
CompScheme: A Language for Composition and
Stochastic Synthesis

Luc Döbereiner
Institute of Sonology, The Hague, The Netherlands

Abstract—In this paper, I present a programming lan-
guage for algorithmic composition and stochastic sound
synthesis called CompScheme. The primary value generating
mechanism in the program are streams, which allow the user
to concisely describe networks of dynamic data. Secondly,
I present CompScheme’s event model, which provides a
framework for building abstract structural musical units,
exemplified by showing CompScheme’s functionalities to
control the SuperCollider server in real-time. Thirdly, I
discuss CompScheme’s stochastic synthesis functionality, an
attempt to generalize from I. Xenakis’s dynamic stochastic
synthesis and G.M. Koenig’s SSP.

I. INTRODUCTION

CompScheme is a program for algorithmic music com-
position and stochastic sound synthesis written in Ob-
jective Caml (OCaml) [6]. CompScheme can be used
in two ways, as a library for developing applications
in OCaml, or by accessing its functionality interactively
through an interface language. All the code examples in
this text are written in the interface language. The primary
value generating mechanism in the program are streams,
which are a concept from functional programming, which
allow the user to concisely describe networks of dynamic
data. Streams themselves are rules for generating values.
Since streams can be combined and even used to generate
new streams, the rules themselves become the object of
composition. “Composing with rules” is thus not only
interpreted as the mere application of a rule but the actual
composition of rules, an idea that is very prominent in
functional programming if one sees rules as functions.

The interface language of CompScheme is an im-
plementation of the functional programming language
Scheme1 [1]. Instead of having a graphical environment
or a fixed work flow, where the user can either visually or
by filling out forms or questionnaires construct networks
and derive musical data, CompScheme requires the user
to have a degree of programming proficiency. By using
an elegant, popular, small, and powerful general-purpose
language such as Scheme, the user has all of its expres-
siveness and means of abstraction at his or her disposal.
The user can develop full-range programs, or make small
experiments by plugging together built-in streams and
output functions.

Internally, CompScheme consists of several modules,
which contain functions for specific fields of application.
Data generated in CompScheme can be written out in

1The implementation of the interface language is based on Schoca:
http://home.arcor.de/chr bauer/schoca.html

several ways, such as in Wav audio files, Midi files, and
binary OSC files for SuperCollider. It is also possible
to control the SuperCollider server in real-time, plot and
draw data. Furthermore, CompScheme has an event type
system, which features built-in event types, and the pos-
sibility to create custom event types by bundling named
parameters, setting default values, creating transformation
and output functions.

CompScheme runs on Mac OS X and Linux. The top-
level interpreter can run as a command line program,
in a Scheme-mode in an editor such as Emacs, or on
Mac OS X in a specially developed Cocoa-application,
which follows the usual editor-and-listener design. A
beta version of CompScheme can downloaded from http:
//sourceforge.net/projects/compscheme/.

In this text, I discuss the concept of streams, as well
as some issues and design ideas of CompScheme, which
relate to streams. Subsequently, I present CompScheme’s
event model, which provides a framework for building
abstract structural musical units. The discussion of the
event model is followed by a concrete example, the mod-
eling of the first structure of Gottfried Michael Koenig’s
piano piece Übung für Klavier. Subsequently, the ex-
pressiveness of multi-layer event streams is exemplified
by presenting CompScheme’s facilities for controlling the
SuperCollider server (SC Server) in real-time. Finally,
the last section deals with CompScheme’s functions for
stochastic synthesis. Starting from finding a generalization
of G.M.Koenig’s SSP and I.Xenakis’s Dynamic Stochastic
Synthesis, I have tried to develop a framework, which
facilities experimentation in this field. We will see that,
here, the event model is applied to a lower level, the
digital sample itself.

II. STREAMS

As H. Abelson and J. Sussman state in their book Struc-
ture and Interpretation of Computer Programs, “programs
must be written for people to read, and only incidentally
for machines to execute.”[1] Programming languages are
primarily tools to express ideas. The formal nature of
programming languages stipulates abstraction and gener-
alization. Thus, through programming the structure of an
idea may be revealed. Our means of expression shape
what we can express. As Ludwig Wittgenstein famously
formulated, “die Grenzen meiner Sprache bedeuten die
Grenzen meiner Welt.” (“The limits of my language
mean the limits of my world.”)[10] Music composition
programming languages, therefore, influence our ideas

of music. It may, thus, be argued, that the choice of a
programming language also has musical consequences.

A musical performance or playback is a continuous
stream of sound. In any computer representation this
continuum, however, is broken up into a discrete sequence
of values. The common digital representation of sound in
form of a sampled waveform, common practice musical
notation, as well as event-based higher-level musical
abstractions follow this rule. CompScheme is built around
the data type streams, which are an elegant and simple
way of dealing with sequences of values, that is widely
known, used, and “one of the most celebrated features of
functional programming.”[9] Whereas in most imperative
and object-oriented systems these sequences are usually
created by some iteration that collects the values or a
mechanism that involves change of state, streams are
persistent.

Stream processing lets us model systems that
have state without ever using assignment or
mutable data. This has important implications,
both theoretical and practical, because we can
build models that avoid the drawbacks inherent
in introducing assignment.[1]

This persistence also has advantages in musical appli-
cations. The main one, of course, is that no values are
lost and everything that has been produced, and therefore
everything that will be produced, can be referred to, which
provides the user with the possibility to look into the
“future” of a process and make decisions depending on
what is going to happen.

Streams are flexible, they can be combined, can contain
values of any kind, such as other streams or functions,
and are collections as well as generative mechanisms. In
more imperatively oriented systems, values are usually
generated with an iterative process and collected in lists.
In order to combine several processes, one has to generate
values, collect them, operate on the collection, collect
again, and so forth. Streams operate differently in that
they generate values on demand. If several streams are
combined they are piped into each other, one stream
generates as much as the next one demands. Hence,
infinite processes can easily be expressed. Streams, thus,
allow the user to concisely describe networks of dynamic
data by plugging simple parts together.

A. Finite and Infinite Streams

Most stream constructing functions in CompScheme
return infinite streams, and it is important for the user
to keep the distinction between finite and infinite streams
in mind. Some operations on streams, such as plotting a
stream, searching for the minimum or maximum element,
accessing the last element, or appending streams require
the input streams to be finite. Figure 1 shows the definition
of an infinite stream and the construction of a stream
which contains the first three elements of that stream
appended onto the stream itself in its infinite form. The
function st-first n stream limits the stream to

the first n values, it thus converts an infinite stream into
a finite one.

> (d e f i n e my−s t r e a m 1 (s t−sum 1 0))
> (f o r−example (s t−append
> (s t− f i r s t 3 my−s t r e a m 1)
> my−s t r e a m 1))
(0 1 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)

Fig. 1. Appending a finite and an infinite stream

B. “Inherited Ending”

When building networks of streams, in which streams
act as supplies for parameter values of other streams, it
is not necessary to limit the topmost stream explicitly, if
a stream in the network is already finite. In other words,
if any stream in a network of streams is finite, the whole
network is finite and contains as many elements as the
shortest stream in the network does. The stream of random
values constructed in figure 2 and displayed in figure 3
ends after 10000 elements because the parameter for the
lower boundary is a linear shape from 1 to 20, which ends
after 10000 elements.

> (s imple−p l o t
> (s t−random−v a l u e (s t−l i n e 10000 1 20) 20))

Fig. 2. Plotting the implicitly finite stream

Fig. 3. The implicitly finite stream

C. Higher-Order Functions and Streams

“The most powerful techniques of functional program-
ming are those that treat functions as data.”[9, page
171] Higher-order functions or functionals are functions,
which operate on other functions. In functional program-
ming it is common to abstract by defining functions,
which take other functions as arguments. This can help
revealing the general structure of a method. In a stream
based approach many transformations, filterings, and tech-
niques of creating variation can be expressed in terms of
higher-order functions.

Figure 4 shows the filtering of a stream of random
values. The returned stream only contains those elements
of the original stream, which fulfill the predicate x mod

12 = 0. If the numbers were to be interpreted as midi
note numbers, the returned stream would only contain the
pitch C in different registers. The function st-filter
function stream returns a stream, whose elements
are those of stream for which function is true.

> (f o r−example
> (s t− f i l t e r (lambda (x) (= 0 (modulo x 12)))
> (s t−rv 0 127)))
(48 120 72 96 72 120 60 48 60 72 72 108 24 24 12
24 36 72 36 0)

Fig. 4. Filtering a stream

Figure 5 demonstrates the function st-apply
function stream1...streamn by creating a trian-
gular random distribution. The function st-apply con-
structs a stream, whose elements are the results of suc-
cessively applying the function to the streams given. A
triangular random distribution can be created by taking
the average of two uniformly distributed random values
in the same range.

(s t−a p p l y
(lambda (x y) (/ (+ x y) 2))
(s t−rv 0 . 0 1 . 0)
(s t−rv 0 . 0 1 . 0)))

Fig. 5. Using st-apply to create a triangular random distribution

Fig. 6. A histogram of the first 10000 elements of the stream from
figure 5

D. Defining Streams

Besides using the built-in streams, the user may also
define his or her own streams. One way to do this is to
define a function for a specific stream network. In this
way, we can define a function which returns a stream of
triangularly distributed random numbers by naming the
stream described above, illustrated in figure 7.

(d e f i n e (s t− t r i r n d minium maximum)
(s t−a p p l y (lambda (x y) (/ (+ x y) 2))

(s t−rv minimum maximum)
(s t−rv minimum maximum)))

Fig. 7. A simple stream definition

If the desired stream can not be built by combin-
ing already available streams, the function st-cons
value continuation can be used. This function
builds a stream, which contains value as its first element
and continuation will be a delayed expression that
constitutes the rest of the stream. Figure 8 shows the
definition of a stream using st-cons. The first value is
start and the continuation will be built by recursively
calling st-product with the start value multiplied
by factor, thus creating an exponentially increasing
sequence.

(d e f i n e (s t−p r o d u c t s t a r t f a c t o r)
(s t−cons s t a r t

(s t−p r o d u c t (∗ s t a r t f a c t o r) f a c t o r)))

Fig. 8. A stream definition using st-cons

However, the definition shown in figure 8 has one
limitation, being that the factor is constant and cannot
be controlled using a stream. Figure 9 shows an improved
version in which the factor can be dynamically controlled
using a stream. In order to conform to the “inherited
ending” principle, one has to check first if the factor
stream is empty. For each iteration the ‘current’ value
of the factor stream is accessed using the function this
and updated for the next call using the next function,
which returns the stream without the first (i.e. ‘current’)
element. For values which are not streams, the functions
this and next act as identity functions.

(d e f i n e (s t−p r o d u c t s t a r t f a c t o r)
(i f (empty−s t r e a m ? f a c t o r)

empty−s t r e a m
(s t−cons s t a r t

(s t−p r o d u c t
(∗ s t a r t (t h i s f a c t o r))
(n e x t f a c t o r)))))

Fig. 9. A stream definition using st-cons and a stream as argument

III. THE EVENT MODEL

CompScheme’s event model provides a framework for
building abstract structural units. Musical events are most
commonly represented by bundling values for the de-
scription of parameters together. In this way, a musical
event can be seen as a list of name-value pairs. A name
may, for example, be “freq” and its associated value
the number 440. CompScheme’s event model provides
means of building name-value pairs, by defining event
types. Event types are name-value pairs which have a
name and default values. CompScheme has a number of
general functions with which values and names can be
accessed and events transformed. Events, however, do not
need to be understood only as lower-level musical events,
such as notes, messages to a synthesis processes etc., but
may as well be representations of higher-level structural
units, such as sections, passages, phrases, blocks, or entire
pieces. In that sense, CompScheme offers a simple, yet

powerful event model, which enables the free construction
and aggregation of possibly inter-dependent parametric
control structures on multiple temporal and structural
levels.

A. Simple Event Types

Figure 10 shows the definition of a simple event type
called myevent1 with three parameters, start, dur,
and freq, and default values associated.

(d e f e v e n t myevent1
(s t a r t 0 . 0)
(dur 1 . 0)
(f r e q 4 4 0 . 0))

Fig. 10. Defining a simple event type

Figure 11 demonstrates how a stream of events can
be created using the function event-stream. In this
example, the starting values are a series of numbers
starting with 0.0 and increasing by 1. The frequency
parameter is controlled by an exponentially distributed
sequence of random numbers. The duration parameter is
not controlled and will thus be the default value from the
event type definition, i.e. 1.0. It is also possible for the
user to provide more parameters than given in the event
type definition, the event will then extend automatically
and hold the additionally given values too.

(d e f i n e e v e n t s t r e a m 1
(even t−s t r e a m ’ myevent1

(s t a r t (s t−sum 1 0 . 0))
(f r e q (s t−exprand 100 .0 1 0 0 0 . 0))))

Fig. 11. Constructing an event stream

In general, it is the user’s responsibility to define in
which way an event is to be interpreted. The function
shown in figure 12 can be used to output an event of the
defined type in a Csound score file syntax with the fixed
instrument number 1.

(d e f i n e (p r i n t−myevent1 ev)
(w r i t e ”1 ”)
(map (lambda (x) (w r i t e x) (w r i t e ” ”))

(l i s t
(even t−g e t ’ s t a r t ev)
(even t−g e t ’ dur ev)
(even t−g e t ’ f r e q ev)))

(n e w l i n e))

Fig. 12. Defining a printing function

B. Higher-Level Events

CompScheme also has a number of built-in event types,
such as different midi and SuperCollider events. The func-
tions, which output midi or SuperCollider events, require
streams which contain events that contain at least all of the
parameters, which the respective built-in types have. They
may, however, contain additional name-value pairs. An

event in CompScheme is not only to be created in the last
instance, as a bundling of values before the data is written
out, but may also be a representation of a higher-level
structural element, which requires further interpretation.
Thus, a hierarchy of events may be created and top-level
or intermediate-level events and their interpretation can
be created and changed independently.

The event type defined in figure 13 stands for a higher-
level construct, a section. In this simple example, a
section has five properties: a time offset (offset), a
duration (dur), a minimum frequency (freqmin), a
maximum frequency (freqmax), and starting frequency
(freqstart).

(d e f e v e n t m y s e c t i o n 1
(o f f s e t 0 . 0)
(dur 1 0 . 0)
(f r e q s t a r t 1 0 0 . 0)
(f r e q m i n 1 0 0 . 0)
(f reqmax 1 0 0 0 0 . 0))

Fig. 13. Defining a simple higher-level event type

However, an event is only given meaning through in-
terpretation. Figure 14 shows the definition of a function,
which constructs a stream of events of the above defined
type myevent1 with the parameters from a given event
of type mysection1. The function st-until ends the
“section” when the start value of the lower-level event
stream is greater than the duration specified in the higher-
level event.

(d e f i n e (i n t e r p r e t −m y s e c t i o n 1 s e c t i o n)
(l e t ((o f f s e t (even t−g e t ’ o f f s e t s e c t i o n)))

(s t−u n t i l
(lambda (e v e n t)

(> (− (even t−g e t ’ s t a r t e v e n t) o f f s e t)
(even t−g e t ’ dur s e c t i o n)))

(even t−s t r e a m ’ myevent1
(s t a r t (s t−sum 0 . 1 o f f s e t))
(f r e q

(s t−walk
(even t−g e t ’ f r e q s t a r t s e c t i o n)
(s t−rv −200.0 2 0 0 . 0)
(even t−g e t ’ f r e q m i n s e c t i o n)
(even t−g e t ’ f reqmax s e c t i o n)))))))

Fig. 14. Interpreting the defined event

Figure 15 shows the creation of twenty sections by
creating the higher-level event stream and mapping the
interpretation function, defined in figure 14, over it. Figure
16 shows the frequencies of the twenty created sections.

This simple example demonstrates the elegance and
ease with which a number of sections can be produced
from a higher-level description. The possibility to define
abstract, higher-level structural units enables the com-
poser to establish long-term relationships among sections,
phrases, units, or blocks. It also facilitates the algorithmic
organization of form concerning decisions.

(s t−a p p l y
i n t e r p r e t −m y s e c t i o n 1
(s t− f i r s t 20

(even t−s t r e a m ’ m y s e c t i o n 1
(o f f s e t (s t−sum 1 0 . 0 0 . 0))
(f r e s t a r t (s t−rv 1000 .0 5 0 0 0 . 0))
(f r e q m i n (s t−rv 100 .0 8 0 0 0 . 0))
(f reqmax (s t−rv 100 .0 8 0 0 0 . 0)))))

Fig. 15. Controlling the higher-level event stream

Fig. 16. The event’s frequencies over their starting points

IV. MODELING STRUCTURE 1 OF KOENIG’S Übung für
Klavier

Gottfried Michael Koenig’s piece Übung für Klavier,
composed in 1969, is the first piece he realized with his
program Project 2. Project 2 was not designed for the
realization of a single piece, but as a general composition
program. As Koenig writes in the preface of the score, it is
therefore, “necessary to generalize individual composing
habits; an attempt must be made to formulate a theory –
however limited – of composition.”[3] Übung für Klavier
(Study for Piano) is thus a first test of this theory. The
word Übung, meaning ‘study’, but also ‘practice’, does
not primarily refer to the player or the instrument, but
rather to the composition of the piece; it is a study in
writing a piece with the program Project 2. The title thus
identifies the work as a test object and reveals the critical
reflection of the work itself on the model and material
from which it is derived. The piece’s first section, or
structure, will here again serve as a test object for testing
the capabilities and design of CompScheme.

The piece consists of 12 structures and 3 variants of
each of these structures, of which the pianist chooses one
variant for each structure to be played. Hence, there are
312 = 531441 possible combinations of variants, of which
one is performed.

Project 2 is based on a number of basic notions:
compositional rules, musical quantities (data), character-
istics of musical sound (parameters), combinations of
rules and data (structure formula), and “combinatorial
possibilities”[5] resulting from a structure formula (vari-
ants). As Koenig states, “The purpose of PROJECT 2
(PR-2) is to ‘calculate musical structure variants’.”[5]
Since aleatoric decisions are employed in different phases
of the program, it is not necessary to enter additional data
for the creation of variants from a structure formula. The

rules and the set of data are fixed for a specific structure
and the computer constructs variants.

By following a questionnaire of over 60 questions, the
composer describes a certain model of which variations
are created. In Übung für Klavier, the 12 structures
are structure formulas, variants are created by the use
of aleatoric procedures. There are eight parameters that
describe a structure formula: instrument, harmony, reg-
ister, entry delay, duration, rest, dynamics, and mode of
performance. Since the piece is only for one instrument,
the instrument parameter is ignored.

The basic principle for the construction of musical
data in Project 2 is a three-layered process of entering,
grouping, and selecting elements, the so-called List-Table-
Ensemble principle. The construction of data for almost
all parameters follows this principle. In the first instance,
the composer enters a list of “allowed” elements; a basic
reservoir of the smallest components. In the second layer,
the user forms groups of these elements in a table, a
list of selections from the list of “allowed” elements.
Consequently, an ensemble is formed by selecting groups
from the table. Thus, there are three layers of selection,
i.e. choices of elements from a given supply. The first
two selections are done by the composer. The composer
chooses the basic elements and determines their grouping
in the table. These selections and groupings remain the
same for all variants of a structure. The third selection,
however, is done with the help of the selection programs
alea, series, and sequence, which chose the number
and indices of the table-groups to be inserted into the
ensemble. The third level differs from the first two levels
of selection in that the selection can be changed for each
variant and not single elements, but whole groups of
elements are selected.

The List-Table-Ensemble principle is an extension of
the series as a basic building block, which can be permu-
tated in order to derive relationships. Aside from the input
of the initial reservoir of “allowed” values, the other levels
operate on indices. The concrete values are substituted
by pointers to concrete values. The operation on pointers
is an abstraction, which constitutes an intermediate meta-
level, through which aspects of the musical reality become
controllable. In doing so, numbers operated on never refer
to themselves, i.e. calculations and the construction of
numerical structures are not done for their own sake, but
always for the purpose of referring to concrete values.
Thus, numerical values always serve the description of
musical situations. The translation of concrete values into
indices creates a level on which processing is possible.
The List-Table-Ensemble principle clearly discriminates
between the material and its order. The initial input of
“allowed” values is an unordered set of possible ele-
ments and the operations on indices establish orders and
groupings, thereby breaking the series up into material
and sequence. In CompScheme, I will not directly model
this work flow, I will rather divide the construction into
three different steps: the definition of user supplied data
specific to structure 1 of Übung für Klavier, the definition

of functions, which model the workings of Project 2,
especially with regard to entry delay production, and
thirdly plugging together the necessary stream functions
and the user supplied data to define a function, which
returns the structure.

In this section, I will show how the first structure of this
piece can be modeled in CompScheme. Due to the partly
incomplete description of the structure it is not possible
to regenerate the exact structure, it is, however, possible
to come very close to the original, using the available
documentation.

The most characteristic aspect about the first structure
of Übung für Klavier is the use of masks for the entry
delays and dynamic values. Starting very dense, the entry
delays gradually get larger towards the end of the struc-
ture. As an example, I will show how the entry delays are
dealt with in the CompScheme model of this structure, the
other a parameters are handled similarly. Figure 17 shows
first the definition of the entry delay list and secondly
the definition of two functions, which return the indices
of the lower and upper boundaries of the entry delay
selecting tendency mask. The parameter x is a position
within the structure in percent of the total duration. The
function linear-shape x list linearly interpolates
the list, which defines line segments in the following
format: n1 start1 end1 . . . nn startn endn and returns
the interpolated value at position x of the specified linear
shape.

; ; l i s t o f b a s i c e n t r y d e l a y v a l u e s
(d e f i n e ∗ e n t r y−d e l a y s ∗

’ (0 . 1 0 . 1 2 0 . 1 5 0 . 1 9 0 . 2 4 0 . 3 0 0 . 3 7 0 . 4 6 0 . 5 8
0 . 7 2 0 . 8 9 1 . 1 1 1 . 3 8 1 . 7 2))

; ; f u n c t i o n s , which r e t u r n t h e i n d i c e s o f t h e
; ; l ower and uppe r b o u n d a r i e s o f
; ; t h e e n t r y d e l a y s e l e c t i n g t e n d e n c y mask .
; ; t h e p a r a m e t e r ‘x ’ i s i n p e r c e n t o f t h e whole

s t r u c t u r e .
(d e f i n e (e n t r y−l ower x)

(round (l i n e a r −shape x ’ (20 0 0 27 0 1 20 0 6
33 6 8))))

(d e f i n e (e n t r y−upper x)
(round (l i n e a r −shape x ’ (20 0 6 27 4 6 20 7 10

33 10 13))))

Fig. 17. The user defined masks and basic values for the entry delays

Figure 18 shows the definition of the event generating
function. As seen above in figure 17, the tendency masks
are relative, i.e. they do not have a fixed number of
elements, but maintain their shape for different specified
durations of the structure. The goal is thus to define a
function, which takes the durations, i.e. the sum of all
entry delays, as an argument, and returns the entry delays,
while maintaining the shape of specified tendency masks.
In order to do that, the entry delay selecting function
needs to know its own output (the ‘current’ time). In
CompScheme, this can be done by using st-iterates
fun arg, which returns a streams with the following
elements: arg, (fun arg), (fun (fun arg)),

(d e f i n e (e n t r y−d e l a y s d u r a t i o n)
(s t−u n t i l (lambda (t ime) (> t ime d u r a t i o n))

(s t− i t e r a t e s
(lambda (t ime)

(l e t ((p e r c e n t
(∗ 100 (/ t ime d u r a t i o n))))

(+ t ime
(n t h ∗ e n t r y−d e l a y s ∗

(a l e a (e n t r y−l ower p e r c e n t)
(e n t r y−upper p e r c e n t))))))

0 . 0)))

Fig. 18. The entry delay generating function

The duration and the velocity parameter are constructed
similarly, but since their values depend on the position
in time, i.e. on the entry delays, they do not need
st-iterates. The generalized selection function for
masks in percent is shown in figure 19.

(d e f i n e (s e l e c t i n g −mask m a t e r i a l shape−upper
shape−l ower s t a r t −t i m e s d u r a t i o n)

(s t−a p p l y
(lambda (i d x) (n t h m a t e r i a l i d x))
(s t−rv

(s t−a p p l y (lambda (t ime)
(shape−l ower (∗ 100 (/ t ime d u r a t i o n))))

s t a r t −t i m e s)
(s t−a p p l y (lambda (t ime)

(shape−upper (∗ 100 (/ t ime d u r a t i o n))))
s t a r t −t i m e s))))

Fig. 19. Generalized selection with masks in percent

Figure 20 shows the definition of the final structure
generating function. As stated above, one of the powerful
consequences of using relative tendency masks is that
the final structure can be stretched and compressed in
time. Since the function accepts a duration parameter we
can produce structures of any length while maintaining
the same development, the same musical gesture. Many
other parameters, such as duration, velocity, and register
depend on the entry delays, this is why we first define
a local variable start, which contains the entry delays.
As a consequence of the above described persistence of
streams, no copying of values is necessary and all streams
refer to the same sequence of entry delays, despite the
indeterminacy in the process of generation. The function
interval-matrix and st-interval-matrix are
built-in CompScheme functions and deal with the Project
2 interval transition matrix pitch model, which is not to
be discussed here, but described in [5] and [3].

V. REAL-TIME CONTROL OF THE SuperCollider
SERVER

The sound synthesis and music composition program-
ming language SuperCollider underwent a major change
in its internal design from version 2 to 3. The so-
called SC Server, a powerful synthesis engine, and the
SuperCollider language have been separated into two
separate programs and now communicate with the Open
Sound Control (OSC) protocol. SuperCollider’s system
designer James McCartney writes:

(d e f i n e (s t r u c t u r e 1 d u r a t i o n)
(l e t ((s t a r t (e n t r y−d e l a y s d u r a t i o n)))

(s t−midi−n o t e
(s t a r t s t a r t)
(d u r a t i o n (s e l e c t i n g −mask ∗ d u r a t i o n s ∗

d u r a t i o n s−upper
d u r a t i o n s−l ower
s t a r t d u r a t i o n))

(v e l o c i t y (s e l e c t i n g −mask ∗dynamics∗
dynamics−upper
dynamics−l ower
s t a r t d u r a t i o n))

(n o t e
(s t−a p p l y

(lambda (pc min i maxi)
(pc−a l e a pc min i maxi))

(s t−i n t e r v a l −m a t r i x
(i n t e r v a l −m a t r i x

’ (0 4 5 8 9 11))
(a l e a 0 11) (a l e a 1 11))

(s t−a p p l y
(lambda (t ime)

(n t h ∗ r e g i s t e r s −l ower∗
(r e g i s t e r s −l ower

(∗ 100 (/ t ime d u r a t i o n)))
))

s t a r t)
(s t−a p p l y

(lambda (t ime)
(n t h ∗ r e g i s t e r s −upper∗

(r e g i s t e r s −upper
(∗ 100 (/ t ime d u r a t i o n)))

))
s t a r t))))))

Fig. 20. The structure generating function

One goal of separating the synthesis engine and
the language in SC Server is to make it possible
to explore implementing in other languages the
concepts expressed in the SuperCollider lan-
guage and class library. Some other languages
that I think may have interesting potential in the
future for computer music are OCaml, Dylan,
GOO, and also possibly Ruby[. . .].[8]

CompScheme’s control possibilities for the SC Server
are not designed to be a replacement for the SuperCol-
lider language. Synth definitions (SynthDefs), recording,
and routing, for example, must still be done in the
SuperCollider language, but control and instantiation of
synths can be done through CompScheme. CompScheme’s
event model for controlling the SC Server is similar
to the Pattern classes and the Pbind synth control (See
the SuperCollider help files for more information on
these classes) in the SuperCollider language, in that it
allows synths to be scheduled with certain parameters.
However, it differs from the Pattern classes in several
ways, allowing arbitrarily deep nesting of control streams
as the parameters of a synth can be updated within one
event, event streams may be directly written into an
OSC binary file for non-realtime rendering, and durations
and entry delays are always controlled independently.
Moreover, the SuperCollider event type (SC event) is a
regular CompScheme event type and can be interpreted,
transformed, and written out in numerous ways.

As figure 21 shows, CompScheme’s SuperCollider
synth creating event type has three default parameters:
the name of the SynthDef, a starting value, which is an
entry delay relative to the previous event’s starting time,
and the duration. It is important, that the synth will free
itself, at latest after the time of the duration has passed,
because CompScheme manages the synth’s IDs, in order
to be able to update the synth during an event.

(s t−sc−e v e n t
(s y n t h ” s i n e 1 ”)
(s t a r t 1 . 0)
(dur 0 . 5)
(<pa r ame te r 4> <va lue4 >)
(<pa r ame te r 5> <va lue5 >)
. . .)

Fig. 21. The sc_event stream and its default values

A. Simple SC Events
Figure 22 shows a simple synth definition (synthdef),

taken from [2], which is to be evaluated in the SuperCol-
lider language. The parameters, which can be controlled
with CompScheme, are the arguments of the synthdef:
freq, amp, dur, attack, decay.

(
SynthDef (” s i n e 1 ” ,{ a r g f r e q = 440 , amp = 0 . 2 ,

dur = 2 . 0 , a t t a c k = 0 . 2 5 , decay = 0 . 2 5 ;

v a r ssTime = dur ∗ (1 − a t t a c k − decay) ;
v a r a t t a c k T i m e = dur ∗ a t t a c k ;
v a r decayTime = dur ∗ decay ;
Out . a r (0 ,

SinOsc . a r (f r e q , 0 , amp)
∗ EnvGen . k r (

Env . l i n e n (a t t a c kT ime ,
ssTime ,
decayTime ,
1) ,

doneAc t ion : 2)
)

}) . s t o r e ;
)

Fig. 22. A simple synth definition (taken from [2])

Figure 23 demonstrates how to play a SC event stream
in real-time. This example also demonstrates the advan-
tage of persistent streams and the power of higher-order
functions. In contrast to midi event streams, SC event
streams work with relative entry delays, not absolute
starting times. This decision has been made to ensure
sensible time values for real-time output. In the example
shown in figure 23 the starting times are made by a
random choice from a list of four values. The value 0.0
stands for simultaneous events (chords). The events last
until the next event starts, which is made by using the
entry delays of the start parameter and dropping the first
value. There is, however, one problem. Due to the chords,
events which are followed by simultaneous events will
have a duration of 0.0 seconds. In order to ensure that
all events last at least 0.1 seconds, a clipping function is
applied to the duration stream.

(sc−p l a y
(l e t ((e n t r y−d e l a y s

(s t−random−c h o i c e
’ (0 . 0 0 . 1 0 . 1 5 1 . 7))))

(s t−sc−e v e n t
(s y n t h ” s i n e 1 ”)
(s t a r t e n t r y−d e l a y s)
(dur (s t−a p p l y (lambda (x) (max x 0 . 1))

(s t−drop 1 e n t r y−d e l a y s)))
(f r e q (s t−exprand 100 .0 4 0 0 0 . 0)))))

Fig. 23. Playing a SC event stream

B. Sub-Events

As stated above, one of the powers of CompScheme’s
SC event type system is that events, which instantiate
synths, can update the synth during an event. This means
that events can not only represent note-like sound events,
but also control updates, within such a sound event. In
general, this mechanism works by not supplying a static
value or a stream of numbers, but by supplying a stream
of streams. Every stream in this stream of streams is
then seen as a development the parameter has during the
respective event. However, the streams inside must be of
a certain type, namely sc_nset. Figure 24 shows the
definition of two auxiliary functions for the creation of a
sub-event stream. The first function returns a stream of
st-sum streams. The second function returns the stream
of nset-streams we will use in the final output. The
nset event type holds two values, start, which is a
starting value relative to the starting point and duration
of the parent event, where 0.0 denotes the starting point
and 1.0 the ending of the parent event, and value which
is the respective value used for the update of the synth’s
parameter. The defined function stream-nsets takes
three arguments, which will be streams, the number of
elements for each sub-event stream, the starting points and
the values themselves, which are assumed to be streams
of streams.

; ; a s t r e a m of s t r e a m s
(d e f i n e (sum−s t r e a m s add s t a r t)

(s t−a p p l y s t−sum add s t a r t))

; ; a s t r e a m of n s e t s t r e a m s
(d e f i n e (s t r eam−n s e t s s t−n s t−s t a r t s t−v a l u e)

(s t−a p p l y
(lambda (n s t r s t r t v l s)

(s t− f i r s t n s t r
(s t−sc−n s e t (s t a r t s t r t) (v a l u e v l s))))

s t−n s t−s t a r t s t−v a l u e))

Fig. 24. Defining auxiliary functions for sub-events

Figure 25 finally shows how the an nset-stream can
be embedded. In the example, we create a simple SC
event stream, but use the above defined function for
the creating a stream of nset-streams to control the
frequency parameter. The duration of the update streams
will be randomly selected between 2 and 5, the starting
points of the updates are generated by streams of streams,
which all start at 0.0 and increment by a constant addition

of a randomly generated value for each event between
0.05 and 0.2. The frequency of each event will thus always
start at 800 Hz. The defined function takes the frequency
increment per sub-event as an argument, here we call the
function with a constant of 100 Hz.

(d e f i n e (sc−n s e t−s t r e a m 1 f r e q a d d)
(s t−sc−e v e n t

(s t a r t 2 . 0)
(dur 2 . 0)
(f r e q (s t r eam−n s e t s

(s t−rv 2 5)
(sum−s t r e a m s (s t−rv 0 . 0 5 0 . 2) 0 . 0)
(sum−s t r e a m s f r e q a d d 8 0 0 . 0))))))

(sc−p l a y (sc−n s e t−s t r e a m 1 1 0 0 . 0))

Fig. 25. Defining and playing a stream with an embedded nset stream

C. Scheduling Event Streams

It is not only possible to extend the event model to
lower levels, as described in the previous section, but also
to extend it to higher levels. SC event streams themselves
can also be scheduled. There is another type of event
called sc_stream_event, which contains SC event
streams and starting times as relative entry delays. In the
example in figure 26 a stream of SC event streams is
build by mapping the SC event stream returning function
sc-nset-stream1 defined in figure 25 over a stream
of random values, which will be interpreted as frequency
increments for the sub-event (see previous section). The
function st-sc-stream schedules the stream of SC
event streams, the entry delays are given by the start
argument. The function st-sc-stream can also take
further st-sc-stream’s. Therefore, there is no built-
in limit and scheduled event streams can be scheduled
again.

(sc−play−s t r e a m
(s t−sc−s t r e a m

(s t a r t (s t−rv 0 . 0 2 . 0))
(sc−s t r e a m

(s t−a p p l y sc−n s e t−s t r e a m 1
(s t−rv 10 100)))))

Fig. 26. Playing a stream of event streams

VI. STOCHASTIC SYNTHESIS

The idea to synthesize sound directly by using musical
procedures has been employed by composers of electronic
music at least since the early 1950s. Extending the compo-
sitional control down to the micro-level, and thus being
able to actually compose the sound itself, has not only
been part of the basic postulate of the Köln electronic
music school, but has also been a general thought in many
approaches to computer generated sound until today.

In the 1970s the composers Gottfried Michael Koenig,
Iannis Xenakis, Herbert Brün, and others developed sys-
tems that abandoned existing acoustic models, and tried

to derive sound synthesis methods directly from com-
positional activities. Rather than trying to compose with
sounds created on the basis of given analytical models, the
sound is supposed to be the result of the compositional
process itself. In 1970 G.M. Koenig described his program
SSP, which was not yet implemented at that time:

As opposed to programmes based on stationary
spectra or familiar types of sounds, the com-
poser will be able to construct the waveform
from amplitude and time-values. The sound will
thus be the result of a compositional process, as
is otherwise the structure made up of sounds. [4]

With SSP, Koenig extended the principles used in his
earlier programs Project 1 and specifically Project 2 from
the level of the note down to the level of the digital
sample. As basic elements amplitude and time values
were specified and grouped in segments, in which they
were linearly interpolated. For the selection of the basic
elements, aleatoric and serial principles were used. SSP
may be seen as an attempt to overcome traditional ways
of representation that stem from instrumental music, and
substitute them with more general descriptions, such as
similarity, transition, and variation that are to be applied
to the macro-structure of the form as well as to the micro-
structure of the sound in one process. This is derived from
the axiomatic assumption, that “musical sounds may be
described as a function of amplitude over time.”[4]

Iannis Xenakis’s idea of dynamic stochastic synthesis
differs from Koenig’s SSP in its initial intentions. The
notion of an evolutionary process is central to Xenakis’s
idea of dynamic stochastic synthesis. In dynamic stochas-
tic synthesis, breakpoints are grouped – here in cycles of a
waveform – and linearly interpolated to form an integra-
tion of macro- and micro-levels of musical time. Both
approaches to stochastic sound synthesis are primarily
rooted in music composition, derived from compositional
activities and not in the analysis of sound.

Any theory or solution given on one level can be
assigned to the solution of problems of another
level. Thus the solutions in macro-composition
(programmed stochastic mechanisms) can en-
gender simpler and more powerful new perspec-
tives in the shaping of micro-sounds. [11]

Xenakis, Koenig, and Herbert Brün were motivated
by finding ways of producing sound that are idiomatic
to the means of production, the computer. Instead of
emulating an instrumental or electronic paradigm, the idea
of the sample as the basic musical element is inherently
digital. Xenakis, Koenig, and Brn used the sample as
the basic musical element in a search for ”sounds that
had never before existed”[11]. Instead of the novelty of
sound, the strength of this non-standard approach to sound
synthesis lies in its unification of the sound production
and compositional processes. It is therefore really one of
representation.

In the following, I present a program that is not aimed
at reimplementing, but rather an attempt to generalize
from Xenakis’s and Koenig’s systems for stochastic sound

synthesis and thus providing the possibilities for exten-
sions. I try to show, that the flexibility and expressiveness
of streams lends itself well not only to the description of
higher-level compositional processes, but as well to the
lower-level sound production. Stochastic sound synthesis
is an area of application in which a basic motivation of
electronic music, namely composing sound, demands a
unified representation. This unification of the sound pro-
duction and the composition process requires a previous
relationship between sound and control data. However,
most current sound synthesis systems and computer music
languages establish a strict separation of synthesis and
control data. There are, therefore, hardly any platforms
today, that enable experimentation in this area.

In CompScheme, rather than considering sound synthe-
sis and composition as two different domains, the same
mechanisms are used to describe sound as well as higher-
level control. There is no separating wall between sound
and control built into the system and no limit to the level
of abstraction.

A. A Generalization of Stochastic Synthesis

Both SSP as well as Xenakis’s systems group amplitude
and time points together, form sequences of these groups,
and linearly interpolate the breakpoints. In the case of
SSP, these groups – called segments – contain elements
selected from initial amplitude and time lists by using
Koenig’s selection principles. In Xenakis’s systems, these
groups are cycles of one waveform, whose elements are
a deviation from the previous cycle’s elements, using
stochastic processes.

In CompScheme, the basic sound synthesis element is
the sample, which contains both a time and an amplitude
value. A sample is considered an event, just like any
other musical event, and can be built and transformed
with the same mechanism. Figure 28 shows the function
st-sample which uses the event type syntax shown in
figure 27.

(make−e v e n t <name>
(<pa r ame te r 1> <va lue >)
(<pa r ame te r 2> <va lue >)
e t c . . .)

Fig. 27. Event stream creation

The example in figure 28 creates a stream of sample
events from two streams, one determining the positions of
the breakpoints and one that determines their amplitude.
The positions in this example are taken from a list of four
integers and the amplitudes are chosen randomly between
-1.0 and 1.0.

(s t−sample
(pos (s t−of− l i s t ’ (0 1 2 5)))
(v a l u e (s t−random−v a l u e −1.0 1 . 0)))

Fig. 28. A sample stream

Based on SSP, we may call the sample stream of figure
28 a segment. A sample’s time value denotes its position
within the segment to which it belongs. Segments are
then collected in a stream – a stream of sample streams –
which can be interpolated with an interpolation function
and written out into an audio file. A segment can thus be
seen as cycle in a process of dynamic stochastic synthesis,
or as segment in a collection from which we can select,
using a selection principle.

B. Example 1: Dynamic Stochastic Synthesis

For a concrete example, we turn towards implementing
a simple process close to Xenakis’s GENDY. Generally
speaking, in GENDY several breakpoints are defined and
interpolated in what could be called one cycle of a
waveform. The next cycle is a deviation of the previous
one. Each breakpoint and time distance follows a random
walk and the total length of each cycle is also controlled.

Fig. 29. Two cycles of a dynamic stochastic synthesis process

This process can easily be described in CompScheme
using the function segments-with-length, which
takes three arguments: the length of the cycle and two
lists of numbers, the first one containing a value for each
position and the latter one for each amplitude value. The
time values are then scaled to fit inside of the specified
length. It then returns a stream of samples; here to be
considered one cycle.

(d e f i n e (gendy1)
(s t−a p p l y segments−with−l e n g t h

(s t−walk 8 0 . 0 (s t−rv −10.0 1 0 . 0) 5 0 . 0 2 5 0 . 0)
(s t−a p p l y l i s t

(s t−walk 1 5 . 0 (s t−rv −2.0 2 . 0) 5 . 0 2 0 . 0)
(s t−walk 1 5 . 0 (s t−rv −2.0 2 . 0) 5 . 0 2 0 . 0)
(s t−walk 1 5 . 0 (s t−rv −2.0 2 . 0) 5 . 0 2 0 . 0)
(s t−walk 1 5 . 0 (s t−rv −2.0 2 . 0) 5 . 0 2 0 . 0))

(s t−a p p l y l i s t
(s t−walk 0 . 0 (s t−rv −0.1 0 . 1) −1.0 1 . 0)
(s t−walk 0 . 0 (s t−rv −0.1 0 . 1) −1.0 1 . 0)
(s t−walk 0 . 0 (s t−rv −0.1 0 . 1) −1.0 1 . 0)
(s t−walk 0 . 0 (s t−rv −0.1 0 . 1) −1.0 1 . 0))))

Fig. 30. The definition of gendy1

Figure 30 shows the definition of a function called
gendy1, that describes a GENDY-like process, which
is kept simple for the sake of brevity. The function
segments-with-length is successively applied to
the elements of the three argument streams. The first

argument controls the lengths of the cycles, by means of
a random walk (st-walk) starting with 80, successively
adding the elements of the inner stream of random values
between -10 and 10 onto its current value, and limited
in borders ranging from 50 to 250. The second and third
arguments determine the breakpoints’s positions within
the cycle and are also controlled by random walks. For the
sake of brevity, only four breakpoints are made. Before
segments-with-length is applied, the time points,
as well as the amplitude values, are collected in lists. It
is to be mentioned, that the returned stream of waveform
cycles is infinite. Since the output is a stream, we have
not left the high-level description and can easily transform
and reuse the created cycles.

Figure 31 shows how to write out the first 10000 cycles
of a sample stream into an audio file, using a sample rate
of 44100 samples per second.

(w r i t e−sample−s t r e a m ” gendy1 . wav” 44100
(s t− f i r s t 10000 (gendy1)))

Fig. 31. Writing out an interpolation into an audio file

One possible extension of GENDY that composer
Sergio Luque proposed [7] is the concatenation of sev-
eral independent GENDYs. Similar to SSP’s permuta-
tion function in which segments are concatenated by
using selection principles, Luque concatenates waveform
cycles from several independent GENDYs. We could
easily concatenate several gendy1s with the function
st-interleave, which interleaves the output of any
number of streams and forms a new stream as shown in
figure 32.

(s t−i n t e r l e a v e (gendy1) (gendy1) (gendy1))

Fig. 32. Concatenating three independent cycle streams

Usually stochastic synthesis is implemented in a form,
that makes the positions of breakpoints depending on the
sample grid. That means, that a breakpoint can only be
set at a sample point. A consequence of restricting the
positioning of the breakpoints to sample points is that one
can only express cycles of durations, which are an integer
multiple of the duration of one sample in the chosen
sample rate. This limitation imposes a strong frequency
grid, which is especially audible with high frequencies. A
restriction like this would be considered intolerable in the
case of standard oscillators, but it has been often neglected
in the discussion of dynamic stochastic synthesis, in
favor of reimplementing truthful adaptations of its historic
original, including all of its idiosyncrasies. As can be seen
in figure 30, the breakpoints’s locations are expressed
in floats. That means, they can be located in between
samples, the resulting wave is then ‘sampled’ again during
the interpolation process.

C. Example 2: A Variation on SSP

The following example demonstrates the use of higher-
order functions to create variations of streams. In SSP,
one defines segments and then selects an order of the
defined segments with a function called permutation. In
CompScheme there is a function called segment that
takes three arguments: the length of the segment, a stream
of relative time distances, and a stream of amplitude
values and returns a stream of samples. Figure 33 shows
the creation of a stream of variations of segments. The
described function segment is mapped over three other
streams, the first one producing the lengths, the second
one a stream of streams produced by varying a stream,
and the last argument is a stream of amplitude value
streams. This last stream of streams is again produced by a
mapping of a function, namely st-repeat, which takes
two streams one containing the number of repetitions
and the other containing the values to be repeated. Thus
the variable segments contains an infinite stream of
segments. Whereas in SSP every segment has to be
created ‘by hand’, here we can easily employ SSP’s
principles on a higher level and create possibly infinite
streams of segments.

(d e f i n e segmen t s
(s t−a p p l y segment

(s t−random−v a l u e 5 50)
(s t−a p p l y s t−random−v a l u e 1 15)
(s t−a p p l y s t−r e p e a t

(s t−a p p l y s t−random−v a l u e 1 10)
(s t−a p p l y s t−random−v a l u e −1.0 1 . 0))))

Fig. 33. The definition of the segment function

In order to create a permutation, we can select segments
from the above defined stream by using another stream.
Figure 34 shows a possible permutation. Three thousand
segments are selected from the above defined segments
with a tendency mask going from between 0 and 0 to
40 and 60 and an indexing function. Since the deviation
among the first elements is smaller then that among the
later ones, the output develops from a rather pitched sound
to something more noisy.

(s t−n t h segmen t s (s t−t e n d e n c y 3000 0 0 40 60))

Fig. 34. Constructing a permutation

ACKNOWLEDGMENT

I would like to express my gratitude to Paul Berg of
the Institute of Sonology for his comments, help, and
supervision, Gerhard Eckel of the Institute of Electronic
Music and Acoustics in Graz for his ideas and help, and
Graham Flett for his corrections.

REFERENCES

[1] H. Abelson, G. Sussman and J. Sussman, “Structure and Interpre-
tation of Computer Programs,” MIT Press, 1996.

[2] P. Berg, “Using the AC Toolbox”, Institute of Sonology, 2007

[3] G.M. Koenig, “Übung für Klavier”, TONOS Musikverlags GmbH,
1969

[4] G.M. Koenig, “The use of computer programmes in creating
music,” La Revue Musicale, 1970.

[5] G.M. Koenig, “Project 2, A Programme for Muscial Composition”,
Electronic Music Reports, Institute of Sonology, Utrecht, 1970

[6] X. Leroy, The Objective Caml System: Documentation and user’s
manual, INRIA, 2007

[7] S. Luque, Stochastic Synthesis: Origins and Extensions, Master’s
thesis, Institute of Sonology, 2006

[8] J. McCartney, “Rethinking the computer music language: Super-
Collider”, Computer Music Journal, vol. 26, no. 4, pp. 61–68,
2002

[9] L.C. Paulson, “ML for the Working Programmer,” Cambridge
University Press , 1996.

[10] L. Wittgenstein, “Tractatus logico-philosophicus”, Suhrkamp, 1960
[11] I.Xenakis, “Formalized Music,” Pendragon Press , 1992.

