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Abstract—We present methods for spatializing sound
using representations created by dictionary-based methods
(DBMs). DBMs have been explored primarily in applications
for signal processing and communications, but they can
also be viewed as the analytical counterpart to granular
synthesis. A DBM determines how to synthesize a given
sound from any collection of grains, calledatoms, specified
in a dictionary. Such a granular representation can then be
used to perform spatialization of sound in complex ways.
To facilitate experimentation with this technique, we have
created an application for providing real-time synthesis,
visualization, and control using representations found via
DBMs. After providing a brief overview of DBMs, we
present algorithms for spatializing granular representations,
as well as our application program Scatter, and discuss
future work.

I. I NTRODUCTION

Sound can be spatialized on multiple time scales
[1]. In classic electronic music, many compositions are
characterized by a global spatial perspective, such as a
uniform blanket of reverberation applied to the entire
macrostructure of a composition, e.g., Oskar Sala’sElek-
tronische Impressionen(1978). In other works, spatial
variations articulate mesostructural boundaries: phrases
and sections. For example, Stockhausen’sKontakte(1960)
contrasted sounds in foreground/background relationships
on a time scale of phrases within moments [2].

Later, through the development of music programming
languages and digital audio editors, the time scales of
spatial transformations were reduced down to the level of
individual sound objects. A cascading sequence of sound
objects, each emanating from a different virtual space,
provides the dimension of spatial depth to an otherwise
flat perspective and articulates a varying topography.

Below the level of individual sound objects is the
world of microsound [1]. Gabor proposed that all sound
could be decomposed into a family of functions obtained
by time and frequency shifts of acoustic “quanta” [3],
[4]. The composer Xenakis extended Gabor’s theory and
proposed its inverse: any given sound can be composed,
or synthesized, by elementary sonicgrains [5]. Today,
it is possible to decompose and recompose sound by a
variety of means. Some methods, such as granulation,
work directly in the signal time domain [1]. However,
in the dictionary-based methods (DBMs) described later
in this paper, a granular representation of a signal is pro-
vided through time-frequency analysis. By means of these

techniques, spatialization can now be explored down to
the microsound level of sonic structure, where individual
spatial positions are assigned to every sonic grain.

II. D ICTIONARY-BASED METHODS

DBMs provide an alternative to time-frequency signal
representations, such as those made by short-term Fourier
and wavelet analyses. While Fourier analysis is built upon
complex sinusoids, and wavelet analysis uses the dilation
of a mother wavelet, DBMs allow for any set of functions
– collectively called thedictionary. The general idea be-
hind DBMs is to avoid making an a priori decision about
a basis that best represents a particular signal; instead,
the representation basis is allowed to adapt to the signal
statistics [6]. This can result in representations that are
more sparse, efficient, and meaningful than those found
by standard analysis methods [6], [7]. So far, DBMs have
been primarily applied in applications of communications
and signal processing (e.g., see [8]–[10]). Research using
DBMs for sound transformation applications has only
recently begun [11]–[13].

In DBMs, a signal is represented as a linear combina-
tion of waveforms chosen from a predefined dictionary
of possible waveforms. Let the signal be denoted by the
K-dimensional column vectorx, and let the dictionary be
denoted by the matrixDK×N , where each column is an
individual waveform. The signalx can thus be written as

x = Ds (1)

wheres is a column vector ofN weights. Observe that if
DH is the complex conjugate transpose of the orthonor-
mal discrete Fourier transform matrix, thens is simply
the Fourier transform ofx. In general, however,N � K
and D is overcomplete, meaning that rank(D) = K.
This implies that there will always exist at least one
solutions satisfying (1), and possibly an infinite number
of solutions. In general, without specifying any con-
straints, finding a solution to (1) is an ill-posed problem.
Constraining the solutions to have the minimum number
of nonzero elements creates an NP-hard problem [14].
A more relaxed constraint involves minimizing the`1-
norm of s, which creates a convex problem solvable by a
linear program [7]. An entirely different set of methods
for solving (1) are based on gradient descent [6], [15].



A. Matching Pursuit Algorithm

The matching pursuit (MP) algorithm is quite simple,
and fast implementations exist [16]. MP iteratively builds
the representation basis by choosing atoms from a given
dictionary D = [d1|d2| · · · |dN ], where each columndi

is a unique waveform. At stepn+1, a column is selected
from D that has the largest magnitude inner product with
the nth-order residual signal

gn = arg max
d∈D

∣∣dT r(n)
∣∣/||d|| (2)

where r(n) = x − x̃(n) (r(0) ≡ x), and x̃(n) is
the nth-order approximation waveform (x̃(0) ≡ 0). The
complexity of finding each atom in MP is on the order
of computing a fast Fourier transform of the entire signal
[6], [16]. After choosinggn, its corresponding weight is
computed as

an = gT
n r(n)/||gn||. (3)

The (n + 1)st-order residual signal is then given by

r(n + 1) = r(n)− angn, (4)

and the algorithm repeats until some stopping criterion
is met. Aftern iterations, thenth-order approximation of
the original signalx is given by:

x̃(n) = [g0|g1| · · · |gn−1]


a0

a1

...
an−1

 ∆=G(n)a(n). (5)

If the dictionary is at least complete, i.e., rank(D) = K,
thenx̃(n) will converge to the original signalx [6]. While
MP does not guarantee that this will occur after a finite
number of steps, orthogonal MP does [15] – but at a
higher computational cost. For our applications, however,
the approximations created by MP provide a useful and
meaningful representation of the original signal.

B. Building and Specifying Dictionaries

Dictionaries are often constructed from a combination
of discretized, scaled, translated, and modulated lowpass
functions. For instance, a dictionary element can be
parametrically described by

g(k) = h(k−u; s) cos
(
[k−u]ω(k−u)+φ(k−u)

)
(6)

where0 ≤ k ≤ K − 1 is a time index,0 ≤ u < K − s/2
is a translation,1 ≤ s ≤ K is a scale in samples, and
0 ≤ ω(k) ≤ π and 0 ≤ φ(k) < 2π are the modulation
frequency and phase, respectively, which might depend
on time, such as chirps [17]. The functionh(k; s) can be
likened to a window function. For a Gabor atom [3], [6],
h(k; s) is the Gaussian function

h(k; s) =

{
exp

(
− (k−s/2)2

2(αs)2

)
, k = 0, 1, . . . , s− 1

0, else
(7)

whereα controls the variance, ands is the scale. A plot
of an example Gabor atom is shown in Fig. 1.
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Fig. 1. Example Gabor atom with scalesl and translationul.

A dictionary is created by combining numerous atoms
with various scales, translations, and modulation frequen-
cies. In contrast to Fourier and wavelet transforms, this
produces a dictionary which tiles the time-frequency plane
in multiple ways [18].

III. SPATIALIZATION USING DICTIONARY-BASED

METHODS

After the MP algorithm is performed to a satisfactory
signal-to-residual ratio (SRR), the results of the decom-
position, i.e., the chosen atoms and weights, are stored
as a collection of indices from the dictionary in what
is called abook. Because each atom is parameterized,
many unique sound transformations are possible [11]–
[13]. This paper presents recent experiments using novel
atom spatialization techniques and a variety of basis
functions such as Gabor atoms, or damped sinusoids.

A. Two-Dimensional Spatialization Coordinate

In order to simplify our initial experimentation, spatial-
ization was restricted to a circular two-dimensional (2D)
array of m channels. A general 2D spatial coordinate is
specified by the parameterp ∈ [0, 1]. For the case of a
stereo channel (m = 2), p is the stereo panning parameter.
In a more general case,p is interpolated across them
channels such that each channel contains a number which
represents the amount of an atom in that channel.

Assuming that the 2D array ofm channels is circular,
p wraps around to remain within its specified range. For
example,p = 1.1 wraps top = 0.1. In this paper, we
assume thatp is a singular spatial point and not a spatial
distribution.

B. Random Scattering

If the atoms are scattered by an amountσ ∈ [0, 1], the
spatial coordinatep for each atom becomes simply

p = σ. (8)

If σ is a number generated from a uniform distribution
and is unique for each atom, the result is maximum spatial
scattering, because each atom occupies a unique position
in space. If every atom is spatialized by the sameσ, either
randomly generated or manually set, then the result is the
opposite of scattering: instead, the entire book is localized
to a singular spatial position.



C. Blur

In order to achieve spatial blur, another spatial param-
eter is added toσ in (8), yielding

p = σ + β (9)

whereβ is a number generated from any desired probabil-
ity distribution supported on the bounded interval[−r, r].
If σ is the same for all atoms in a book andβ is uniquely
generated for each atom, then the result is a spatial blur
localized atσ.

D. Convergence and Divergence

If in (9) the interval range ofβ is reduced to zero
(r → 0), the spatialization will simply become (8). If this
occurs over some time interval, andσ is the same for
every atom of a book, the effect is spatial convergence to
the spatial location specified byσ. On the other hand, if
r → x wherex ∈ [0, 1], the result is spatial divergence.

E. Panning

Panning is distinct from scattering, convergence, and
divergence, in that sound appears to move dynamically
through space. Because atoms are typically of a very short
duration, dynamically changingp for each atom has no
perceivable effect. Therefore, the illusion of panning is
achieved by individually spatializing atoms such that each
atom’s spatial coordinatep is set according to a global
functionf(u) whereu is the atom’s time translation from
(6). Thus, we can write

p = f(u) (10)

wheref(u) is defined according to any desired process.
For example, it might be a slowly varying low-frequency
oscillator (LFO), a manually defined break-point function
set from a graphical user interface (GUI), or some other
algorithmic or stochastic process.

F. Spatializing According to Parametric Filtering

All atomic parameters from (6) are available for the
construction of unique spatializing algorithms. For exam-
ple, because transients are typically composed of very
short duration atoms, the following rule spatially moves
transient atoms of a book differently than tonal atoms:

p =

{
f(u), s < α

g(u), else
(11)

wheres is an atom’s scale (duration) value, andα is a
tunable threshold below which atoms are most likely part
of a transient structure.f(u) andg(u) are different func-
tions which depend on an atom’s translation parameter;
they can be defined according to any desired procedure.
The result is the spatial dislocation of a sound’s noisy
transients and its harmonic tonals. Many such algorithms
for spatial scattering or spatial motion are possible via a
desired combination or filtering of atomic parameters.

G. Stochastic Panning

Setting σ and β from (9) to be stochastic functions
that depend on atomic translation (similar tof(u) in
(10)) leads to fully dynamic and stochastic spatialization
techniques. For example, multiple clusters of atoms, built
from filtering the book according to any number of desired
atomic parameters, might expand or contract into spatial
clouds which move across a spatial field at unique varying
rates.

IV. SCATTER: A REAL-TIME APPLICATION PROGRAM

FOR MANIPULATING ATOMIC REPRESENTATIONS

A. Implementation Details

The software for Scatter was written in C++ and
Objective-C using Mac OS X’s Cocoa API. The synthesis
was performed using a software toolkit currently under
development in the Media Arts and Technology (MAT)
Program at UCSB. The implementation assumes tradi-
tional block processing of groups of samples at a fixed
rate, and follows well-known techniques for real-time
granular synthesis [19]. However, instead of scheduling
atoms within a block of samples according to purely
synthetic procedures, they are scheduled according to
their temporal location within a time-sorted decomposi-
tion book derived via the MP algorithm.

For a time-sorted dictionary, atom scheduling is usually
not problematic as long as the dictionary is queried only
for the sample range of the currently executing block
as opposed to the entire book, which may contain many
thousands of atoms. However, if the oscillators used for
atoms are sine waves, scheduling issues may arise when
the atom density as a function of time at any point
in the book is extreme. Large atom densities typically
correspond to complex components within a given signal,
such as transients or noise. Therefore, instead of using
computed sine waves, atoms are mostly synthesized using
a simple sine oscillator based on a two-pole resonator,
which requires only one multiply and add per sample
computation. The downside to using resonators is that
they are expensive if their frequency or phase is changed.
Since atoms are typically of very short duration, little
benefit is achieved when individual atomic parameters are
changed within the block, so this is usually an acceptable
compromise.

However, DBMs allow any type of waveform to be
included in the dictionary, and it is possible that atoms
may have durations on the order of seconds or longer.
Long-duration atoms need to have the ability to change
their parameters in real-time in order to avoid unwanted
artifacts. Therefore, long-duration atoms are synthesized
using a relatively simple computed third-order polynomial
sine wave that can dynamically change its parameters with
essentially no increase in the computation time.

B. Visualizing Decompositions

In order to accurately represent the energy content of
individual atoms, they are represented graphically using
their Wigner-Ville distribution (WVD) [20]. The WVD of



Fig. 2. GUI prototype for Scatter showing WVD plot of a decomposition.

a Gabor atom is a two-dimensional Gaussian waveform
centered on a modulation frequency and time translation.
Figure 2 is a screenshot of an early prototype of the main
GUI for Scatter, which was influenced by SPEAR [21];
the figure illustrates the WVD plot for a decomposition.
We call the superposition of WVDs of the atoms in a
decomposition awivigram, which has proven to be useful
as a means of visualizing and interacting with atomic
decompositions.

C. GUI Components

Selection, Filtering, Parametric Transformations:Sev-
eral options are available for selecting individual atoms
within the decomposition. They can be chosen individ-
ually, via lasso or box, or by using bounding regions
in frequency and time. Once selected, the atoms can be
transformed according to any of the atomic parameters
such as time and frequency translation, compression, or
dilation. Atoms may also be deleted, copied, or pasted.

GUI for Spatialization:A set of GUI controls has been
designed which allow the user to specifically dictate the
various techniques mentioned in this paper for controlling
the stochastic spatial parameters. The GUI uses standard
controls such as sliders, knobs, and break-point functions,
which when combined with any of the selection and
editing controls shown in Fig. 2, allow a user to apply any
of the previously mentioned spatialization algorithms.

D. Extensions toScatter

Molecular Selection and Transformation:Currently,
the implementation allows only selection and transfor-
mation at the atomic level. Because books consist of
many thousands of atoms, it is often difficult to perform
transformations on meaningful structures in a signal. For
example, it is currently difficult to select and transform
individual harmonics. Thus, current work is focusing on

the development of algorithms which automatically con-
struct higher level molecular models of the decomposition
and allow for intuitive GUI control and manipulations of
molecules. However, these techniques are still experimen-
tal and have not yet been implemented for Scatter.

Analysis Stage:Real-time synthesis is currently being
implemented using books analyzed from the Matching
Pursuit Toolkit (MPTK) [16]. This has allowed devel-
opment efforts to focus on real-time synthesis and GUI
interactions and processing rather than the MP imple-
mentation. However, in order to fully take advantage
of the unique benefits of DBMs, Scatter should include
access to the analysis, and allow users to easily customize
dictionaries, or set analysis parameters such as SRR to
define a desired model order.

V. FUTURE WORK: M ICROPLURIPHONY IN THE

ALLOSPHERE

Stereophony, quadraphony, and octophony refer to
sound positioning in a symmetrical lateral array in front
of or around the listener. Periphony extends this scheme
to the vertical dimension [22]. Using techniques such as
wave field synthesis, the notion of periphony is extended
to pluriphony: the projection of three-dimensional (3D)
sounds from a variety of positions above, below, and
within the audience.

MAT’s current testbed for spatialization is the Allo-
sphere at UCSB [23]. The Allosphere is a three-story-
high spherical instrument in which virtual environments
and performances can be experienced with full 360-degree
immersion. The space is now being equipped with high-
resolution active stereo projectors, a 3D sound system
with several hundred speakers, and with tracking and
interaction mechanisms.

Our work on spatializing atomic decompositions using
DBMs has so far been focused on 2D spatialization
techniques. However, current efforts are underway to



extend the spatialization methods discussed here to full
3D spatialization within the Allosphere. There are many
technical challenges, particularly those of scale. As is
common to granular synthesis in general, spatialization of
atomic decompositions faces an explosion in the number
of parameters that are needed for the control of the
position and movement of possibly thousands of sound
events per second. A similar problem of scale arises when
projection is extended from a 2D spatial field to a fully
pluriphonic space with potentially hundreds of channels,
such as in the Allosphere.
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