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Abstract — We are interested in developing intelligent 
systems for music composition. In this paper we focus on 
our research into generative rhythms. We have adopted an 
Artificial Life (A-Life) approach to intelligent systems 
design in order to develop generative algorithms inspired by 
the notion of music as social phenomena that emerge from 
the overall behaviour of interacting autonomous software 
agents. Whereas most A-Life approaches to implementing 
computer music systems are chiefly based on algorithms 
inspired by biological evolution (for example, Genetic 
Algorithms [2]), this work is based on cultural development 
(for example, Imitation Games [12, 13]). We are developing 
a number of such “cultural” algorithms, one of which is 
introduced in this paper: the popularity algorithm. We also 
are developing a number of analysis methods to study the 
behaviour of the agents. In our experiments with the 
popularity algorithm we observed the emergence of 
coherent repertoires of rhythms across the agents in the 
society. 

I.INTRODUCTION 
The A-Life approach to music is a promising new 

development for composers. It provides an innovative 
and natural means for generating musical ideas from a 
specifiable set of primitive components and processes 
reflecting the compositional process of generating a 
variety of ideas by brainstorming followed by selecting 
the most promising ones for further iterated refinement 
[8]. We are interested in implementing systems for 
composition using A-Life-based models of cultural 
transmission; for example, models of the development 
and maintenance of musical styles within particular 
cultural contexts, and their reorganization and adaptation 
in response to cultural exchange. 

Existing A-Life-based systems for musical 
composition normally employ a Genetic Algorithm (GA) 
to produce musical melodies, rhythms, and so on. In these 
systems, music parameters are represented as 
“genotypes” and GA operators are applied on these 
representations to produce music according to given 
fitness criteria. Because of the highly symbolic nature of 
Western music notation, music parameters are suitable 
for GA-based processing and a number of musicians have 
used such systems to compose music.  

Although we acknowledge that there have been a few 
rather successful stories [2], we believe that additional A-
Life-based methods need to be developed [11, 12]. The 
work presented in this paper contributes to these 
developments by looking into the design of algorithms 
that consider music as a cultural phenomenon whereby 
social pressure plays an important role in the 

development of music. A plausible method to embed 
social dynamics in such algorithms is to design them 
within the framework of interacting autonomous software 
agents.  

We are developing a multi-agent system for 
composition of rhythms where the user will be able to 
extract information about the behaviour of the agents and 
the evolving rhythms in many different ways, providing 
composers the means to explore the outcomes 
systematically. An in-depth discussion on the architecture 
of the whole system and how it will be used artistically to 
compose pieces of music falls beyond the scope of this 
paper. Rather, this paper will focus on one of the A-Life 
algorithms that we have developed for the system - the 
popularity algorithm - and the information that one can 
extract about its behaviour, and the analyses of the 
behaviours.  

By way of related research, we cite the work by de 
Boer [3] on modelling the emergence of vowel systems 
by means of imitations games and Kirby’s work on 
evolution of language [9]. Also, Miranda [13] has 
developed a model of the emergence of intonation 
systems using imitation games. Basically an imitation 
game consists of one agent picking a random sound from 
its repertoire and the other agent trying to imitate it. 
Then, a feedback is given about the success of the 
imitation. On the basis of this feedback, the agents update 
their memories.  

II.THE AGENTS 
The agents are identical to each other and the number of 
agents in a group may vary. The agents move in a virtual 
2D space and they normally interact in pairs. Essentially, 
the agents interact by playing rhythmic sequences to each 
other, with the objective of developing repertoires of 
rhythms collectively. At each round, each of the agents in 
a pair plays one of two different roles: the player and the 
listener. The agents may perform operations on the 
rhythms that they play to each other, depending on the 
iteration algorithm at hand and on the status of the 
emerging repertoire. The agents are provided with a 
memory to store the emerging rhythms and other 
associated information.  

The fundamental characteristic of human beings is that 
we are able to perceive, and more importantly, to produce 
an isochronous pulse [6]. Moreover, humans show a 
preference for rhythms composed of integer ratios of the 
basic isochronous pulse [5]. Therefore, we represent 
rhythms as interonset intervals in terms of small integer 
ratios of an isochronous pulse (Fig. 1).  



 

 
 

Fig. 1. Standard music notation of a rhythmic sequence and its 
corresponding interonset representation. 

A. Transformations of Rhythms 
At the core of the mechanism by which the agents 

develop rhythmic sequences is a set of basic 
transformation operations. These operations enable the 
agents to generate new rhythmic sequences and change 
the rhythmic sequences that they learn as the result of the 
interactions with other agents. The transformation 
operations are as follows: 
• Divide a rhythmic figure by two (Fig. 2a) 
• Merge two rhythmic figures (Fig. 3b) 
• Add one element to the sequence (Fig. 2c) 
• Remove one element from the sequence (Fig. 2d) 

 
Fig. 2. Examples of rhythmic transformations. 

The definition of these transformations were inspired 
by the dynamical systems approach to study human 
bimanual coordination [7] and is based on the notion that 
two coupled oscillators will converge to stability points at 
frequencies related by integer ratios [1]. We have defined 
other transformations that divide a figure into three, five, 
and other prime numbers, but the impact of these 
additional transformations on the system is beyond the 
scope of this paper. Addition and removal 
transformations were introduced to increase diversity in 
the pool of rhythms and to produce rhythms of different 
lengths.  

B. Measuring Similarity of Rhythms 
The agents are programmed with the ability to 

measure the degree of similarity of two rhythmic 
sequences. This measurement is used when they need to 
assess the similarity of the rhythms they play to each 
other. Also, this algorithm is used to measure the 
similarity between repertoires of rhythms from different 
agents.  

In a previous paper [10] we introduced a method to 
measure the degree of similarity between two sequences 
of symbols by comparing various subsequences at 
various levels. The result is a vector, referred to as the 
Similarity Coefficients Vector (SCV), which contains the 
interim results of the comparisons between subsequences. 

For the present work, we devised a version of the SCV 
method to deal with rhythmic sequences. 

Let us define the block distance between two 
sequences containing the same number of elements as 
follows:  

   
where v and w are the two sequences (vectors) that are 
being compared, and vi and wi are the individual 
components of these vectors. After obtaining the resulting 
evaluation of the block distances on a given level (length 
of a subsequence), we can write a matrix for the k-level, 
corresponding to the comparison of all the subsequences 
with length k between the two main sequences:  

where d are the distances d(v, w) between all the 
subsequences v(k) of v and all the subsequences w(k) of w. 
Next, let us define the k-level Similarity Coefficient as 
follows: 

 
where z(k) is the number of zeros in the matrix D(k). 
Roughly speaking, the similarity coefficient measures the 
sparsity of the matrix D(k). The higher the coefficient c(k), 
the higher is the similarity between the subsequences of 
level k. Next, we can collect all the k-levels coefficients 
in a vector referred to as Similarity Coefficient Vector 
(SCV). This is defined as follows:  

 
 
Fig. 3 shows an example of building a 3-level Distance 
Matrix and its respective SCV is SCV  = [0.4167 0.1333 
0.1250 0]. From SCV we can obtain a scalar value in 
order to establish a comparative analysis between larger 
sets of rhythms, such as the repertoires of two agents. We 
can take the rightmost nonzero value from the SCV, 
which corresponds to the higher level where two 
matching sequences can be found. We can either take a 
weighted sum of the SCV values or the average of all 
values, as follows:  

 
where SCV (k) are the coefficients of similarity for each 
of the k levels. The next step is to compare the repertoire 
of the agents in order to observe the development of 



relationships amongst the agents in a group of agents; for 
instance, to observe if the agents form distinct sub-
groupings. The similarity of the repertoire of rhythms 
amongst the agents in a group is computed by creating a 
matrix of SCVav values of the repertoires of all pairs of 
agents. Matrices with the columns and rows 
corresponding to the number of rhythms in the memory 
of each agent reveal the similarity between their 
repertoires (Fig. 4).  

 
Fig. 3. Example of building a 3-level Distances Matrix. 

 

 
Fig. 4. Examples of similarity matrices between the repertoires of 3 
agents: agent 1 vs. agent 2 and agent 1 vs. agent 3. The darker the 

colour the more similar the rhythms are. 

By collapsing both the rows and the columns of the 
matrices, and taking the maximum values for each of 
them and an averaged sum, we obtain the scalar of 
similarity between repertoires, as follows:  

 
where the first term corresponds to the sum of the 
maximum values of the SCVav, for every row, and the 
second term is the correspondent for every column; nRAk 
and nRAl are the number of rhythms in the repertoire of 
the compared agents.  

Finally, the development of repertoires of rhythms of a 
group of agents as a whole can be observed by 
conducting a hierarchical cluster analysis of all distance 
measures between the agents (DistRep). This cluster 
analysis produces a dendrogram using a linkage method 
based on an unweighted average distance, also known as 
group average in which the distance between two clusters 
A and B, DAB,  is given by the following equation:  

   

where NA and NB are the number of elements in A and B, 
and di are pairwise distances between the elements of 
clusters A and B. The hierarchical cluster analysis 
produces a dendrogram of the type shown in Fig. 8. Such 
dendrogram is drawn through an iterative process until all 
the individuals or clusters are linked.  

C. Measuring the Complexity of Rhythms 
The complexity of a rhythmic sequence is measured as 

follows: 

   
where nF is the number of rhythmic figures contained in 
the sequence, ni is value of the numerator of a rhythmic 
figure, and Ti is the relative length of a rhythmic figure, 
considering that each rhythmic figure is a fraction of the 
pulse. This is a computationally cost effective method to 
measure the complexity of a rhythmic sequence.  

It is important to bear in mind that our 
implementation ensures that there are no reducible 
fractions included in the sequence, meaning that there is 
always a single numerical representation for a given 
rhythm. Fig. 5 shows an example of a graph plotting the 
complexity of a sequence of relative interonset intervals 
[1, 1] as it is transformed thirty times recurrently, using 
the transformation  operations mentioned earlier.  

 
Fig. 5. Example where complexity increases with the number of 

transformations. 

III.THE POPULARITY ALGORITHM AND EXPERIMENTS 
Popularity is a numerical parameter that each agent 

attributes to a rhythm in its repertoire. This parameter is 
modified both by the (agent-)listener and by the (agent-
)player during the interactions. If the listener recognises a 
rhythm (that is, if it holds the “perceived” rhythm in its 
repertoire), then it will increase the popularity index of 
this rhythm and will give a positive feedback to the 
player. A positive feedback is an acknowledgment signal, 
which will prompt the player to increase the popularity 
index of the rhythm in question in its repertoire. 
Conversely, if the listener does not recognize the rhythm, 
then it will add it to its repertoire and will give a negative 
feedback to the player. This negative feedback will cause 
the player to decrease the popularity index of this rhythm. 



Furthermore, there is a memory loss mechanism whereby 
after each interaction all the rhythms have their 
popularity index decreased by 0.05. This accounts for a 
natural drop in the popularity index due to ageing. The 
core of the popularity algorithm works as follows: 
 
Agent Player: 

P1. Plays a rhythm and increase the counter for the 
number of times that this rhythm has been used. 

Agent Listener: 
L1. Search for the heard rhythm in its repertoire 
L2. If the rhythm is found, then give a positive feedback to 
the agent player and increase the counter for the 
popularity of the rhythm in its repertoire 
L3. If the rhythm is not found, then add this rhythm to the 
repertoire and give as negative feedback to the agent 
player 

Agent Player: 
P2. Receive the feedback from agent listener 
P3. If feedback is positive, then increase the counter for 
the popularity of the rhythm in its repertoire 
P4. If feedback is negative, then decrease the counter for 
the popularity algorithm in its repertoire 
P5. If the minimum popularity threshold for this rhythm 
has been reached, then remove this rhythm from its 
repertoire 
P6. If the transformation threshold for this rhythm has 
been reached, then transform this rhythm 

 
As for the analyses, firstly we analyse the 

development of the size and the complexity of the 
repertoire of individual agents. Then, we analyse the 
values of the corresponding individual measures from the 
agents, as well as similarity between agents and how they 
are clustered in terms of the rhythms they share. Finally, 
we measure the lifetime of the rhythms, the amount of 
rhythmic sequences that the society develops and the 
degree to which the agents share similar rhythms. We 
trace the lifetime of a rhythm by counting the number of 
agents that hold the sequence in their memories during 
the interactions. Fig. 6 shows 3 examples of analyses.  

 

 

Fig. 6. Examples of amalyses: development of the size of the repertoire 
for different agents (top left), complexity of the rhythms of the society 
(top right) and number of agents sharing a particular rhythm (bottom). 

 
The experiments were run for 5000 iterations each for a 
number of times, with the objective of observing the 

behaviour of the agents, the society and the evolving 
rhythms, under different conditions. We have run 
experiments with societies of 3, 10 and 50 agents. For 
some of the experiments we have limited the lifetime of 
the agents to 1000 iterations; when an agent dies, another 
is born. Sometimes the algorithms take into account the 
movement of the agents in the 2D space, which may or 
may not influence the nature of the iterations. Fig. 7 
shows the results after 5000 iterations of the popularity 
algorithm with 10 agents (without population renewal).  
 

 

 

 

 

 
Fig. 7. Results from a typical run of the popularity algorithm with 10 

agents. 

Fig. 7a displays the development of the repertoire of 
individual agents and Fig. 7b displays the corresponding 
average across all agents. Here the repertoires of the 
agents grow steadily up to approximately 1000 iterations 
and subsequently oscillates around a stable point. Fig. 7c 
displays the development of the repertoire of the whole 
society being a direct consequence of the lifetime of each 
rhythm. The average number agents sharing a rhythm 
(Fig. 7d) is calculated by summing the instant number of 
agents sharing a rhythm for all rhythms, and dividing the 
result by the number of rhythms currently present in the 
society (Fig. 7c). This graph (Fig. 7d) provides the means 
to assess the global behaviour of the society; for instance, 
if it develops coherently in terms of popularity of existing 



rhythms. Fig. 7e represents the development of 
complexity of the individual agents and Fig. 7f gives the 
corresponding average. Initially, the size and complexity 
of the repertoire of individual agents are very close to the 
average, but this trend is replaced quickly by repertoires 
of different sizes amongst the agents.  

The last three graphs show the degree of similarity 
between the repertoires of the agents according to the 
similarity measure defined earlier. Fig. 7g displays 
information about the identity of the agent with whom 
each agent relates most; i.e., has the highest similarity 
value. The graph in Fig. 7h shows the agents that are 
regarded by others as being most similar to them. In this 
case, it shows that agent 3 has three agents with similar 
repertoires, and agent 10 is the one that concentrates the 
highest number of keen agents, having six agents 
considering its repertoire to be more similar to theirs.  

Hierarchical cluster analysis is conducted in order to 
observe groupings of agents according to the similarity of 
their repertoires. Fig. 8 shows the dendrogram containing 
elements of three societies of 10 agents each: Society 1 
comprises agents 1 to 10, Society 2 comprises agents 11 
to 20 and Society 3 the remaining 21 to 30. By comparing 
the three societies we can observe 3 clearly independent 
clusters, which were developed separately in three 
separate runs with the same set of parameters. In addition 
to the previous observations, this suggests that the 
repertoires that emerged from the popularity algorithm 
display diversity, are stable in terms of size, and are 
coherent within their respective societies. We can also 
observe differences in the clusters within a given society.  

 

 
 Fig. 8. Dendrogram resulting from the hierarchical cluster analysis 

conducted in the context of the popularity algorithm containing three 
independent societies with 10 agents each. 

 
Fig. 9. World visualisation of two steps of the iterative process. 

Clustering takes place (figure on the left) followed by scattering at a 
later stage (figure on the right). A cluster is indicated by a darker colour. 

 

By letting the agents move in their environment, we also 
investigated whether the interaction rules could influence 
the movement of the agents and whether this process 
would influence the development of their repertoires. In 
this case, if a listening agent “recognises” the rhythm 
played by the other agent, then it will follow the player 
agent in the space in the next iteration. Fig. 9 shows 
periodic clustering of one or more groups of agents that 
move together and keep interacting until the cluster is 
scattered due to an unsuccessful interaction.  
 

 

 

 

 

 
Fig. 10. Results from a typical run of the popularity algorithm taking 

into account the movement of the agents as an influencing factor in the 
evolution of the repertoire. 

 
In Fig. 10, we can observe two behaviours that are typical 
of the popularity algorithm with movement taken into 
account. The first being that there are many more 
rhythms affecting the interactions than in the case without 
movement; this is due to the fact that every time a 
positive feedback occurs, two or more agents will form a 
group. This increases the number of interactions and 
consequently the number of rhythms in their repertoires. 
The second being that there is an initial overshoot of the 
size of the repertoire before reaching a level of stability. 
This is possibly caused by the initial clustering of agents 
when individual repertoires grow consistently among 
very closely related agents. 



IV.CONCLUDING DISCUSSSION  
We are developing novel A-Life-based generative 

music algorithms with a view on producing an intelligent 
system for the composition of rhythms. Most current 
approaches to using A-Life in software for generating 
music entail the application of a GA. We propose that a 
strictly GA-based approach to generate music is 
questionable because they were not designed to address 
musical problems in the first place, but to solve 
engineering and searching problems. The act of 
composing music seldom involves an automated selective 
procedure towards an ideal outcome based on a set of 
definite fitness criteria.  

As a way forward, we suggest that A-Life-based 
systems for generating music should employ algorithms 
that consider music as a cultural phenomenon whereby 
social pressure plays an important role in the 
development of musical conventions. To this end, we are 
developing a number of algorithms, one of which was 
introduced in this paper: the popularity algorithm. In 
addition, we developed a number of methods to monitor 
the behaviour of the algorithms. 

In all runs of the popularity algorithm we observed 
the emergence of coherent repertoires across the agents in 
the society. Clustering of agents according to their 
repertoires could also be observed on various occasions.  

Whereas the size of the repertoire is controlled by a 
popularity parameter in the algorithm, it tends to grow 
constantly in the other algorithms that we have 
implemented. We also observed that a small subset of 
agents tend to concentrate the preference of most of the 
population. This trend tended to appear in many runs with 
different settings.  
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