
INTRODUCTION TO COMPUTER-ASSITED MUSIC ANALYSIS

IN PWGL

Mikael Laurson Mika Kuuskankare Kimmo Kuitunen

Sibelius Academy, CMT

laurson@siba.fi

Sibelius Academy, DocMus

mkuuskan@siba.fi

kpkuitunen@hotmail.com

ABSTRACT

We present in this paper our recent developments
dealing with computer-assisted music analysis. Our
focus is in a new syntax that extends the pattern-
matching part of our constraint-based system called
PWConstraints. PWConstraints can be used both to
generate musical material or to analyze existing scores.
The syntax allows to refer to more high-level entities in
a score than before, resulting in compact analysis rules
that use only a minimal set of primitives. Rules can
return expression objects which can be used to visualize
analytical information directly in a score. The compiler
can be extended to support new score accessor
keywords by special compiler methods. The new syntax
and visualization of analysis data is explained and
demonstrated with the help of several analysis
examples.

1. INTRODUCTION

During the last 10 years the use of constraint-based
languages in computer-assisted composition
environments has found increased interest. Besides our
constraint-based system, called PWConstraints [1],
there are currently several other approaches oriented
towards musical search problems such as Situation [2],
Arno [3], OMClouds [4] and the more recent system by
Anders based on the OZ programming language [5].
PWConstraints is written in Common Lisp and CLOS
and is currently an integral part of our visual
programming environment called PWGL [6]. When
using our system as a search tool we do not formulate
stepwise algorithms, but define a search-space and
produce systematically potential results from it.
Typically we are not interested in all possible results,
but constrain these with the help of rules describing an
acceptable solution. If the search cannot find an
acceptable solution during the search process, then the
system will backtrack in the search-space. This scheme
thus allows to undo already accepted values and retry to
satisfy the rules with a new set of values.

Although PWConstraints was originally designed to
work as a tool to generate musical material it can also
be used for music analysis purposes. In this case no
backtrack search is involved and the system simply
traverses through score and applies all analytical rules to
the input score. Analytical rules have very similar
syntax than the ones used in search problems. This kind
of symmetry where a rule can be used either in a

generative or analytical context is one of the main corner
stones of our system. When a rule can be applied in
both approaches the user can test and verify his/her rules
in a more flexible way than using the generative
approach only.
There are two main options in our system that can be
used to realize analytical tasks. In the first one the user
can choose a set of rules in conjunction with an input
score and check whether the given rules are applied
systematically in the input score. If a rule fails,
information about the rule and the position of the failure
will be printed in the output browser. In the second
option—which will be the focus of this article—the
rules can be used to add visual analysis information to
various musical structures of an input score. The main
difference between these approaches is that a rule in the
latter case returns—instead of a simple truth value—a
special expression object. This expression can be
attached either to single score objects or to a group of
objects. This mechanism has been described previously
in [7].

Perhaps the most important system that is able to
perform similar analytical tasks than PWConstraints is
the Humdrum system by David Huron [8]. Humdrum
allows researchers to encode, manipulate, and output a
wide variety of musically-pertinent representations. The
emphasis is on posing and answering questions about
music. The system is textual based and requires the user
to use Unix-kind command-line syntax. The Humdrum
Syntax is a grammar for representing sequential
symbolic information using ASCII (text) data. The
Humdrum Toolkit, in turn, is a set of more than 60
inter-related software tools. These general-purpose tools
manipulate ASCII (text) data that conforms to the
Humdrum Syntax. Despite of some similarities our
system is quite different from the Humdrum system as
in PWConstraints the user can ‘reuse’ rules both in
generative and analytical contexts. Humdrum, by
contrast, is not well suited to generate musical data.
Furthermore our system is strongly visual. For instance
all score information can be manipulated by the user
through a visual user-interface.

This paper describes a new syntax to write analysis rules
that are able to visualize analysis information. For this
purpose we need flexible musical data structures. Our
starting point is our music notation package, called
Expressive Notation Package (ENP, [9]), which allows
to access all structural components of a score.
Each rule should be able to dynamically extract required
information out of a rich data structure, allowing the

rule to analyse the result from its own point of view.
One of the main problems in formulating such rules is
to find a clear formalism with which to point to the
required data objects. This article presents a new
approach that allows to access in a uniform way various
structural entities from a score, such as chords, beats,
measures and harmonic formations. A similar approach
but in a generative context has been published by us in
[10].

In the following we first introduce the general rule
syntax in PWConstraints. We discuss some problems
found in the previous implementation and propose a
new syntax that allows to add in the rules score accessor
keywords (Section 3). Next (Section 4) we give an
overview how the user can define various analytical
expression objects that will be added to the score during
the analysis process. The new syntax is utilized to write
melodic, harmonic and voice-leading rules (Sections 5,
6 and 7). We end with a larger example that aims to
demonstrate how the system can be used in a concrete
analytical context (Section 8).

2. RULE SYNTAX

In a PWConstraints analysis rule a pattern-matching
language is used to extract relevant information from a
score. This information is given to a Lisp function,
called Lisp-code part, that either returns an expression
object or nil. In the latter case the rule has no side
effects and the score will not be changed.

The pattern-matching part of a rule uses a fairly typical
pattern-matching syntax. It can contain variables
(symbols starting with a ‘?’), anonymous-variables
(plain ‘?’s), a wild card (‘*’) and index-variables
(symbols consisting of an ‘i’ and an index number). A
variable extracts single values. By contrast, an
anonymous-variable is never bound to a value, i.e. it
only acts as a ‘place-holder’ in the pattern. The wild
card matches any continuous part of the score. Finally,
an index-variable extracts values from an absolute
position. Below we give some pattern-matching
examples with their respective bindings (in order to
clarify the examples the pattern below the input is
formatted with the help of spaces so that it matches its
input):
input: (1 2 3 4 5)

pattern: (?1 ? ? ?2 ?)

match: ?1 = 1, ?2 = 4

input: (1 2 3 4 5)

pattern: (i1 i2 i5)

match: i1 = 1, i2 = 2, i5 = 5

input: (1 2 3 4 5)

pattern: (* ?1)

match: * = (1 2 3 4), ?1 = 5

input: (1 2 3 4)

pattern: (* ?1 ?2)

match: * = (1 2), ?1 = 3, ?2 = 4

input: (1 2 3 4 5 6 7)

pattern: (?1 * ?2 ?3)

match: * = (2 3 4 5), ?1 = 1, ?2 = 6, ?3 = 7

For example an analysis rule that adds an expression
denoting the interval between all adjacent melodic
pitches found in a score can be written as follows (this
rule uses a wild card and two variables):

(* ?1 ?2 ;; pattern-matching part

 (?if ;; Lisp-code part

 (add-expression ‘group ?1 :info (- (m ?2) (m ?1)))

 "interval rule") ;;documentation string

In the old syntax the variables in the pattern-matching
part always refer to note objects. This scheme has been
useful as the note objects of the input score contain
potential information of the current musical context,
such as instrument, part, pitch, metrical position and
harmony. The expressions ‘(m ?1)’ and ‘(m ?2)’ denote
the pitch-values of the notes referred by the variables
‘?1’ and ‘?2’ (‘m’ stands here for ‘midi’).

While the old syntax has proven to be useful rules can
occasionally be quite hard to define and understand. One
reason for this difficulty is the fact that the variables
always refer to the most low-level entity of the score
(i.e. note objects), even if the rule works with more
high-level concepts like chords, beats, measures or
harmonies. Another difficulty is that the system
strongly prefers melodic formations and the pattern-
matching part is useful mainly when writing melodic
rules. If the user wants to write for instance a harmonic
rule then the required structural information has to be
accessed in the Lisp-code part by using special Lisp
help functions. Thus when writing non-melodic rules
the user has to have knowledge about the
implementation details of the system and master a large
library of help functions. Finally, as one has to be
conscious of implementation details the coding of new
rules or Lisp help functions can become a complex and
error prone process.

3. SCORE ACCESSOR SYNTAX

This section presents a new pattern-matching syntax that
allows the user to specify special score accessors, which
provide the user with a more high-level and intuitive
approach when working with analytical rules. The
variables given in the pattern-matching part of a rule can
now refer to the structural entity the user is interested
in, such as note, chord, beat, measure and harmony. The
novel compiler is modular and new score accessors can
be added incrementally.
The new syntax has many benefits: rules tend to be
more compact and simple; the pattern matching
language can be used systematically for all kinds of
valid accessors; the user typically needs to know only a
handful primitives in order to write new rules; potential
bugs can be localized more easily as the most complex
part of the system is localized in the compiler and not
in user code.

In the new syntax the compiler accepts an optional score
accessor keyword that defines the type of the variables
that are declared in the pattern-matching part. If the rule

has no accessor keyword then the compiler assumes that
the variables refer to note objects. For instance in the
"interval rule" rule the variables ‘?1’ and ‘?2’ are notes.
Valid accessor keywords are: ‘:chord’, ‘:beat’,
‘:measure’, ‘:harmony’, and ‘:score-sort’. This list can
be extended by adding appropriate compiler methods for
the new accessor keyword.
Another important change in our syntax is the function
‘m’—which was already mentioned in the previous rule
examples—that used to return the pitch-value (i.e. the
MIDI key-number) of a note. The current version of ‘m’
is now more general as it can return besides pitch-values
also lists and objects (thus ‘m’ stands henceforth for
‘multi-accessor’). Now ‘m’ is defined as a method
where the receiver or the first argument can be any
variable type defined by the score accessor keyword.
This means that the behaviour of ‘m’ depends on its
first argument. For instance if the first argument is a
note then ‘m’ returns a single numeric value; if the first
argument is ‘:chord’, ‘:beat’, ‘:measure’, or ‘:harmony’
then ‘m’ returns a list of pitch-values. The ‘m’ method
accepts also a number of optional keyword arguments
that greatly enhances the functionality of this method.
Keyword arguments can be used either to modify or
filter the result or they can return a flag (i.e. either true
or false). Currently the following keyword arguments
are supported: ‘:int’, ‘:harm-int’, ‘:min’, ‘:max’, ‘:part’,
‘attack-item’, ‘:complete-case?’, ‘:object’ and ‘:prev-
item’. For instance the ‘:int’ keyword allows to convert
a list of pitch-values into a list of intervals; ‘:min’
results in the minimum and ‘:max’ in the maximum
value of a pitch-value list; ‘:part’ filters pitch-values so
that ‘m’ returns only a pitch-value belonging to a given
part.
The ‘:complete-case?’ keyword relates to one specific
concept in our system and needs some further
explanation. When working with compound structures
consisting of several notes such as chords, beats,
measures and harmonic formations, the system calls the
rules each time it encounters a new note in the structure.
This scheme is due to the way the generative part of our
system works. There a backtrack search is always
working with partial solutions (for more explanation
see [10]). Using the same scheme both in a generative
and analytical context allows us to utilize rules
interchangeably in both approaches without excessive
rewriting. Thus the rules have to be able to deal with
partial formations (i.e. cases where only some of the
notes belonging to the current structure have been
investigated). Normally this is not a problem as the ‘m’
method by default returns only values that have been
considered. The ‘complete-case?’ keyword is typically
used only in rules where it is required that the structure
is fully present.

4. RULE EXPRESSIONS

ENP provides a collection of standard and non-standard
notational attributes (e.g. articulations) called ENP-
expressions. Furthermore, it offers a set of attributes
that can be used to represent analytical information or
other user-defined annotations as a part of a musical
texture. In addition to their traditional use, ENP-

expressions can be used in a wide range of applications:
(1) display music theoretical analysis information, e.g,
annotate motives, harmonic progressions; (2) visualize
specialized analytical information, such as Schenker
graphs, or pitch-class set theoretical information; (3)
attach arbitrary textual annotations, names, or comments
to objects; (4) dynamically inspect and visualize data
contained in notational objects, such as pitch, intervals
duration, velocity, and start-time.

All ENP-Expressions can access the data contained by
the notational objects they are associated with (their
musical context). This allows to design dynamic
expressions that can automatically display relevant
information about themselves and their musical context.

It is also possible to use a scripting language called
ENP Script [7] as an algorithmic complement to the
manual approach where the user inserts ENP-expressions
by hand. This is useful when building, for example,
computer-assisted music analysis applications.

In this article we focus on two expressions in particular,
namely score-expressions and analysis-groups.

Score-expressions can be used to visualize discontinuous
information in the score (Figure 1). They provide a
convenient way to display information with some
common identity that is scattered across different parts.
Arbitrary vertical/horizontal relations can be made
visible. The shape of a score-expression can be selected
from a predefined collection. In addition, score-
expressions can also contain user definable textual
information. The following example enumerates the
current set of different shapes (Figure 1):

Figure 1. The available shapes of score-
expressions displayed in an ENP score. The
names of the shapes are: :curve, :oval, :encircled,
:connected-shapes (with three different shapes
:circle, :triangle, and :rectangle), :line and :path.

An analysis-expression, in turn, has the ability to keep a
history and compare the similarity of its musical
context to the ones of its previous occurrences. There are
two important parameters associated with analysis-
expressions: :name and :analysis-key. The analysis-
expressions that share the same :name make observations
about one musical quality at a time. This can be, for
example, the interval between two consecutive notes,
the pitch-class set-theoretical identity of a group of
notes, etc. The :analysis-key, in turn, defines the
algorithm that is applied to the musical context of the
expression to calculate a special key which is then used
by the system to compare the musical context with
other occurrences of analysis-expressions that have the

same name parameter. There is also an additional, third,
parameter, :display-type, that can be used to define the
graphical appearance of the expression.

Let us say that we have inserted several analysis-
expressions in the score that are named :motive1. These
expressions also contain an :analysis-key that is defined
with the Lisp expression ‘(- (m ?2) (m ?1))’. All these
expression share the same history (due to name). Each
of these expression compare their musical context to the
recorded history to determine if there already is a similar
occurrence or not. The history is arranged so that similar
musical contexts get similar tags (such as A, B, C,
etc.). Thus expressions that have some similar qualities
in their musical context also share similar graphical
appearance.
Next we give an example of the behavior and properties
of analysis-expressions. The corresponding ENP score is
given below the analysis rule (Figure 2). Here we
analyze the interval between two consecutive notes in
the score and display the information in the score by a
letter and we also draw a bracket that encloses the extent
of the motive.
We can see that the expression has determined that out
of all the consecutive intervals in this excerpt six are
downward minor seconds (all marked with a letter B)
and one of the intervals is a downward minor third
(marked as A in the score).

(* ?1 ?2

 (?if

 (when (zerop (mod (1- (mindex ?2)) 2))

 (add-expression 'analysis-group ?1 ?2

 :name :motives

 :display-type :letter

 :analysis-key (- (m ?2) (m ?1))))))

Figure 2. Motive analysis applied to a passage of
music with the help of an analysis-group expression
(J.S. Bach: Das Wohltemperierte Klavier I, Prelude
and Fugue in b minor, BWV 869).

5. MELODIC RULES

In the following sections we will demonstrate how score
accessors can be used to write analytical rules. Section 2
gave already one simple melodic rule example without
score accessor keywords (i.e. in this case we assume that
all variables in the pattern-matching part refer to notes).

As our first example we use the melodic analysis rule
given in Section 2 to add textual information in a
twelve-tone row (Figure 3). In this case we display the
interval between any two consecutive notes directly in
the score by using a group expression.

 (* ?1 ?2

 (?if

 (add-expression 'group ?1 :info (- (m ?2) (m ?1)))

 "interval rule")

Figure 3. Interval information inserted in a twelve-
tone row with the help of an analysis rule and group
expressions.

Our next example (Figure 4) uses the accessor ‘:beat’
and thus the variable named ‘?1’ refers to a beat. This
rule is applied to all beats in the input score. The ‘m’
method returns all pitch-values for all notes of the
current beat. The function ‘setp’ checks that these
pitches do not contain modulo 12 duplicates. The rule
given below maps through all the beats in the score and
inserts a red oval where the beat contains pitch-class
duplicates.

(* ?1 :beat

 (?if

 (unless (setp (m ?1) :key 'mod12)

 (add-expression 'score-expression

 (m ?1 :object :note)

 :kind :oval

 :color :red

 :note-expression-p t)))

 "check for PC duplicates in beats")

Figure 4. The beats in the score checked with the
help of an analysis rule. Beats with pitch-class
duplicates are marked with a red oval.

6. HARMONIC RULES

The score accessor keyword ‘:harmony’ allows to
formulate both harmonic and voice-leading rules in a
compact manner. In this section we focus in an example
that deals with harmony. With the term harmony we
mean here vertical pitch formations in the score where
one, two or more notes are sounding together. The
following two examples illustrate in a musical score the
harmony concept in PWConstraints. The first example
is a simple case of two homo-rhythmic parts with four
harmonic formations (Figure 5). The notes belonging to
each of the harmonies are encircled and connected with a
line.

Figure 5. Four harmonies visualized in an ENP score
with the help of connected circle shaped
expressions.

Our second example is rhythmically more complex than
the previous one resulting in more complex harmonic
relations. Again, there are four harmonies but this time
one note belongs to two different harmonies as can be
seen in Figure 6. The harmonies are marked in the score

as above and each line can be considered to represent
one harmony. The line connects the members of each of
the harmonies and the members, in turn, are marked
with circles.

Figure 6. An example where one note is shared with
two harmonies.

Let us assume that the assignment is to write three part
choral voicing for a string trio using only complete
triads, i.e., it is not allowed to duplicate the root, third
or fifth of a triad. We create next a rule—by using the
‘:harmony’ score accessor—that analyses a score
according to a given harmonic aspect and marks the
mistakes in the score in some meaningful way. In this
case we use a score-expression that draws a path around
the notes it is associated with. The rule is defined as
follows:

(* ?1 :harmony

 (?if

 (let ((midis (m ?1 :complete-case? t)))

 (when (and midis (not (setp midis :key #'mod12)))

 (add-expression 'score-expression ?1

 :kind :path

 :info (format () "Incomplete~%triad!")

 :color :red

 :note-expression-p t)))))

Figure 7 shows one potential solution and also displays
the information inserted in the score by the ‘harmony
teacher’ rule given above. The mistakes are highlighted
using a red rectangle along with the written instruction
“Incomplete triad!” placed directly above it.

Figure 7. Incomplete chords marked in the score

with the help of a ‘harmony teacher’ rule.

7. VOICE-LEADING RULES

Voice-leading rules tend to be harder to formulate than
melodic or harmonic ones as they often deal both with
melodic and harmonic formations in the same rule. The
required musical context can be spread among several
parts in the score. This can lead to difficult situations
especially if the rhythmic structure of the input score
contains complex poly-rhythms. In this section we
continue to use the ‘:harmony’ score accessor as it often
allows to capture these cases in a compact manner.
Figure 8 gives a relatively complex excerpt taken from
the piano repertoire (Sonata op. 58 by F. Chopin). The
example contains clef changes which makes it more
difficult to follow voice-leading. The rule given below

is used to check the piano texture and mark such places
where a note in one part crosses or forms an unison with
a note in another part. As can be seen in Figure 8 there
is one such incident found in the score which is marked
by encircling the offending note. This kind of
knowledge can be beneficial when analysing, for
example, piano texture. The analysis reveals that there is
a conflict between the written and sounding
representation of the piece. Albeit there is a quarter note
sounding in the left hand part, in the right hand part
there is an attack on the same note.

(* ?1 :harmony

 (?if

 (let* ((p1 (partnum ?csv)) (p2 (+ p1 1))

 (m1 (m ?1 :part p1)) (m2 (m ?1 :part p2)))

 (when (and m1 m2)

 (when (<= m1 m2)

 (add-expression 'score-expression ?csv

 :kind :encircled

 :note-expression-p t)))))

 "no voice crossings")

Figure 8. A rule that checks for voice crossings in a
musical score. The encircled note in the second
voice in the right hand part crosses with the bass
part (F. Chopin: Sonata op. 58).

The following rules are used to check for modulo 12
cross-relations between the soprano and bass parts
within two adjacent harmonic formations. If a cross-
relation is found, a line-shaped score-expression is
inserted in the score to visually reveal the associated
notes (Figure 9).

(* ?1 ?2 :harmony

 (?if (when (m ?2 :complete-case? t)

 (let* ((sop1 (m ?1 :max t))

 (bas2 (m ?2 :min t)))

 (unless (/= (mod12 sop1) (mod12 bas2))

 (add-expression 'score-expression

 (m ?1 :max t :object :note)

 (m ?2 :min t :object :note)

 :note-expression-p t

 :kind :line)))))

 "no sop/bass mod12 cross-relation1")

(* ?1 ?2 :harmony

 (?if (when (m ?2 :complete-case? t)

 (let* ((sop2 (m ?2 :max t))

 (bas1 (m ?1 :min t)))

 (unless (/= (mod12 sop2) (mod12 bas1))

 (add-expression 'score-expression

 (m ?2 :max t :object :note)

 (m ?1 :min t :object :note)

 :note-expression-p t

 :kind :line)))))

 "no sop/bass mod12 cross-relation2")

Figure 9. A cross-relation revealed in a sequence of
chords.

8. ANALYSIS EXAMPLE

In the Appendix we give an analysis example taken
from the literature. We show how to analyze the
harmonic and melodic content of a choral piece, called
‘Erotessa’, by a Finnish composer Kimmo Kuitunen
(one of the authors of this article). In our musical
excerpt the cycles of three 4-voiced symmetric chords
and their inversions (having the set-class identity 4-7, 4-
7 and 4-9) create the harmonic basis. The pitch-classes
remain the same within each four repetitions of the
cycle, but the octave positions of pitch-classes are
changed. These three chords (F-A-E-Ab , D-Bb-Eb-B
and Db-Gb-G-C) also form a matrix which fills the
chroma (12-1). The melodic line of each vocal part
repeats the 3-note cells derived from the matrix (set-
classes are either 3-3a or 3-3b). Each voice also uses all
the 12 pitch-classes and thus fills the chroma. We use
the graphical devices described above to visualize the
analysis information directly in the score. We begin by
giving the analysis rules applied in the example.

A.

(* ?1 :harmony

 (?if

 (let ((midis (m ?1 :complete-case? t)))

 (when (and midis (sym-chord? midis))

 (add-expression 'score-expression ?1

 :kind :connected-shapes

 :shape (case

(mod (length (all-prev-items ?1)) 3)

 (1 :rectangle)

 (0 :circle)

 (2 :triangle))

 :note-expression-p t)))))

B.

(* ?1 ?2 ?3

 (?if

 (when (zerop (mod (1- (mindex ?1)) 3))

 (add-expression 'analysis-group ?1 ?2 ?3

 :name :motives

 :display-type :letter

 :analysis-key

 (list (mod12 (m ?1))

 (mod12 (m ?2))

 (mod12 (m ?3)))))))

Let us examine the analysis rules in more detail. The
first one of the analysis rules (A) deals with harmonic
formations of the example score. We use the rule to
locate any symmetrical vertical formations in the score.
In order to be able to make this kind of analytical
observations about the harmony, we must first ensure

that the current harmony is fully present (see the
expression ‘(midis (m ?1 :complete-case? t))’ in the
rule). If the harmony is not complete, the midis variable
is an empty list in which case the latter part of the rule
is not executed. However, if midis contains some values
these are checked by the function sym-chord? to
determine if they constitute a symmetric chord. If this
is true then a score-expression (:connected-shapes) is
inserted in the score to visually reveal the notes that
belong to the symmetric chord. In order to distinguish
between overlapping situations the shape of the score-
expression is rotated between three different shapes:
:rectangle, :circle, and :triangle. This is done
according to the position of the current harmony in the
score (see ‘(mod (length (all-prev-items ?1)) 3)’ in the
rule). Note that the shapes do not have any meaning of
sameness in an analytical sense. The shapes are used
only to help distinguishing between several overlapping
expressions. One option, however, could have been to
use the visual appearance to identify, for example, some
pitch-class set-theoretical properties by applying similar
shapes to similar harmonies.

In the second analysis rule (B) we perform automatic
motive analysis of the score. This is done by using the
ENP-expression called analysis-group that was discussed
in Section 4. In this case we are interested in the
motive identity of 3-note groups. As can bee seen in the
score, this particular example is quite clearly organized
from this point of view. We get only four different
motives (marked as A, B, C, and D). The motives also
appear to have a cyclic pattern which can be observed by
examining each part individually.

9. CONCLUSIONS

This paper presents a new syntax that allows to write in
a flexible manner analytical rules that are applicable to a
wide range of musical contexts. The pattern-matching
part can be used systematically for all score accessor
types. Analysis rules return expression objects that are
used to visualize analytical data.
Although the system is still under development it is
already obvious that this kind of approach has many
interesting applications in computer-assisted
composition, analysis and teaching contexts.

10. ACKNOWLEDGEMENTS

The work of Mikael Laurson has been supported by the
Academy of Finland (SA 105557).

11. REFERENCES

[1] Laurson, M. PATCHWORK: A Visual
Programming Language and Some Musical
Applications. Doctoral dissertation, Sibelius
Academy, Helsinki, Finland, 1996.

[2] Rueda C., M. Lindberg, M. Laurson, G.
Bloch, and G. Assayag. “Integrating Constraint
Programming in Visual Musical Composition
Languages”, in ECAI 98 Workshop on

Constraints for Artistic Applications,
Brighton, 1998.

[3] Anders T. “Arno: Constraints Programming in
Common Music”, Proceedings of the
International Computer Music Conference,
2000.

[4] Truchet C., G. Assayag, and P. Codognet.
“Visual and Adaptive Constraint Programming
in Music”, Proceedings of the International
Computer Music Conference, Havana, Cuba,
pp. 346-352 , 2001.

[5] Anders, T. Composing Music by Composing
Rules: Computer Aided Composition
employing Constraint Logic Programming.
Sonic Arts Research Centre Queens University
Belfast, Northern Ireland, 2003.

[6] Laurson, M., and M. Kuuskankare. “PWGL: A
Novel Visual Language based on Common
Lisp, CLOS and OpenGL”, Proceedings of the
International Computer Music Conference.
Gothenburg, Sweden, pp. 142–145, 2002.

[7] Kuuskankare, M. and M. Laurson. “Intelligent
Scripting in ENP using PWConstraints”,
Proceedings of the International Computer
Music Conference. Miami, USA, pp. 684-687,
2004.

[8] Huron D. “Music information processing using
the Humdrum Toolkit: Concepts, examples,
and lessons”, Computer Music Journal. Vol.
26, No. 2, pp.15-30, 2002.

[9] Kuuskankare, M., and M. Laurson. “ENP2.0 A
Music Notation Program Implemented in

Common Lisp and OpenGL”, Proceedings of the
International Computer Music Conference.
Gothenburg, Sweden, pp. 463-466, 2002.

[10] Laurson, M., and M. Kuuskankare. “Extensible
Constraint Syntax Through Score Accessors”,
In Journées d'Informatique Musicale 2005.
Paris, France, 2005.

APPENDIX

Kimmo Kuitunen: Erotessa (lyrics by Eino Leino).
The tenor part sounds as written. Symmetric
harmonies are displayed in the score with the help of
score-expressions. Some motive analysis
information is also shown below each part (marked
with letters A to D).

