastWest sample library. For this

end we define a subclass of the ’keyswitch-player’ class

called ’ew-player ’. We need next to associate a keyswitch
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Figure 3. An ENP score for solo viola. The expressions are automatically mapped with correct keyswitch events.

event with an instrument (here viola) and various expres-

sions (see Figure 3). This is done by defining several ver-

sions of the ’ksw-exp-no ’ method that are specialized for

each available expression name (’pizz’, ’col-legno, ’martel-

lato’, etc.). Each method returns a unique number that–

when added to the offset number returned by the ’ksw-

offset-no’ method–is used by the keyswitch event.

(defclass ew-player (keyswitch-player) ())

(defmethod ksw-offset-no
((device ew-player) (ins viola)) 24)

(defmethod ksw-exp-no
(device ew-player) (ins viola) exp) 0)

(defmethod ksw-exp-no
((device ew-player) (ins viola) (exp pizz)) 1)

(defmethod ksw-exp-no
((device ew-player) (ins viola) (exp col-legno)) 2)

(defmethod ksw-exp-no
((device ew-player) (ins viola) (exp martellato)) 3)

(defmethod ksw-exp-no
((device ew-player) (ins viola) (exp tremolo8)) 4)

(defmethod ksw-exp-no
((device ew-player) (ins viola) (exp bartok-pizzicato)) 5)

(defmethod ksw-exp-no
((device ew-player) (ins viola) (exp con-sordino)) 6)

(add-playback-device ’ew-KSW-player "ew-KSW-player")

As the ENP instrument database is also based on a CLOS

class hierarchy (thus ’viola’ is a subclass of ’bowed-strings’)

the code above can easily be modified so that the keyswitch

mechanism is valid for all bowed string instruments, for in-

stance:

(defmethod ksw-exp-no
((device ew-player) (ins bowed-strings) (exp pizz)) 1)

6 OSC PLAYBACK DEVICE

Our final example demonstrates how we can define a play-

back device that is not using MIDI as output. This is done by

defining a subclass of ’midi-playback-device’ called ’OSC-

playback-device’. Here we want to send OSC [7] messages

to an external synthesizer (in this specific case to Super-

Collider, [8]). For this reason we redefine the ’send-midi-

event*’ method. Now, instead of calling the standard MIDI

routines, we use the association list information (’midi-

info’) collected by the event collector and convert the chan-

nel, the midi and the velocity data to OSC messages.

(defclass OSC-playback-device (midi-playback-device) ())

(defmethod send-midi-event
((device OSC-playback-device) midi-info &optional vel?)
(when-let (osc-stream (read-key :osc-stream))

(let ((chan (read-key midi-info :chan))
(midi (read-key midi-info :midi))
(vel (read-key midi-info :vel)))

(if (zerop vel)
(cl-osc:write-osc-message
osc-stream nil "/noteOff" midi chan)

(cl-osc:write-osc-message
osc-stream nil "/noteOn" midi vel chan)))))

(add-playback-device ’OSC-playback-device "osc")

7 CONCLUSIONS

The paper presents a playback scheme that allows to con-

vert high-level score information to event lists. The events

can be sent to MIDI or to external synthesizers using, for

example, the OSC protocol. The system is programmable

and through inheritance device subclasses can change the

standard behavior of the default playback device of PWGL.

This scheme offers many interesting applications such as

allowing ENP scores to control orchestral databases. The

new playback protocol, when combined with the other tools

found in PWGL (i.e. performance rules, scripting, tempo

functions, macro-notes), forms a unique system for score-

based playback control.
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