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Abstract—This paper presents preliminary results on
expressive performance in the human tenor voice. This
work investigates how professional opera singers manipulate
sound properties such as timing, amplitude, and pitch in
order to produce expressive performances. We also consider
the contribution of features of prosody in the artistic delivery
of an operatic aria. Our approach is based on applying
machine learning to extract patterns of expressive singing
from performances by Josep Carreras. This is a step towards
recognizing performers by their singing style, capturing
some of the aspects which make two performances of the
same piece sound different, and understanding whether
there exists a correlation between the occurrences correctly
covered by a pattern and specific emotional attributes.

I. INTRODUCTION

One of the most interesting and elusive questions in
music is what makes two expressive interpretations of
the same musical piece sound like two different songs
even when performed by the same singer. Given a set of
expressive performances of the same piece which have
different interpretation styles — and possibly different
emotional attributes1 — are the patterns learned from each
performance similar or very different? How distinguish-
able is a singer based on the patterns extracted from his
interpretations? What do the patterns that are similar for
multiple singers capture? Which patterns are a matter of
timber, which are based in specific expressive techniques
that a singer employs, and which are a combination of
the two — by choice or because the pattern is more
readily realizable given the characteristics of a specific
voice? Is there a correlation between the occurrences
correctly covered by a pattern and specific emotional
attributes associated with those music pieces? How do
singers resolve possible conflicts between the music and
the prosody of the lyrics?

This work investigates how professional opera singers
manipulate sound properties such as timing, amplitude,
and pitch in order to produce expressive performances of
music fragments. In the initial phase we are interested
in note-level manipulations; we therefore define a set of
note-level descriptors of interest and we focus on the
differences between their measured values in the actual
performance and the written score, given the context of
the surrounding notes. Previous approaches exists that are
looking at expressive instrumental performances. There

1Emotional attributes are similar to what other researchers refer to
as moods or affective labels and can simultaneously take one value for
each aspect that they reflect.

are a couple of important differences between instrumen-
tal music and voice in operatic music. First, one guitar
may subtly differ from another one, but the timbre of
the instrument is relatively fixed. Human voice displays
a great variety in timbre; it is partly because of timbre
that a voice is well-suited to a type of song but not to
another, and it may be because of our preference in timbre
that we prefer a singer over another. Distinguishing which
features of expressiveness are the singer’s interpretation
choice and which ones are typical of his timbre is an issue
that doesn’t come up in instrumental music.

Secondly, instrumental music does not have lyrics.
Lyrics convey a more specific meaning to a song than
it would otherwise have. Therefore they can both add
to and detract from the expressivity of a performance.
Several aspects are at work here: how appropriate in
meaning is the performance given the lyrics, and how to
reconciliate possibly contradicting prosodic, metric, and
score cues. For instance, adopting the wrong intonation
or grouping the lyrics into the wrong prosodic units can
ruin an otherwise good interpretation. In this work we
are looking at a couple of preliminary descriptors for the
lyrics which are syllable-specific: stress and syllable type.

Our approach is based on applying various machine
learning (ML) techniques to extract patterns of expressive
singing from different performances of the same, or
different arias, sung by several world-class tenors. As a
first step, we start with a test suite consisting of twelve
interpretations of six different aria fragments performed
by Josep Carreras. Using sound analysis techniques based
on spectral models we extract high-level descriptors repre-
senting properties of each note, as well as of its context. A
note is characterized by its pitch and duration. The context
information for a given note consists of the relative pitch
and duration of the neighbouring notes, as well as the
Narmour structures to which the note belongs. In this
work, our goal is to learn under which conditions a
performer shortens or lengthens a note relative to what the
score indicates, and when he sings a note louder or softer
than what would be expected given the average energy
level of the music fragment. Some of the most interesting
rules that the ML algorithm learns are presented in the
result section.

The rest of the paper is organized as follows. Section II
describes related work in expressive performance. Sec-
tion III describes our test suite, introduces the note-level
descriptors, and explains how we extract the data that



is used as the input to the ML algorithms. Section IV
presents the learning algorithms; Section V discusses
some of the most interesting results. We conclude in
Section VI.

II. RELATED WORK

Understanding and formalizing expressive music per-
formance is an extremely challenging problem which in
the past has been studied from different perspectives,
e.g. [16], [6], [3]. The main approaches to empirically
studying expressive performance have been based on sta-
tistical analysis (e.g. [15]), mathematical modeling (e.g.
[19]), and analysis-by-synthesis (e.g. [5]). In all these
approaches, it is a person who is responsible for devising
a theory or mathematical model which captures different
aspects of musical expressive performance. The theory or
model is later tested on real performance data in order
to determine its accuracy. This paper describes a machine
learning approach to investigate how opera singers ex-
press and communicate their view of the musical and
emotional content of musical pieces.

Previous research addressing expressive music perfor-
mance using machine learning techniques has included a
number of approaches. Widmer [20] reported on the task
of discovering general rules of expressive classical piano
performance from real performance data via inductive
machine learning. The performance data used for the
study are MIDI recordings of 13 piano sonatas by W.A.
Mozart performed by a skilled pianist. In addition to
these data, the music score was also coded. The result-
ing substantial data consists of information about the
nominal note onsets, duration, metrical information and
annotations. When trained on the data an inductive rule
learning algorithm discovered a small set of quite simple
classification rules that predict a large number of the note-
level choices of the pianist.

Tobudic et al. [18] describe a relational instance-based
approach to the problem of learning to apply expressive
tempo and dynamics variations to a piece of classical
music, at different levels of the phrase hierarchy. The
different phrases of a piece and the relations among
them are represented in first-order logic. The descrip-
tion of the musical scores through predicates (e.g. con-
tains(ph1,ph2)) provides the background knowledge. The
training examples are encoded by another predicate whose
arguments encode information about the way the phrase
was played by the musician. Their learning algorithm
recognizes similar phrases from the training set and
applies their expressive patterns to a new piece.

Ramirez et al. [13], [14] explore and compare different
machine learning techniques for inducing both, an inter-
pretable expressive performance model (characterized by
a set of rules) and a generative expressive performance
model. Based on this, they describe a performance system
capable of generating expressive monophonic Jazz per-
formances and providing ’explanations’ of the expressive
transformations it performs. The work described in this
chapter has similar objectives but by using a genetic

algorithm it incorporates some desirable properties: (1)
the induced model may be explored and analyzed while
it is ’evolving’, (2) it is possible to guide the evolution
of the model in a natural way, and (3) by repeatedly
executing the algorithm different models are obtained. In
the context of expressive music performance modeling,
these properties are very relevant.

Lopez de Mantaras et al. [8] report on SaxEx, a
performance system capable of generating expressive solo
performances in jazz. Their system is based on case-based
reasoning, a type of analogical reasoning where problems
are solved by reusing the solutions of similar, previously
solved problems. In order to generate expressive solo
performances, the case-based reasoning system retrieves,
from a memory containing expressive interpretations,
those notes that are similar to the input inexpressive notes.
The case memory contains information about metrical
strength, note duration, and so on, and uses this infor-
mation to retrieve the appropriate notes. However, their
system does not allow one to examine or understand the
way it makes predictions.

Other inductive machine learning approaches to rule
learning in music and musical analysis include [4], [1],
[9] and [7]. In [4], Dovey analyzes piano performances of
Rachmaninoff pieces using inductive logic programming
and extracts rules underlying them. In [1], Van Baelen
extended Dovey’s work and attempted to discover regu-
larities that could be used to generate MIDI information
derived from the musical analysis of the piece. In [9],
Morales reports research on learning counterpoint rules.
The goal of the reported system is to obtain standard
counterpoint rules from examples of counterpoint music
pieces and basic musical knowledge from traditional
music. In [7], Igarashi et al. describe the analysis of
respiration during musical performance by inductive logic
programming. Using a respiration sensor, respiration dur-
ing cello performance was measured and rules were ex-
tracted from the data together with musical/performance
knowledge such as harmonic progression and bowing
direction.

III. EXPRESSIVE SINGING IN THE TENOR VOICE

Our choice of studying the human singing voice in the
operatic context is not arbitrary; in fact, we believe that
operatic music is an ideal environment to start getting
some answers to our questions. First, there is a con-
strained environment in which the music is performed and
which is given by the written score and the meaning of the
lyrics. Keeping such variables fixed makes the results and
comparisons between different singers more meaningful.
It also makes it easier for a listener to characterize
different performances from the point of view of their
emotional attributes. Secondly, good operatic singers tend
to have both better voice and better technique than singers
in most other genre, and can employ them more efficiently
for expressive interpretations. In this context, we choose
to focus on the most sought-after role in operas, the
human tenor voice, arguably the role for which the most
famous arias have even been written.



A. Training data

We have chosen six fragments of arias from Rigoletto,
Un Ballo in Maschera, and La Traviata. For four of the
fragments we have selected two different interpretations;
one of the remaining two fragments has three different
interpretations, while the remaining one has a single
interpretation. In total the twelve fragments consist of 415
notes in which the tenor and the orchestra do not overlap.
The choice of interpretations is not random; we have tried
to incorporate very different, yet expressive, performances
of the same piece. One of the questions we are interested
in answering is whether the expressivity patterns we learn
from interpretations of the same aria by the same singer
are similar despite the different feel of each performance
we choose.

One of the reasons we chose to focus on Josep Carreras
as a test case is our subjective observation that his inter-
pretations are highly expressive, yet at the same time they
can exhibit a wide variation in emotional attributes even
over different performances of the same aria. Another
reason why he is the ideal candidate for us is that both the
timbre of his voice and his delivery have changed con-
siderably over time. In general, we make the assumption
that timber does not vary significantly over short periods
of time, but it may change dramatically over long periods.
By studying recordings that are close in time we can
compare expressivity patterns while controlling over the
timbre. Studying recordings that are chronologically far
but exhibit the same emotional attributes can on the other
hand help understanding which of the patterns we learn
are greatly affected by changes in timbre and which are
not. We therefore keep track of the recording date of the
interpretations that we are processing.

A secondary reason to record this information has to
do with what we call appropriateness of an interpretation
— the capacity of a singer to inhabit a musical piece.
Defining this measure is an interesting topic in itself,
and touches on many aspects including the question of
meaning in music. Our assumption is that recordings
closer in time of arias sung in a language familiar to
the tenor will minimize appropriateness variations. Future
experiments aim to selectively control over the effect of
such factors.

B. Musical analysis

We use sound analysis techniques based on spectral
models [17] for extracting high-level symbolic features
from the recordings. We characterize each performed note
by a set of features representing both properties of the
note itself and aspects of the musical context in which
the note appears. Information about the note includes
note pitch and note duration, while information about its
melodic context includes the relative pitch and duration of
the neighboring notes (i.e. previous and following notes)
as well as the Narmour structures to which the note
belongs.

In order to provide an abstract structure to our per-
formance data, we decided to use Narmours theory [10]

Fig. 1. Prototypical Narmour structures

Fig. 2. Narmour analysis of a musical fragment

to analyze the performances. The Implication/Realization
model proposed by Narmour is a theory of perception and
cognition of melodies. The theory states that a melodic
musical line continuously causes listeners to generate
expectations of how the melody should continue. Accord-
ing to Narmour, any two consecutively perceived notes
constitute a melodic interval, and if this interval is not
conceived as complete, it is an implicative interval, i.e.
an interval that implies a subsequent interval with certain
characteristics. That is to say, some notes are more likely
than others to follow the implicative interval. Based on
this, melodic patterns or groups can be identified that
either satisfy or violate the implication as predicted by the
intervals. Figure 1 shows prototypical Narmour structures.
We parse each melody in the training data in order to
automatically generate an implication/realization analysis
of the pieces. Figure 2 shows the analysis for a fragment
of All of me.

We additionally annotate the lyrics with syllable-
specific information. In our fragments it is overwhelm-
ingly the case that a syllable corresponds to a note in
the score. The exceptions are few; in one instance two
syllables of a word correspond to a single note. The rest
of the ten cases are instances in which the last syllable of a
word ends in a vowel and the first syllable of the following
one starts with a vowel and they together correspond to
a single note in the score. For the beginning we simply
specify which syllables are stressed or unstressed, and
whether they are open or closed. The librettos for all the
fragments in the test suite are written in Italian. If any of
the syllables which correspond to a note is stressed then
the note will be stressed. In Italian a syllable is open if
it ends in a vowel and closed otherwise.

Lastly, we want to see how prosody interacts with the
score and the meter of the lyrics. We consider that prosody
can give important clues about the emotional content that
the singer wants to communicate as it reflects aspects
that are not inherent in the lyrics: intonation, rhythm, and
’prosodic’ stress. For instance, many have observed that
stress may be a matter of the prosodic unit rather than
the actual stress of the words. A prosodic unit is a unit
of meaning which can be as short as a word and as long
as a statement; it is a chunk of speech that may in fact



reflect how the brain processes speech. Acoustically, a
prosodic unit is characterized by a few phonetic cues: (1)
a typical pitch contour which gradually declines towards
the end of the unit and resets itself at the beginning of
the next unit, (2) perceptual discontinuities between units,
(3) long final unit words. We are interested in where
the actual stress falls in a performance, which syllables
are over-articulated, what the pitch contour can tell us
about the emotional state that the singer transmits, and
how are potential conflicts solved between the stress in a
prosodic unit and the meter of the lyrics. To make such
observations we need to (1) establish the meter of the
lyrics and (2) split the lyrics into prosodic units.

C. Learning task

For each expressive transformation, we approach the
problem both as a regression and a classification problem.
As a regression problem we learn a model for predicting
the lengthening ratio of the performed note wrt the score
note. This is, a predicted ratio greater than 1 corresponds
to a performed note longer than as specified in the
score, while a predicted ration smaller than 1 coresponds
to a shortened performed note (e.g. a 1.15 prediction
corresponds to a 15% performed note lengthening wrt
the score). As a classification problem, the performance
classes of interest are lengthen, shorten and same for
duration transformation, and soft, loud and same for
energy variation. A note is considered to belong to class
lengthen, if its performed duration is 20% longer (or
more) that its nominal duration, e.g. its duration according
to the score. Class shorten is defined analogously. A
note is considered to be in class loud if it is played
louder than its predecessor and louder than the average
level of the piece. Class soft is defined analogously. We
decided to set these boundaries after experimenting with
different ratios. The main idea was to guarantee that a
note classified, for instance, as lengthen was purposely
lengthened by the performer and not the result of a
performance inexactitude.

IV. LEARNING ALGORITHM

We used Tilde’s top-down decision tree induction al-
gorithm [2]. Tilde can be considered as a first order logic
extension of the C4.5 decision tree algorithm: instead of
testing attribute values at the nodes of the tree, Tilde
tests logical predicates. This provides the advantages
of both propositional decision trees (i.e. efficiency and
pruning techniques) and the use of first order logic (i.e.
increased expressiveness). The increased expressiveness
of first order logic not only provides a more elegant and
efficient specification of the musical context of a note, but
it provides a more accurate predictive model [12].

We apply the learning algorithm with target predicates:
duration/3 and energy/3. (where /n at the end of
the predicate name refers to the predicate arity, i.e. the
number of arguments the predicate takes). Each target
predicate corresponds to a particular type of transforma-
tion: duration/3 refers to duration transformation and
energy/3 to energy transformation.

For each target predicate we use as example set the
complete training data specialized for the particular type
of transformation, e.g. for duration/3 we used the
complete data set information on duration transformation
(i.e. the performed duration transformation for each note
in the data set). The arguments are the musical piece, the
note in the piece and performed transformation.

We use (background) predicates to specify both note
musical context and background information. The pred-
icates we consider include context/8, narmour/2,
succ/2 and member/3. Predicate context/8 spec-
ifies the local context of a note. i.e. its arguments are
(Note,Pitch, Dur, MetrStr, PrevPitch, PrevDur, NextPitch,
NextDur). Predicate narmour/2 specifies the Narmour
groups to which the note belongs. Its arguments are the
note identifier and a list of Narmour groups. Predicate
succ(X,Y) means Y is the successor of X, and Predicate
member(X,L) means X is a member of list L. Note
that succ(X,Y) also means that X is the predecessor
of Y. The succ(X,Y) predicate allows the specification
of arbitrary-size note-context by chaining a number of
successive notes:

succ(X1, X2), succ(X2, X3), . . . , succ(Xn−1, Xn)

where Xi (1 ≤ i ≤ n) is the note of interest.

V. RESULTS

The induced classification rules are of different types.
Both, rules referring to the local context of a note, i.e.
rules classifying a note solely in terms of the timing, pitch
and metrical strength of the note and its neighbors, as well
as compound rules that refer to both the local context and
the Narmour structure were discovered. We discovered a
few interesting duration rules:

IF Metrical Strength = veryweak AND
Note Duration ∈ (-inf, 0.425] AND
Next Interval ∈ (-1.5, 0.6] AND
Syllable Stress = stressed

THEN Stretch Factor = 2.515625

The note duration is measured as the fraction of a beat,
where a beat is a quarter note. The interval is measured in
number of semitones. The metrical strength is verystrong
for the first beat, strong for the third beat, medium for
the second and fourth beats, weak for the offbeat, and
veryweak for any other position of the note. The rule
above says that the notes that are in a very weak metrical
position, are shorter or equal then 0.425 of a beat (roughly
an eight of a note or less), are followed by a note that
is lower by at most 1.5 semitones or higher by at most
0.6 semitones, and correspond to a syllable which is
stressed, are performed as a 2.5 times longer note than
the duration of the note in the score. What is interesting
is that a rule with precisely the same Metrical Strength,
Note Duration, and Next Interval is performed only 1.3
longer if the corresponding syllable is not stressed.

The next interesting rule has the following form:

IF Metrical Strength = medium AND



Note Duration ∈ (0.425, 0.6] AND
Next Interval ∈ (2.7, 4.8] AND
Syllable Stress = unstressed AND
narmour(VR, gr 2)

THEN Stretch Factor = 2.5

narmour(VR, gr 2) says that the note is in the last
(third) position of the registral reversal Narmour structure
(VR). Informally this rule says that a note that signals
a change of register direction between two intervals of
moderate to large size is performed 2.5 longer than the
duration of the note in the score if it corresponds to a
syllable that is not stressed and it is in the second or fourth
beat position. The algorithm also learns two interesting
rules about note duration shortening:

IF Metrical Strength = weak AND
Note Duration ∈ (0.425, 0.6] AND
Next Interval ∈ (-1.5, 0.6] AND
Syllable Stress = stressed AND
narmour(R, gr 2)

THEN Stretch Factor = 0.328125

IF Metrical Strength = weak AND
Note Duration ∈ (0.425, 0.6] AND
Next Interval ∈ (-1.5, 0.6] AND
Syllable Stress = unstressed AND
narmour(P, gr 2)

THEN Stretch Factor = 0.40625

These rule indicate that a note corresponding to a
stressed syllable immediately following a higher note,
and which will be followed by a note close in frequency
will be reduced in length to 0.3 of its duration in the
score. This technique would accentuate the final note of
the largest local ascending interval. Similarly, a small
ascending interval that comes after another small interval
in the same direction and which corresponds to an un-
stressed syllable will be shortened to 0.4 of its duration
in the score. According to the Narmour principles, a small
interval will be followed by another small interval in the
same direction; therefore if the note corresponds to a
syllable which is not stressed then its importance will be
diminished by shortening its duration. On the other hand,
if the unstressed note is at the end of a short descending
interval followed by a larger descending interval then the
note’s duration will be lengthened to 1.9 of its duration
in the score, in preparation for the downward ’plunge’:

IF Metrical Strength = weak AND
Note Duration ∈ (0.425, 0.6] AND
Next Interval ∈ (-3.6, -1.5] AND
Syllable Stress = unstressed AND
narmour(IP, gr 2)

THEN Stretch Factor = 1.90625

An example of energy classification rule is:

IF succ(C, D) AND
narmour(A, D, [nargroup(d, 1)| E]) AND
narmour(A, C, [nargroup(d, 1)| E]) .
THEN energy(A, C, loud) :-

This is, ”perform a note loudly if it belongs to an
D Narmour group in first position and if its successor
belongs to a D Narmour group in first position”.

while examples of energy regresion rules are:

IF Note Duration ∈ (0.425, 0.6] AND
Prev Interval ∈ (-4.8, -2.7] AND
narmour(IP, gr 1)

THEN Energy = 109.3799415

That is, ”perform a note loudly if it belongs to an IP
Narmour group in the second position and if its prede-
cessor interval is a large ascending interval”. A similar
interpretation has the following rule for a R Narmour
group:

IF Note Duration ∈ (0.425, 0.6] AND
Prev Interval ∈ (-inf, -6.9] AND
narmour(R, gr 1)

THEN Energy = 103.715628

Intuitively these two rules say that there is usually a
low note that prepares a high, loud note.

A. Prosody vs. Meter

Let us consider one of the three interpretations of the
aria Forse la soglia attinse from Un Ballo in Maschera
by Giuseppe Verdi, specifically the recording from 1975
at La Scala. Let us analyze the fragment consisting of
Ah l’ho segnato SILENCE Ah l’ho segnato SILENCE il
sacrifizio mio. There are three prosodic units (PU) here,
separated by the silences. The rhythm is iambic. The
stress will therefore fall on l’ho, gna, sa, fi, and mi; these
positions are said to be strong and the rest are weak. In
the actual interpretation the second “Ah” is stressed, and
according to the iambic meter it raises a conflict between
the stress of the meter and the prosody. Accentuating
a syllable which is in a weak position creates forward
motion towards the next stressed syllable in a strong
position, namely gna (in what is called a stress valley
[21]). The strong stress on gna gives a sense of positive
closure. On the other hand the frequency at which the
second prosodic unit ends is high (above 300Hz). This
is not a typical terminal shape for a prosodic unit as the
high pitch suggests something more to come, an arousing
rather than settling interest. This is the qualification of the
action in PU2 and arrives in form of PU3 — il sacrifizio
mio.

The pitch shape of PU2 is different from the shape of
PU1 in several respects. PU1 has a terminal shape and the
notes are sung relatively flat (i.e. with not much vibrato).
The syllable Ah is not greatly accentuated nor particularly
loud, and it is short. In fact, it is five times shorter than
the Ah note in PU2, even though in the score the ratio is
a quarter note to a half note. The emotional state that it
transmits points towards decisiveness. On the other hand,
the pitch contour of PU2 goes up, involves a lot of vibrato,
over-articulates Ah and ends at a very high frequency. In
fact PU2 ends at considerably higher pitch then it begins
at; something not apparent from the score. These features



all imply some form of forward movement, continuation,
and doubt.

VI. CONCLUSIONS

This paper presents an approach for detecting ex-
pressive patterns of the human tenor voice. We employ
machine learning methods to investigate how professional
opera singers manipulate sound properties such as tim-
ing, amplitude, and pitch in order to produce expressive
performances of particular music fragments. We present
preliminary results for performances of twelve arias by
Josep Carreras. Our approach also takes into consideration
features of the lyrics associated with the arias in our test
suite. Currently we are considering syllable stress and
type, and we are starting to look at the interplay between
prosody, meter, and score, in creating lyric-dependent
expressive patterns.
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