
CONCURRENT CONSTRAINTS MODELS FOR SPECIFYING
INTERACTIVE SCORES

A. Allombert, G. Assayag
Ircam

M. Desainte-Catherine
Bordeaux I University

C. Rueda
Ircam and Javeriana Univ.

ABSTRACT

We propose a formalism for the construction and perfor-
mance of musical pieces composed of temporal structures
involving discrete interactive events. The occurrence in
time of these structures and events is partially defined ac-
cording to constraints, such as Allen temporal relations.
We represent the temporal structures using two constraint
models. A constraints propagation model is used for the
score composition stage, while a non deterministic tem-
poral concurrent constraint calculus (NTCC) is used for
the performance phase. The models are tested with exam-
ples of temporal structures computed with the GECODE
constraint system library and run with a NTCC interpreter.

1. INTRODUCTION

Composing an interactive musical piece often necessitates
the construction of several musical parts, before binding
them to interactive events or computing programs. On the
one hand, existing systems for writing music propose very
limited real-time interaction; on the other hand, program-
ming languages, such as MAX (or pd) do not provide the
composer with very sophisticated tools for composition.

We claim that a new kind of systems is needed for com-
posing interactive musical pieces. Such systems would
provide a composition environment for building musical
parts as well as programming tools for specifying compu-
tations of interaction.

In this paper, we propose a formalism for writing musi-
cal pieces involving discrete interactive events. As in [2],
we shall callinteractive scorea musical score involving
static and interactive events, that are bound by some log-
ical properties. In this paper, we limit our study to tem-
poral relations, such as the Allen’s ones. After the pre-
sentation of what is exactly an interactive score, we pro-
pose an operational model based on concurrent constraints
models, and wich provides a sound specification of any
interactive score. Our model comprises a compositional
phase and a performance phase. For the first one we pro-
pose an incremental constraints propagation model based
on the GECODE constraints library, and for the second
one a non deterministic temporal concurrent constraints
calculus. Our preliminary tests show this model to be ap-
propriate both for score editing and for our real-time re-
quirements, but more experiments are needed for this to
be conclusive.

2. BACKGROUND

2.1. Temporal structures

An interactive score is a set of musical objects (such as
notes and events) that are bound by temporal relations. In
this set, some events are chosen to be interactive. That
means that they will happen in real-time. In the general
case, temporal relations specify in a partial way the mu-
sical piece, so that several editions off the pieces can be
obtained during performance, according to the real-time
events coming in input. This indeterminism provides a
kind of degree of freedom to the musicians, at the same
time the resulting piece still satisfies the composer’s re-
quirements.

The whole process requires the two following consec-
utive steps.

1. The compositional process: the composer builds his
interactive score by creating his musical objects, bind-
ing them with temporal relations, and choosing his
interactive events;

2. The performance process: the interactive score is
no more edited. The system executes and decides at
each step which object must start, continue or stop.
These decisions are made according to the asyn-
chronous real-time events coming from the input,
and the indeterminism in the score.

2.2. Concurrent constraints models

Concurrent constraint programming (CCP [8]) is intended
as a model of concurrent systems. In CCP, a concurrent
system is modeled in terms of constraints over the vari-
ables of the system. A constraint is a formula representing
partial informationabout the values of some of the vari-
ables. For example, in a system with variablespitch1, pitch2

taking MIDI values, the constraintpitch1 > pitch2 +
2 specifies possible values forpitch1 andpitch2 (where
pitch1 is at least a tone higher thanpitch2). The CCP
model includes a set of (basic) constraints, and a so-called
entailment relation|= between constraints. This relation
gives a way ofdeducinga constraint from the informa-
tion supplied by other constraints. For example,pitch1 >

pitch2 + 2, pitch2 > 60 |= pitch1 > 48.

Computation in the CCP model proceeds by accumu-
lating information (i.e. constraints) in astore. The in-
formation specifies all that is known about the values of

the variables at a given moment. Information on thestore

may increase but it cannot decrease. Concurrent processes
interact with the store eithertelling new information, or
askingwhether some constraint can be deduced (entailed)
from the information therein. It may well happen that the
constraint cannot be entailed. In this case the interact-
ing process is said toblockuntil some other processes tell
enough information to the store to deduce its constraint.

Basic constraints in a CCP model are chosen so that
entailment can be efficiently computed. In programming
systems based on the CCP model the user can compute
with more complex (non-basic) constraints. These sys-
tems provide apropagatorfor each different type of user
constraint. The role of the propagator is to translate a
given asserted constraint into a collection of basic con-
straints supplying the same information. For example, as-
suming basic constraints are all of the formx ∈ [a..b], and
a store containing{pitch1 ∈ [36..72], pitch2 ∈ [60..80]},
a propagator for the constraintpitch1 > pitch2+2 would
tell constraintspitch1 ∈ [63..72] andpitch2 ∈ [60..69]. A
good CCP language provides the user with efficient prop-
agators for a rich collection of constraint types. A well-
known example is thedistinct type of constraint, used for
asserting that the values of some collection of variables
must pairwise be all distinct.

As can be seen in the above example, the action of
propagators narrows down the set of possible values for
each variable (its so-calleddomain). This, however, does
not guarantee that it will eventually be inferred a single
value to each variable. CCP languages thus include in
generalsearch engines. The purpose of a search engine
is to choose additional basic constraints to tell into the
store until all variables have reduced their domain into a
single value. For example, a search engine might choose
to tell constraintpitch1 ∈ [72..72] in the example dis-
cussed above. This will allow the propagator forpitch1 >

pitch2 + 2 to infer constraintpitch2 ∈ [69..69] and thus
all variables will be assigned a single value. It may so
happen, of course, that the constraint chosen by the search
engine leads to a contradiction. The search engine then
backs up, and chooses a different constraint.

A system providing many efficient propagators and pow-
erful user controllable search engines is GECODE ([9]).
We describe below how to use it to model a temporal
structure interaction system.

One drawback of the CCP model as presented above
is that information is always accumulated. There is no
way to eliminate it. This poses difficulties for modeling
reactive systems, in which information on a given vari-
able changes, depending on the interactions of the system
with its environment, as is the case, for example, in inter-
active performance systems. Different extensions on the
CCP model have been proposed to handle reactive sys-
tems. One such model is the non-deterministic temporal
concurrent constraint calculus (NTCC, [6]). This calculus
introduces the notion of time, seen as a sequence oftime
slots. At each time slot a CCP computation takes place,
starting with an empty store (or one that has been given

some information by the environment). Concurrent con-
straints agents operate on this store as in the usual CCP
model to accumulate information into the store. As op-
posed to the CCP model, the agents can schedule pro-
cesses to be run in future temporal slots. Since at the
beginning of each time slot a new store is created, infor-
mation on the value of a variable can change (e.g. it can
be forgotten) from one slot to the next. The computational
agents of NTCC are describe in Table 1. Intuitively, agent

Agent meaning
tell(c) Add c to the current store
when c do A if c holds now, runA
local x in P runP with localx
A ‖ B Parallel composition
nextA runA at the next instant
unless c next A unlessc can be inferred now,

runA∑
i∈I when ci do Pi choosePi s.t. ci holds

∗P delayP undefinitely (not
forever)

! P ExecuteP each time unit
(from now)

Table 1. NTCC agents

tell(c) adds informatrionc to the store of the current time
unit. This information can then be used to deduce other
constraints. Agentwhen c do A asks whetherc can be
deduced to hold from the current store, and if so, execute
agentA. Computed information that is to remain local to
an agent is defined bylocal x in P . Here, information on
x added byP is only seen by itself, or by its subprocesses
(if any). Reciprocally, any existing global information on
x cannot be seen byP . The parallel composition agent
A ‖ B runsA andB in parallel. Agentnext A sched-
ulesA to be run at the next time unit. Notice that an agent
next tell(c) adds informationc to the store of the next
time unit. Notice that this store might initially be empty
or contain some information provided externally by the
environment (e.g. as the result of the system interacting
with a musical device), but is completely independent of
the store of the current time unit. Agentunless c next A

offers the possibility of performing activity on the basis
of absenceof information. When constraintc cannot be
deduced from the store of the current time unit, actionA

is performed in the next time unit. It should be noted that
in NTCC, this means that entailment checking ofc is per-
formed when all other processes have finished, i.e. when
it is certain thatc cannot be deduced in the current time
unit.

The choice agent
∑

i∈I when ci do Pi non deter-
ministically runs some processPi such that its guardci

can be deduced from the current store. Several of the
ci’s could hold, but only onePi is non deterministically
chosen. Agent∗P schedulesP to be run either now,
or at some unspecified time in the future. In practice, a
more controlled version of this agent, denoted∗[i,j] P , is

used. This schedulesP to be run at some time within
the (closed) interval[i, j]. This version can be encoded in
standard NTCC. In NTCC, agents are ephemeral. Their
life span is just the time unit in which they run. Agent! P
adds persistence. It launches processP at the current time
unit and at all future time units.

The following example illustrates computation in NTCC.

SY ST
def
= ! tell(start > 20) ‖ CHECK ‖ PLAY

‖ ∗[50,200] tell(play(done)) ‖ BEAT (0)

PLAY
def
= !

∑
i∈{1,2,3} when play(on) do NOTEi

CHECK
def
= unless beat < start next play(on)
‖ unless play(done) nextCHECK

BEAT (i)
def
= tell(beat = i) ‖ nextBEAT (i + 1)

The system asserts (persistently) that the value ofstart is
greater than 20 and runs in parallel three processesPLAY ,
CHECK and BEAT . It also launches a process that
is to stop performance at some unspecified time unit in
the range50..200. ProcessPLAY non deterministically
chooses one of three notes when playing is on. Process
CHECK asserts that playing is on once it can be de-
duced that the beat counter is greater than or equal to the
starting time. It does so repeatedly until the stop playing
signal arrives. TheBEAT process is simply a counter
(recursive process definition can be encoded in the stan-
dard NTCC calculus. See [6]).

The NTCC calculus has an associated linear temporal
logic. Desirable properties of an NTCC model can be ex-
pressed as a formula in this logic. A proof system allows
to verify whether the NTCC model satisfies the property.

The NTCC calculus has been used to model musical
improvisation processes ([7]). We use it here to account
for the interaction with a composer (or device) during per-
formance as a hierarchical temporal process that’s con-
strained in various ways is run.

3. THE MODEL

In this section, we present our model ofinteractive scores
on which we base our study. This model directly stems
from the model presented in [5].

3.1. Interactive Score

Intuitively, a score is a representation where a set of tem-
poral objects (TO) are disposed in time. Temporal objects
have a start time and a duration (or an end time) . If the
score is to be executed in real-time by a computer, an as-
sociated process is attached to temporal objects, giving
them a musical/sound content. A note, for example, is a
particularly simple temporal object to which conventional
graphical notations may apply, and for which the asso-
ciated process could be a simple Midi note-on / note-off
triggering mechanism. In the general case, the associated
process might be much more complex and involve for ex-
ample, starting a synthesis engine and controlling its pa-
rameters in real-time. Or, it could involve the processing

of an incoming stream of events or sound. In this case
the score will be said to be interactive, as its execution
depends on asynchronous informations from the outside.
Musical processes attached to TOs are beyond the scope
of this paper. We see three levels of representations for
scores in a computer environment : graphical, structural
and temporal. These representations establish a complex
network of relationships over the TOs. The graphical level
provides a set of surface representations and graphical edi-
tion tools that may include conventional music notation
(where it may apply) or hierarchical boxing representa-
tions such as in OpenMusic Maquettes [4] or Boxes [3].
For a given structural and temporal representation, sev-
eral graphical representations may interchange, that reveal
more or less the structural / temporal details. Structural
representations encompass diverse structural relationships
such as hierarchical ones (a son TO may belong to a fa-
ther TO) or functional ones (the process linked to a TO
may provide input informations to another TO/process).
Temporal representation expresses all the temporal rela-
tionships between TOs, such as before, meets etc. This
paper is mostly focused on the the temporal representa-
tion, which is enough to understand the propagation and
exploration processes that takes place during score com-
position, as well as performance/execution time. For in-
stance hierarchical relationships, usually represented as
boxes inside boxes in graphical scores, although they are
necessary for the composer to have a synthetic view of
his musical sketch at the graphical/structural level, can be
for our purpose easily translated at the temporal level into
automatically generated basic relations : a son TO will al-
ways be linked by aduring relation to its father. Although
we will for the sake of clarity represent hierarchical infor-
mation in the graphical representations, only information
at the temporal level will be actually processed by the con-
straint engines described.

So, at the temporal level, we will describe the structure
of an interactive score as such :

A score is defined by a tuplets = 〈t, r〉, wheret is a
set of temporal objects, andr is a set of temporal relations.
A temporal relation is defined byr = 〈a, t1, t2〉 where a
belongs toA, the set of Allen relations [1], andt1 andt2
are temporal objects.

A temporal object is defined byt = 〈s, d, p, c〉 wheres

is the start timed is the duration,p is an attached process,
c is a constraint attached tot (i.e. its local store).

The local store will be useful later for assigning musi-
cal attributes and configuring classes of temporal objects.
It can also serve to assert “value fixing” relations (e.g.
s = 20, or d > 50).

When creating new temporal objects, there is the facil-
ity to choose it among four classes that differ in the role
they play in the score and the constraints in their store.
The four classes are :event, texture, interval, andcontrol-
point.

• An event has the constraintd = 0. Events model
discrete interactive actions. Their attached process
is specialized in “listening” to the environment and

waiting a triggering signal to happen.

• A texture has the constraintsd ∈ [d1, d2], 0 < d1 ≤
d2 , which gives its duration an authorized range of
variation. If we forced1 andd2 to be equal to the
texture’s initial duration, then it is considered rigid.
Otherwise it is considered supple. A texture has a
generative process.

• An interval is exactly like a texture, except it has
no generative process. Intervals are used as blank
placeholdersin the score. They help to refine Al-
lens relations with respect to authorized time inter-
vals.

• A control-pointp is always created in relation with
a texture/intervalq. A relationp during q is auto-
matically added to the score. Control points help to
express a time relation between any TO and a par-
ticular point inside a texture or an interval.

The class information is kept at the structural representa-
tion level, as is the hierarchical information ; as for the
temporal level, objects are handled in a unified fashion.

Temporal relations

The composer can bind the temporal objects with tempo-
ral relations based on the Allen relations. He can define
the relationsbefore, meets, overlaps, starts, finishes, dur-
ing between temporal objects ; as mentioned before, to
maintain the temporal hierarchy of the score, aduring re-
lation is automaticaly added between a TO and its sons.
Allens relations are only qualitative, while all inital tem-
poral positions and durations are quantitatively specified
in the score. Thus, we keep this information, and use it
for expressing quantitative temporal properties that may,
in certain cases, put restrictions on the Allen relations. For
example, a TO defined as rigid will be obliged to keep the
duration it is given when created. The temporal relations
are used to keep the organization of the score whenever
the composer changes the characteristics of a TO (dura-
tion, start time) at score edition time. The new values are
propagated through the score and the TOs are moved or
stretched as necessary in order to respect the constraints.

Interactive events

We call an interactive event a particular event that is not to
be played by the score player. Rather, it models a discrete,
asynchronous event that is supposed to happen at perfor-
mance time in the external environment, and to enter the
system through an input channel. Such an event could be
related to the triggering of a pedal, or the detection of an
instrumentist who begins to play, the recognition of a cer-
tain pitch played by a musician etc. The composer can
define temporal relations between events and any other
TO, including events. Themeetsrelation will generally
be used to synchronize TO’s with the arrival of an inter-
active event, and therefore explicitly represents the way

an external control will be able drive the execution of the
score at performance time. The process associated to an
event will run from the origin of time in the score until the
event actually happens. When it does happen, a special
constraint will be added to the store, informing the exe-
cution machine that it is time to check all the constraints
relating this event to other TOs. This will in turn condition
the execution of the TOs (start a TO, stop a TO, etc.) that
depend on the event. It must be understood that interac-
tive events may well happen at a certain distance from the
date to which they are assigned in the score, because of
expressive choices or even mistakes. Thus the event date
in the score is only the ideal date, and the Allen relations
will be used to maintain the score coherence whatever the
anticipation or delay. Of course this must stay within rea-
sonable limits : an exagerated anticipation or delay should
be interpreted as a mistake or a time out. Such limits can
be expressed by setting abeforerelation between an inter-
active event and other TOs, in order to prevent the event
from happening outside of a certain region in the score.
One can also use the intervals we have introduced sooner.
By defining an interval as being supple or rigid, by giving
it a duration range, one can control the authorized region
for an event (see example further). In case of anticipation
errors or time outs, decisions have to be made, the sim-
plest of which is to just ignore the event. This can lead
to difficulties : due to the web of dependencies between
TOs, from it could result in preventing the entire score re-
maining from being executed. Adressing this problem is
beyond the scope of the paper. So, the general philosophy
behind all this, at performance time, is “keep as much as
possible the coherence of the time structure planned in the
score, while taking into account, and accepting up to a cer-
tain limit, the expressive freedom of the external agents.”

An interactive score is shown in Figure 1.

T6

1

∆2

s2

T2 ∆6

∆0

∆3

meets

meets

overlapss1

T1

T4

T5

∆7

T3
,∆ maxmin ∆][

T0

T7

∆

Figure 1. An example of an interactive score

In this example, we have 8 temporal objectsT 0 to T 7.
ObjectsT 0 to T 6 are embedded intoT 7, which means
they all have an implicitduring relation toT 7. By con-
vention we will callsi and∆i the variables defining the
start time and duration of temporal objectT i.

T 0, T 3, T 6 are intervals (drawn as arrows)
T 1, T 2 are textures (drawn as rectangles)
T 5 is an interactive event (drawn as a circle)
T 4 is a control-point associated toT 1

(drawn as a black circle)
T 0, T 1 andT 6 are rigid (shown by a bold line)
T 3 is supple and has a duration range of[∆min, ∆max]
T 2 is supple.

The Allen relations are :

T 0 starts T 7
T 0 meets T1
T 4 meets T2
T 1 overlaps T2
T 5 meets T2
T 3 starts T 1
T 3 meets T5
T 2 meets T6
T 6 meets T7

The relations involving an interval (e.g.T 0 meets T1)
have not been drawn as the arrow symbol is quite explicit.
The interpretation of this score is as follow :

T 7 is a complex texture that controls the occurrence of
a certain number of substructures. From the beginning of
execution ofT 7, wait for a duration equal to∆0. Then
begin playingT 1. From that point, after duration∆min

has elapsed, we begin to expect an external event (T 5)
that should happen before duration∆max has elapsed. As
soon asT 5 has been detected, start playingT 2. When
duration∆0 + ∆1 has elapsed since the beginning ofT 7,
stopT 1. Now the end ofT 2 will depend on the status
of T 7. If T 7 is rigid, it has a certain duration defined by
the composer and the end ofT 2 will occur after duration
∆7 − ∆6 has elapsed since the beginning. IfT 7 is not
constrained, thenT 2 will last an undetermined time after
T 1 has finished. ObjectT 7 will end ∆6 units of time after
T 2 has finished.

before

∆1 ∆2

6∆
∆ maxmin ∆][,

∆T0 0

T1

T5

∆0

meets

finishes

T2
T4T3

T6

T7

Figure 2. An second example of an interactive score

In this example 2, we have 8 temporal objectsT 1 to T 7
are embedded intoT 0 ;

T 3, T 4, T 6 are intervals
T 1, T 2 are textures
T 5 is an interactive event
T 7 is a control-point associated toT 1
T 2 are rigid
T 6 is supple and has a duration range of[∆min, ∆max]
T 1 is supple.

The Allen relations are :

T 3 starts T 0
T 3 meets T1
T 1 meets T4
T 4 meets T2
T 5 meets T7
T 6 starts T 1
T 3 meets T5
T 0 finishes T2

3.2. The propagation model

In this section we present how we solve the constraints
problem we face during the composition when the com-
poser changes the values of the dates of a TO, and we
have to propagate it through the score to maintain con-
sistency in the relations. A score can be translated into a
constraint problem where the variables are the start dates
and durations of the TOs, and the constraints are equations
deduced from the temporal relations. For example for two
TO n1 andn2 linked by a relationn1 meets n2 we have
the constraints1 + ∆1 = s2 with s1 the starting time of
n1, ∆1 the duration ofn1, ands2 the starting time ofn2

. This leads to a linear constraints problem with a cyclic
constraint graph. Since many constraint-propagation al-
gorithms do not permit cyclic constraints graphs, we use
GECODE [9], a a very efficient multi-engine constraints-
satisfaction library written by Christian Schulte. Concep-
tually, GECODE divides the constraint graph into several
parts with structural particularities, before treating each
part with a specific domain filtering algorithm. GECODE
also propagates intervals of values instead of single val-
ues, which makes it admit cyclic constraints graphs.

For the example in Figure 1, the constraints set is (d0, d1
andd6 are locked values fixed by the composer):

∆0 = d0, ∆1 = d1, ∆6 = d6
s1 = s7 + ∆0

∆min ≤ ∆3 ≤ ∆max

s1 + ∆3 = s5

s2 = s5

s2 + ∆2 > s1 + ∆1

s2 + ∆2 + ∆6 = ∆7

We also add constraints with minor priority imposing that
each variable is equal to its current value. The level of
“soft” constraints is provided in GECODE by means of
constraint “reification”. In this scheme, instead of post-
ing some propertyc, a constraintb ↔ c is posted. This

asserts thatb is the boolean value of the result of post-
ing c. If b = false is deduced, thenc is inconsistent.
The branch and bound search engine of GECODE is used
to find a solution maximizing the number ofb’s with the
valuetrue. In our case, this scheme gives a way of get-
ting, after a pertubation, the solution closest to that before
the pertubation. Remember that we always have a solution
before pertubation since the composer designs the score
and therefore gives a value to each variable when he cre-
ates and places the TOs (we suppose here that he cannot
create inconsistencies).

3.3. The NTCC model

The score and TOs are represented by NTCC processes.
A scoreis a NTCC process that launches in parallel all its
TO’s and asserts a conjunction,r, of temporal relations
over the TO variables. We use

∏
i∈I Pi, whereI is finite,

to denote the parallel composition of allPi. We also write
(
∧

r) for the conjunction of all constraints in the setr. A
score〈t, r〉 is the process

Score
def
= (

∏
i∈t TOi,[Pi,ci]) ‖ ! tell(

∧
r)

Each element ofr is a temporal relation. Allen relations
are naturally expressed as constraints. Three of them are
shown below:

Before(ob1,ob2)
def
= (datob1 + durob1 < datob2)

Starts(ob1,ob2)
def
= (datob1 = datob2)
∧ (durob1 < durob2)

Overlaps(ob1,ob2)
def
=

(datob1 < datob2)
∧ (datob1 + durob1 < datob2 + durob2)
∧ (datob2 < datob1 + durob1)

The score process above definespermanentrelations, but
they could as well have been defined to hold only for spe-
cific time intervals.

Each temporal object〈si, di, Pi, ci〉 is a process launch-
ing itself at the right time:

TOi,[Pi,ci]
def
=

! tell(ci)
‖ ! unless clock + 1 < si

next (tell (clock ≥ si) ‖ Pi)
‖ ! when clock ≥ si do

next (Samei

‖ unless clock ≥ si + ∆i next Pi)

Notice that if there is not enough information to conclude
that the TO should not start, it sets its starting time,si,
to the (next) current value of the clock. This would cause
the TO to launch its activity at the next instant (this is
represented by processPi). This also include cases where
si has not been constrained to some specific value, and
its information on it is not enough to infer that its value
should be greater than the current value of the clock. It can
be seen thatTOi schedules itself to finish processPi at the

right time, unless there is no information on its duration, in
which case it just continues acting forever. Objects linked
to the occurrence of a particular event have a somewhat
different behavior in that they have to wait for the event to
arrive before displaying any activity:

EVi,[ci]
def
=

! when eventi(on) do

(! tell(ci)
‖ ! unless clock + 1 < si

next tell (clock ≥ si)
‖ ! when clock ≥ si do next Samei)

A very powerful feature of the calculus is illustrated
in the above example: the ability to compute on the ba-
sis ofabsenceof information. Notice that not being able
to deduce, say,clock < si is not the same as being able
to infer clock ≥ si. In fact, there could be insufficient
information to deduce the former and also the latter. In in-
teractive music environments it is frequent that the time of
occurrence (if any) or the type of interaction is not known
in advance, and it might be useful in this case that the
computation continues on the assumption that such an in-
teraction will not take place once an appropriate amount
of time has elapsed.

ProcessSamei transmitting the current value ofsi to
the next time slot (n stands for the duration of the whole
piece).

Samei
def
=∑

v∈[0..n] when si = v do next tell (si = v)

The above process first finds out the current value ofsi,
then just tells that the same value will hold for the next
time unit.

The whole system is defined as follows:

System
def
= Score ‖ CLOCK(0)

The clock simply beats time.

CLOCK(v)
def
= tell (clock = v) ‖ next CLOCK(v+1)

Interaction results in adding (or changing) information on
the starting time of certain TO’s. Interactions are modeled
as processes:

Triggeri
def
= ∗[0..n] tell(eventi(on))

The above represents the result of some device eventu-
ally triggering some signal at some unspecified moment
within the time span of the piece (from 0 ton). A some-
what more elaborate model would involve a composer per-
forming several interactions, each one fixing somes to
some particular value. This could also be easily modeled
in NTCC:

Interactioni
def
=

! (Samei +
∑

k∈[0..n] when k > clock do Tryi(k))

Tryi(k)
def
=

unless si ≤ clock ∨ k ≥ si + ∆i

next tell (si = k)
‖ when si ≤ clock ∨ k ≥ si + ∆i do Samei

In the above definition two kind of choices are performed.
First, a choice is made on whether to do nothing (i.e. keep-
ing the same current starting time values), or to try chang-
ing ones value. In the latter case we use the summation
construct of NTCC to non-deterministically choose some
time valuek. TheTryi process then tries to assignk to si

providedTOi has not started playing yet.
We proceed now to model the example of Figure 1.

Textures are represented by the aboveTOi process. In-
tervals and control points areTOi processes such that
Pi = skip, the null process.

Let

t = {0, 1, ..., 7}
r = {Starts0,7, Meets0,1, ..., Meets6,7, During4,1, ...}

The score is

TO0,[skip,∆0=d0] ‖ TO1,[P1,∆1=d1] ‖ TO2,[P2,true]

‖ TO3,[skip,∆min≤∆3≤∆max] ‖ TO4,[skip,true]

‖ EV5,[skip,true] ‖ TO6,[skip,∆6=d6] ‖ TO7,[skip,true]

‖ ! tell(
∧

r) ‖ Trigger5

The example of figure 2 is modeled in a similar way. Tem-
poral object and event frameworks are as given above. The
difference is in the setr of Allen relations used:

t = {0, 1, 2, 3, 4, 5, 6}
r = {Starts3,0, Meets3,1, Before1,2, Meets1,4,

Meets4,2, F inishes2,0, F inishes5,1, Meets6,5

Before0,6}

and the score

TO0,[skip,∆0=d0] ‖ TO1,[P1,true] ‖ TO2,[P2,∆2=d2]

‖ TO3,[skip,true] ‖ TO4,[skip,∆4,min≤∆4≤∆4,max]

‖ EV5,[skip,true] ‖ TO6,[skip,∆6,min≤∆6≤∆6,max]

‖ ! tell(
∧

r) ‖ Trigger5

4. CONCLUSIONS AND FUTURE WORK

We described in this paper how interactive scores could
be conveniently represented in a concurrent constraints
model. We used a constraints propagation scheme for
the interactive editing composition phase and a temporal
concurrent constraints calculus for the interactive perfor-
mance phase. Preliminary results of implementations of
some test cases is encouraging.

In the near future we plan to pursue the work presented
here in several directions. Both the editing and perfor-
mance phases are to be integrated as a music modeling

tool within the Open Music environment. This will re-
quire devising an efficient two way interface between the
GECODE library and Common Lisp. Even though NTCC
seems to be a good choice for the performance phase, we
plan to assess the behavior of NTCC in real-time con-
texts where complex interactions may occur. The exam-
ples presented in this paper were run in an experimental
NTCC interpreter implemented in the Mozart program-
ming language[10]. We plan to build from an existing
Linux version running in C [11] to develop an efficient
implementation for the Mac OS X platform.

5. REFERENCES

[1] Allen, J.F. ”Maintaining Knowledge about
Temporal Intervals”Communications of the
ACM 1983

[2] M. Dessainte-Catherine and A. Allombert
”Specification of temporal relations betwenn
interactive events”,Proc. of the SMC 2004
(Sound and Music Computing), Paris, France
2004

[3] A. Beurivé ”Un logiciel de composition musi-
cale combinant un modle spectral, des struc-
tures hirarchiques et des contraintes”Journes
d’Informatique Musicale, JIM 2000, 2000

[4] Grard Assayag, Camilo Rueda, Mikael Laur-
son, Carlos Agon, and Olivier Delerue ”Com-
puter Assisted Composition at IRCAM: From
PatchWork to OpenMusic”.COMPUTER
MUSIC JOURNAL Volume 23 No. 3, 1999

[5] M. Dessainte-Catherine and A. Allombert.
”Interactive Scores : A Model for Specifying
Temporal Relations between Interactive and
Static Events”JNMR Vol. 35(1), 2006.

[6] , C. Palamidessi and F. Valencia. “A Tempo-
ral Concurrent Constraint Programming Cal-
culus”Proc. of the Seventh International Con-
ference on Principles and Practice of Con-
straint Programming CP2001, 2001.

[7] C. Rueda and F. Valencia. ”Proving mu-
sical properties Using a temporal Concur-
rent Constraints calculus”Procedings of the
ICMC2002, Goteborg, Sweden, 2002.

[8] V. Saraswat.Concurrent Constraint Program-
mingThe MIT Press, Cambridge, MA, 1993.

[9] C. Schulte and G. Tack. ”Views and Iterators
for Generic Constraint Implementations”,Pro-
ceedings of the Fifth International Colloqium
on Implementation of Constraint and Logic
Programming Systems, CICLOPS05.2005.
Software homepage: http://www.gecode.org

[10] G. Smolka ”The Oz Programming Model”.
Computer Science Today. Lecture Notes in
Computer Science, vol. 1000,1995

[11] R. Hurtado and P. Munoz and C. Rueda and F.
valencia. ”Programming Robotic Devices with
a Timed Concurrent Constraint Language”,
Proc. of the Tenth International Conference
on Principles and Practice of Constraint Pro-
gramming CP2004, Toronto 2004.

