
A TEMPORAL CONCURRENT CONSTRAINT CALCULUS AS AN AUDIO
PROCESSING FRAMEWORK

Camilo Rueda
Universidad Javeriana-Cali

crueda@atlas.puj.edu.co

Frank Valencia
Ecole Polytechnique

frank.valencia@lix.polytechnique.fr

ABSTRACT

Audio processing systems involve complex interactions of
concurrent processes. These are usually implemented us-
ing domain specific visual languages and tools more con-
cerned with providing practical solutions than with giv-
ing formal meaning to the supplied audio unit combina-
tors. Concurrent constraint process calculi have proved
to be effective in modeling with precision a wide variety
of concurrent systems. We propose using ntcc , a non
deterministic temporal concurrent constraint calculus, to
model audio processing systems. We show how the con-
current constraint nature of the calculus greatly simplify
specifying complex synchronization patterns. We illus-
trate ntcc as audio processing framework by modeling
unit combinators and using them ina an audio processing
example.

1. INTRODUCTION

Concurrent constraint (CC) process calculi ([7]) provide
formal grounds to the integration of concurrency and con-
straints so that non trivial properties of concurrent systems
can be expressed and proved. Concurrent processes oc-
curring in music exhibit a rich variety of synchronization
schemes, calling into play different degrees of precision
(i.e. partial information) about temporal or harmonic re-
lations involving them. Musical processes span a wide
range of abstraction levels, from the sound phenomena up
to rhythmic or harmonic structures. The complexity of
musical phenomena poses a great challenge to any com-
putational formalism. We think that a suitable CC process
calculus should provide a convenient framework to get in-
sights into the right models to cope with this challenge,
at each abstraction level. We thus borrow concepts and
techniques from concurrent processes modeling to define
suitable computational calculi and analyze their behavior
in real settings.

In a previous work ([5]) we proposed using ntcc
([3]), a temporal non deterministic concurrent constraint
calculus, for modeling music improvisation processes. We
showed how this modeling framework gave us the possi-
bility of easily verifying of them interesting musical prop-
erties. In this paper we are interested in pushing the idea
of ntcc as a convenient framework for modeling concur-
rent processes at a lower level: that of the sound itself.

Our approach is close in spirit to [8] in looking for a
minimum number of constructs allowing to conveniently
express a variety of actual synchronization patterns oc-
curring in audio processing. Also closely related to our
proposal is the Faust system [2]. Faust is a visual audio
processing language whose underlying semantics is based
on an algebra of block diagrams. By providing a formal
semantic base, the constructs of Faust can be given precise
meaning.

Our aim is different from these two approaches. Rather
than defining a full fledged domain specific language for
audio processing we want to explore the pertinence of
ntcc as a runnable specification of audio processing sys-
tems. What we gain from this approach is twofold. One
the one hand, we are able to ground the development of
audio processing tools on a very precise formal foundation
and by this means proposing coherent higher level audio
structures and operations. On the other hand, our model
can give us clues for constructing formal proofs of inter-
esting properties of a given audio process. Audio specifi-
cations in ntcc can be directly executed (a compiler plus
an abstract machine has been implemented), thus provid-
ing a framework in which the behavior of formally speci-
fied systems can be directly observed.

We thus propose using ntcc as a formal base to model
audio processing systems in such a way that their temporal
properties can be formally proved.

The ntcc calculus inherits ideas from the tcc model [6],
a formalism for reactive concurrent constraint program-
ming. In tcc time is conceptually divided into discrete
intervals (or time-units). In a particular time interval, a
deterministic ccp process receives a stimulus (i.e. a cons-
traint) from the environment, it executes with this stimulus
as the initial store, and when it reaches its resting point, it
responds to the environment with the resulting store. Also
the resting point determines a residual process, which is
then executed in the next time interval.

The tcc model is inherently deterministic and synchro-
nous. Indeed, patterns of temporal behavior such as “the
system must output a control signal s within the next t
time units” or “the three processes must eventually output
the same sample but there is no bound in the occurrence
time” cannot be expressed within the model. It also rules
out the possibility of choosing one among several alterna-
tives as an output to the environment.

A very important benefit of being able to specify non-

deterministic and asynchronous behavior arises when mod-
eling the interaction among several components running
in parallel, in which one component is part of the environ-
ment of the others. This is frequent in interactive audio
applications. These systems often need non-determinism
and asynchrony to be modeled faithfully. To our knowl-
edge, existing audio processing languages do not consider
non determinism explicitly.

The ntcc calculus is obtained from tcc by adding guarded-
choice for modeling non-determinism and an unbounded
but finite delay operator for asynchrony. Computation in
ntcc progresses as in tcc, except for the non-determinism
and asynchrony induced by the new constructs. The cal-
culus allows for the specification of temporal properties,
and for modeling and expressing constraints upon the en-
vironment both of which are useful in proving properties
of timed systems.

In this essay we are interested in showing how non triv-
ial audio processes calling into action different forms of
partial information can be modeled in ntcc . We are
interested in modeling audio synchronization patterns re-
sulting from the controlled interaction of independent au-
dio agents, such as is the case in several forms of sound
synthesis. In this type of systems, state changes in one
process following particular local laws must be “partially”
synchronized with state changes in other processes. This
poses difficulties to CCP models not including state change
constructs. We show that audio processes with non deter-
minism, partial information and state change synchroniza-
tion are naturally expressed in ntcc . We claim this is a
clear advantage of the ntcc calculus.

We also investigate ways in which properties of audio
process can be formally proved. We are able to do this
thanks to the logical nature of ntcc, which comes to the
surface when we consider its relation with linear temporal
logic: All the operators of ntcc correspond to temporal
logic constructs.

We certainly do not claim ntcc to be an audio process-
ing language. Many practical issues that are fundamental
to audio processing applications are not addressed here.
In particular, we believe that research on constraint sys-
tems devised specifically for audio processing is needed
to achieve the level of performance required in audio pro-
cessing. A clean integration of existing powerful audio
processing libraries into this constraint system must be
implemented before real applications can be considered.

The main contributions of this paper are: 1) to show
how the expressiveness of the ntcc model allows sim-
ple descriptions of complex systems of interacting audio
processes, 2) describing a framework for audio process-
ing that is also capable of modeling higher level musical
structures, thus giving coherence to relationships between
processes at different hierarchical levels and 3) arguing
that by modeling an audio process in ntcc one inherits a
well defined logical inference system (see [3]) that can be
used to prove its temporal properties.

2. THE CALCULUS

In this section we present the syntax and an operational
semantics of the ntcc calculus. First we recall the notion
of constraint system.

Basically, a constraint system provides a signature from
which syntactically denotable objects in the language called
constraints can be constructed, and an entailment relation
specifying interdependencies between such constraints. The
underlying language L of the constraint system contains
the symbols ¬̇, ∧̇, ⇒̇, ∃̇,true and false which denote
logical negation, conjunction, implication, existential quan-
tification, and the always true and always false predicates,
respectively. Constraints, denoted by c, d, . . . are first-
order formulae over L. We say that c entails d in ∆, writ-
ten c `∆ d (or just c ` d when no confusion arises), if
c ⇒̇ d is true in all models of ∆. For operational reasons
we shall require ` to be decidable.

Processes P , Q, . . .∈ Proc are built from constraints
c ∈ C and variables x ∈ V in the underlying constraint
system by the following syntax.

P, Q, . . . ::= tell(c) |
∑

i∈I

when ci doPi

| P ‖ Q | local x inP
| nextP | unless c nextP
| ! P | ? P .

The only move or action of process tell(c) is to add the
constraint c to the current store, thus making c available to
other processes in the current time interval. The guarded-
choice

∑

i∈I

when ci do Pi,

where I is a finite set of indexes, represents a process that,
in the current time interval, must non-deterministically
choose one of the Pj (j ∈ I) whose corresponding cons-
traint cj is entailed by the store. The chosen alternative, if
any, precludes the others. If no choice is possible then the
summation is precluded. We use

∑

i∈I Pi as an abbrevia-
tion for the “blind-choice” process

∑

i∈I when (true)doPi.
We use skip as an abbreviation of the empty summation
and “+” for binary summations.

Process P ‖ Q represents the parallel composition of
P and Q. In one time unit (or interval) P and Q oper-
ate concurrently, “communicating” via the common store.
We use

∏

i∈I Pi, where I is finite, to denote the parallel
composition of all Pi. Process local x in P behaves like
P , except that all the information on x produced by P
can only be seen by P and the information on x produced
by other processes cannot be seen by P . We abbreviate
local x in local y in P as local x, y in P

The process nextP represents the activation of P in
the next time interval. Hence, a move of nextP is a unit-
delay of P . The process

unless cnextP

is similar, but P will be activated only if c cannot be in-
ferred from the current store. The “unless” processes add

(weak) time-outs to the calculus, i.e., they wait one time
unit for a piece of information c to be present and if it is
not, they trigger activity in the next time interval. We use
nextn(P) as an abbreviation for

next(next(. . . (next P) . . .)),

where next is repeated n times.

The operator ! is a delayed version of the replication
operator for the π−calculus ([9]): ! P represents P ‖
nextP ‖ next2P ‖ . . ., i.e. unbounded many copies
of P but one at a time. The replication operator is the
only way of defining infinite behavior through the time
intervals.

The operator ? allows us to express asynchronous be-
havior through the time intervals. The process ? P repre-
sents an arbitrary long but finite delay for the activation of
P . For example, ? tell(c) can be viewed as a message c
that is eventually delivered but there is no upper bound on
the delivery time.

We shall use !IP and ?IP , where I is an interval of nat-
ural numbers, as an abbreviation for processes

∏

i∈I nextiP

and
∑

i∈I nextiP , respectively. For instance, ?[m,n]P
means that process P is eventually active between the next
m and m + n time units, while ![m,n]P means that P is
always active between the next m and m + n time units.

Operational Semantics.

Operationally, the currently available information is rep-
resented as a constraint c ∈ C, so-called store. The op-
erational semantics is given by considering transitions be-
tween configurations γ of the form 〈P, c〉. We define Γ as
the set of all configurations. The formal definition (see [3]
for details) introduces two reduction relations, one repre-
senting internal transitions and the other observable tran-
sitions.

The internal transition 〈P, c〉 −→ 〈Q, d〉 should be
read as “P with store c reduces, in one internal step, to

Q with store d ”. The observable transition P
(c,d)

====⇒ Q
should be read as “P on input c from the environment re-
duces, in one time unit, to Q and outputs d to the environ-
ment ”. Such an observable transition is defined in terms
of a sequence of internal transitions 〈P, c〉 −→∗ 〈Q′, d〉
starting in P with store c and ending in some process Q′

with store d. Crudely speaking, to obtain Q we should
remove from Q′ what was meant to be executed only in
the current time interval. Since Q is to be executed in the
next time interval we should also “unfold” the sub-terms
within nextR expressions in Q′. As in tcc, the store does
not transfer automatically from one interval to another.

To illustrate reductions in ntcc , consider an audio
process, say ! P , that continually outputs either a sample
value of v or w until another process (modeling a button)
Q signals the end. Process !P ‖ Q, for P and Q as
defined below, models the example.

P
def
= when (Go = 1)do (tell (sample = v)

+ tell (sample = w))
‖ unlessEnd = 1next tell (Go = 1)

Q
def
= tell (Go = 1) ‖ ? tell (End = 1)

Then there is a sequence of internal transitions

〈! P,Go = 1〉 −→ 〈P ‖ next ! P,Go = 1〉
−→∗ 〈tell (sample = w) ‖ next ! P,Go = 1〉
−→ 〈next ! P, sample = w ∧ Go = 1〉 6−→ . . .

Initially the store contains constraint Go = 1 (which,
as described below, will be added to the store by Q). Repli-
cated process !P then creates a copy of P and schedules
itself for the next time unit. Process P ouputs w (the store
gets Go = 1 ∧ sample = w). No further reductions are
possible in the current time unit. Two processes, !P and
tell Go = 1 are scheduled for the next time unit. So, in
the case P ‖ Q, for an arbitrary (number of time units)
n > 1, the following are possible transitions:

〈!P ‖ Q, true〉 −→∗

〈next !P ‖ next tell Go = 1
‖ nextntell(End = 1),Go = 1 ∧ sample = v〉

and

!P ‖ Q
(true,Go=1∧sample=v)

====⇒
!P ‖ tell Go = 1 ‖ nextn−1tell(End = 1).

The first one is the internal transition relation,
whereas the second is the observable transition. Thus !P
continually outputs either sample v or w for an arbitrary
number n of time units until the constraint End = 1 is put
in the store.

In the examples below we use process definition of the
form

A(x)
def
≡ Px

where Px is a process using a variable x. A “call” of the
form A(c) would then launch process Px once the vari-
able x is substituted by c. Process definitions do not add
functionality to ntcc since they can be defined in terms
of the standard ntcc constructs.

As mentioned before, an important feature of the ntcc
model is that there is a logic associated with it. We de-
scribe next this logic.

3. A LOGIC OF NTCC PROCESSES

A relatively complete formal system for proving whether
or not an ntcc process satisfies a linear-temporal property
was introduced in [3]. In this section we summarize these
results.

Temporal Logic.

We define a linear temporal logic for expressing properties
of ntcc processes. The formulae A, B, ... ∈ A are defined
by the grammar

A ::= c | A ⇒ A | ¬A | ∃xA | ◦A | �A | ♦A.

The symbol c denotes an arbitrary constraint. The sym-
bols ⇒, ¬ and ∃x represent temporal logic implication,
negation and existential quantification. These symbols are
not to be confused with the logic symbols ⇒̇, ¬̇ and ∃̇x of
the constraint system. The symbols ◦, �, and ♦ denote
the temporal operators next, always and sometime. Given
a property A (e.g. x > 10) the intended meaning of ◦A,
�A and ♦A is that the property holds, in the next time
unit, always and eventually, respectively. We use A ∨ B
as an abbreviation of ¬A ⇒ B and A ∧ B as an abbrevi-
ation of ¬(¬A ∨ ¬B).

We shall say that process P satisfies A iff every infinite
sequence that P can possibly output satisfies the property
expressed by A. A relatively complete proof system for
assertions P ` A, whose intended meaning is that P
satisfies A, can be found in [3]. We shall write P ` A if
there is a derivation of P ` A in this system.

The following notion is useful for expressing properties
of processes.

Definition 3.1 (Strongest Derivable Formulae) A formula
A is the strongest temporal formula derivable for P if
P ` A and for all A′ such that P ` A′, we have A ⇒ A′.

Note that the strongest temporal formula of a process
P is unique modulo logical equivalence. We give now a
constructive definition of such formula.

Definition 3.2 (Strongest Formula Function) Let the func-
tion stf : Proc → A be defined as follows:

stf (tell(c)) = c
stf (WHEN(ci, Pi)) =

(
∨

i∈I ci ∧ stf (Pi)
)

∨
∧

i∈I ¬ci

stf (P ‖ Q) = stf(P) ∧ stf (Q)
stf (localx P) = ∃xstf (P)
stf (next P) = ◦ stf (P)
stf (unless c next P) = c ∨ ◦stf (P)
stf (! P) = � stf (P)
stf (? P) = ♦ stf (P).

where the expression WHEN(ci, Pi)) represents process
∑

i∈I when (ci)doPi.
From [3] it follows that P ` stf (P). From this we

have:

Proposition 3.3 For every process P , stf (P) is the stron-
gest temporal formula derivable for P .

Note that to prove that P ` A is sufficient to prove
that stf (P) ⇒ A. In addition, the proof system described
in [3] gives extra mechanisms for carrying out proofs of
process properties.

The idea is then to “translate” the model of an audio
system in ntcc to its associated strongest temporal for-
mula. Any temporal property one might one to prove of an
audio system could then be verified in the temporal logic,
even automatically, using the proof system.

4. AUDIO PROCESSING IN NTCC

The temporal nature of ntcc relates to the processing of
audio samples in a natural way. Each time unit of ntcc
can be associated to processing (generating or transform-
ing) the current sample of a sequential stream. All reduc-
tions performed in a given time unit thus represent, in a
way, “real time” transformations. Once a process is done
computing it can reschedule itself at an appropriate time in
the future, remain active for a certain time interval or sim-
ply disappear. Combinations of these possibilities provide
a rich set of patterns of temporal processing.

4.1. Time and duration

Different time rates can be naturally modeled using the
next construct. In the following example, process A is
twice as fast as process B:

A
def
≡ P1 ||next (A)

B
def
≡ P2 ||next 2(B)

The notion of duration can be expressed as pairs of on/off
events, Pon ||next dPoff, or explicitly as a process exe-
cuting itself during a certain time range: ![i,j]P. Processes
“beating” time at different rates can be used by other pro-
cesses to express a variety of synchronization schemes:

TICK1(i)
def
≡ tell (beat1 = i) ||next 2(TICK1(i + 1))

TICK2(i)
def
≡ tell (beat2 = i) ||next 3(TICK2(i + 1))

TICK1(0) ||TICK2(2)
|| !when beat2 6= beat1 do next P1

|| !unless beat2 6= beat1 next P2

Process P1 will be executed at times 2, 8, 20, 26, 32, 38, . . .
whereas process P2 will be run at all times except those.
Notice how being able to reason on absence of informa-
tion (the unless construct) allows expressing this behav-
ior in a simple way. As can be seen in the above exam-
ple, time in ntcc can be regarded as “advanced” by the
user (much like in ChucK, see [8]) or it can be seen as
controlled by a sampling process providing a new sam-
ple at each ntcc time slot. In both cases time is inde-
pendent from the underlying hardware (real) timing. This
fact greatly simplifies proving temporal properties of pro-
cesses.

In addition, the blocking behavior of constraints under
lack of sufficient information provides a very natural and
expressive synchronizing mechanism. This feature gives
a declarative flavor to concurrency that avoids in most
cases dealing with complex synchronizing schemes such
as semaphores or monitors.

4.2. Unit processing elements

Unit generators can be represented as processes taking an
input stream and performing some given transformation
on it. The input and output streams are modeled by suit-
able global variables accessible to each process. The en-
vironment (or a process) sets the value of the input vari-
able at each time unit. Interacting processes cooperate to
compute a value for the variable representing the output
stream (i.e. they assert constraints on that variable). It
is important to remark that all variables are logical. Their
value cannot be changed during the same time unit. A unit
generator is of the form:

SOUND UNITg(in,out)
def
≡ !tell (out = g(in))

An envelope process, for example, can be defined as:

ENVELf (in)
def
≡

tell (out = in)
||next (ENV EL(f(in))

Applying the envelope to a unit generator is achieved by
the parallel composition of the above:

local x, y, out in

SOUND UNITg(in, x) ||ENV ELf (in, y)
|| !tell (out = x × y)

In fact, a wide variety of combinations among processing
elements is easily defined. Consider, for example, those
proposed in the algebra of block diagrams of [2]:

Given two audio processes A and B a process S run-
ning them sequentially can be defined as

A(in1, in2, out)
def
≡ P1

B(in1, in2, out)
def
≡ P2

S(in1, in2, in3, out)
def
≡

local z in (A(in1, in2, z) ||B(in3, z, out))

By using local variables all sorts of signal splitting or
merging between sequential processes can be defined. Say
process C taking three input streams and producing one
output stream is to be run after processes A and B. Two
of the inputs of Process C come from splitting the output
of A and the third one from adding the outputs of A and
B. This can be defined as follows (process S2, see figure
1 (a)):

C(in1, in2, in3, out)
def
≡ P3

S2(in1, in2, in3, in4, out)
def
≡

localx, y, z in

(A(in1, in2, x) ||B(in3, in4, y) ||
tell (z = x + y) ||C(x, x, z, out))

Since it corresponds to a primitive of the calculus, par-
allel composition of stream processing units (process D
below) is straightforward:

D(in1, in2, in3, in4, out1, out2)
def
≡

A(in1, in2, out1) ||B(in3, in4, out1, out2)

b)

A

B

a)

C

+

A

+

B

Figure 1. a) Merging/splitting and b) loopback stream
processing units

Notice that in all examples above only the parallel com-
position operator is used for combining processes. The
right synchronization is nevertheless guaranteed because
of the implicit blocking ask of constraints. When no in-
formation on the value of a variable is available (e.g.. a
sample has not been computed yet) constraints needing
that value simply block.

Processes using loopback signals are also straightfor-
ward (see figure 1 (b)).

E(i)
def
≡

local z, w in

(A(i, in2, out) || tell (w = out + out) ||
B(out, w, z) ||next (E(z)))

Constructs dealing explicitly with time units can be
used to model a variety of control mechanisms at the sam-
ple level, much in the same way as explained above for
time rates. For example, a process P that is to be execut-
ing from sample m to sample n is readily defined by

A(in1, in2, , out)
def
≡ ![m,n] P.

Notice how this avoids defining control processes dealing
with boolean “signals”. The same goes for guarded even-
tuality where a process is launched at an unspecified time

within a given range, A(in1, in2, out)
def
≡ ∗[m,n] P.

Conditional execution is given by guarded commands.
A process transforming the maximum of two signals can
be given by,

C
def
≡

!(when in1 ≥ in2 do tell (out = in1 ∗ in1)
+ when in1 < in2 do tell (out = in2 ∗ in2))

The type of conditionals is only limited by the given cons-
traint system. In fact, a process might compute partial in-
formation on a signal that can be used for synchronization
purposes. For example, process C above could have been
defined as

C(in1, in2, out)
def
≡

!(when in1 ≥ in2 do tell (out > in1 ∗ in1)
+ when in1 < in2 do tell (out > in2 ∗ in2))

where the output is not totally determined. This could be
used to control some other process, as in

D(in1, in1)
def
≡ !(unless in2 > th next out = in2+in1)

Processes C and D are synchronized in

local x in (C(z, w, x) ||D(i, x, j))

4.3. Buffering

There are several ways of representing buffering (window-
ing) and serializing processes. They could be modeled by
processes that schedule themselves at the appropriate time
in the future. For example, consider a buffer of size k that
is to be filled with consecutive samples and some process
Pbuf that performs some computation on the buffer once
it is filled with data. Furthermore, suppose that at each
time unit some process feeds the value of a sample in a
global variable sample. The Merger agent below sched-
ules a constraint setting each sample value into a position
of the buffer at the right time, Process Pbuff is launched
by agent Apply exactly when all buffer values have been
set:

Mergerk(i)
def
≡

next k−i%k(tell (bufi = in))
||next Mergerk(i + 1)

Applyk

def
≡ next k(Pbuf ||Applyk)

where the symbol % denotes the arithmetic modulo oper-
ation. The opposite of Merge is a serialization process
that takes all buffer values and feed them one by one at
consecutive time units:

Serializek

def
≡

∏

i∈1..k

∑

v when bufi = v do next itell (sample = v)

where
∏

i∈1..k Pi is a shorthand for P1 || . . . ||Pk.
A more natural way of representing a buffer is, of course,

as a sort of read/write table. This tables are persistent
structures that can easily be modeled in ntcc as a collec-
tion of cells. Cells are defined with the expression x : (z).
This defines a cell x with initial value z. Cells are updated
with the exchange operation: exchv[x, y], This form as-
signs (in the next time unit) v to cell x and at the same
time, variable y gets the current value of x. Cells do
not add functionality to ntcc . They can be expressed
by using the standard primitives (see [3]). Using cells, a
read/write table of size k can be represented by the fol-
lowing pair of processes:

READk(index, out)
def
≡

∑

i∈1..k when index = i do xi : (out)

WRITEk(index, value, out)
def
≡

∑

i∈1..k when index = i do exchvalue[xi, y]

We can imagine some process initializing the above
read/write table with a stream of samples:

Initializek(i)
def
≡

when i ≤ k do local x in

Writek(i, sample, x) ||next Initializek(i + 1)

4.4. Synchronization

In many audio streaming applications synchronization on
external events is frequent. In ntcc the occurrence of an
external event is observed by some information it adds to
the current store. The presence (or absence) of this in-
formation can be readily tested by other processes so that
synchronization patterns emerge in a natural manner. For
example, say pushing some button b on a device (or GUI)
should trigger audio processing whereas pushing button s
should stop it. All processes could then synchronize on
some trig signal controlled by a process observing the
buttons:

TRIGGER(i)
def
≡

when pushb do

next (tell trig = 1 ||TRIGGER(1))
||when pushs do

next (tell trig = 0 ||TRIGGER(0))
||unless pushb ∨ pushs

next (tell trig = i ||TRIGGER(i))

The environment should of course guarantee that b and s
are not pushed at the same time. Each unit processing ele-
ment in the system could then simply multiply its current
input sample by the value of trig. The above agent could
be launched in a expression of the form

local x in TRIGGER(x)...

In this way, all processing units would be blocked until
button b is pushed. For example, a noise generator (see
[2]) making part of the system can be defined as follows:

NOISE(v)
def
≡

tell (out = v × trig × 1/2147483647)
||next (NOISE(v × 1103515245+ 12345))

The next example, taken from [2], rounds up the illustra-
tion of audio processing using ntcc .

4.5. An audio processing example

In [2] a block diagram algebra is presented as a formal
base for audio stream processing. We take the same exam-
ple of the Karplus-strong algorithm to complete the de-
scription of ntcc as a framework for audio processing.
Figure 2 shows the block diagram. The Delay subsystem
uses a table lookup indexing. The index process is de-
picted in figure 3. Figure 4 shows the implementation of a
delay block using a read/write table.

Delay
+

NOISE

f(x,y)

Delay

Figure 2. Karplus/strong system

1

&−

+

n
1

Figure 3. Table indexing

The INDEX block is modeled as

INDEXn(v)
def
≡

tell (out = v&(n − 1))
||next (INDEX((v&(n − 1)) + 1))

The representation of the delay block uses the INDEX and
READ agents (the latter decorated with some extra argu-
ments defining the offset) defined previously.

DELAYn,d(v)
def
≡

local ix, y, z, w in

(local out in (INDEX(v) || !tell (ix = out)))
|| !tell (y = ix − d) || !tell (z = n − 1)
|| !tell (w = y&z)
|| !READn(ix, input, w, out)

Finally, the system is assembled as:

local ns, outf in

(local out in (NOISE(0) || !tell (ns = out)))
(local input in

(!tell (input = ns + outf) ||DELAYn,d(0)))
||LOOPB(0) ||TRIGGER(0)|| ? tell pushb

where the loopback process is

LOOPB(v)
def
≡

tell (outf = v)
||next (LOOPB(f(out, out)))

0

INDEX

INDEX

−

&d

n

1
−

table

n

Figure 4. Delay

5. CONCLUSIONS AND FUTURE WORK

We have illustrated how temporal concurrent constraint
process calculi can be suitable frameworks for specify-
ing audio processing systems. In particular, we used the
ntcc calculus to model the usual unit combinators in
audio stream processing languages and showed how this
modeling formalism gives compact and precise definitions
of audio stream systems.

We argued that the advantage of using ntcc is that a
well-defined formalism with a clear semantics is inherited.
In addition, the logical nature of ntcc allows to easily
express and prove temporal properties of audio processes.
Since ntcc had previously shown to be a convenient for-
malism to model higher level musical process, coupling
those processes to lower level audio operations would be-
come much easier when the latter are also modeled in the
same formalism.

We gave examples to show that in essence the user can
always combine audio processes in ntcc using only par-
allel composition since different patterns of synchroniza-
tion are easily achieved using constraint entailment.

Although in its current setting ntcc is certainly far
from a practical audio processing language we think its
expressiveness provide a powerful framework for mod-
eling complex audio processing. Moreover, our research
group has implemented an abstract machine for ntcc that
is efficient enough for real time programming of LEGO
robots (see [4]). The behavior of audio systems modeled
in ntcc can thus be directly observed, at least for some
processes.

The real time requirements for audio processing is, of
course, a lot more demanding. The above mentioned ab-
stract machine uses a general finite domains constraint
system. For practical audio applications this might not
be adequate. We plan to continue our research on efficient
constraint systems specifically adapted to audio process-
ing.

Recently (see [1]) an extension of ntcc with stochas-
tic constructs has been defined. This can be specially
interesting for music improvisation systems dealing with
stochastic control of audio processes. We are currently
exploring models of audio operations using this extended
calculus.

6. REFERENCES

[1] C. Olarte and C. Rueda ”A stochastic Non
deterministic Temporal Concurrent Constra-
int calculus”, submitted to: XXV International
Conference of the Chilean Computing Society,
Chile, 2005.

[2] Y. Orlarey and D. Fober and S. Letz. ”Syn-
tactical and Semantical aspects of Faust”, Soft
Computing, A fusion of foundations, method-
ologies and applications, Vol. 8 (9). Springer,
2004.

[3] C. Palamidessi and F. Valencia. ”A Tempo-
ral Concurrent Constraint Programming Cal-
culus”, Proc. of the Seventh International Con-
ference on Principles and Practice of Constra-
int Programming, 2001.

[4] P. Munoz and R. Hurtado. ”Programming
Robotic Devices with a Timed Concurrent
Constraint Calculus”, Proceedings Principles
and Practice of Constraint Programming,
CP2004, LNCS3258, Springer, 2004.

[5] C. Rueda and F. Valencia. ”Proving musical
properties Using a temporal Concurrent Con-
straints calculus”, Proceedings of ICMC2002,
Sweden,2002.

[6] V. Saraswat and R. Jagadeesan and V. Gupta.
”Foundations of Timed Concurrent Constra-
int Programming”, Proc. of the Ninth Annual
IEEE Symposium on Logic in Computer Sci-
ence, 1994.

[7] V. Saraswat and M. Rinard and P. Panan-
gaden. ”The semantic foundations of concur-
rent constraint programming”, POPL’91. Pro-
ceedings of the eighteenth annual ACM sym-
posium on Principles of programming lan-
guages, 1991.

[8] G. Wang and P.R. Cook. ”ChucK: A Con-
current, On-the-fly Audio Programming Lan-
guage”, In Proceedings of the International
Computer Music Conference (ICMC), Singa-
pore, 2003.

[9] R. Milner, J. Parrow and D. Walker. ”A Calcu-
lus of Mobile Processes, Parts I and II”, Jour-
nal of Information and Computation,1992.

