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ABSTRACT

In this paper we discuss the applicability of the Mellin
transform for vowels recognition, focusing on spectral en-
velope scale distribution.
The hypothesis used is that same vowels produced same
spectral envelope shapes (same curves with different com-
pression factor), so an energy, time and scale normaliza-
tion can be used to map same vowels to same distributions.

So, using fast algorithms, we study the applicability of
this idea to build a realtime or quasi-realtime system capa-
ble of making vowel discrimination in a relatively straight-
forward way.

1. INTRODUCTION

Same vowels pronounced by different people with differ-
ent gender, different age, or by the same person using
a different pitch can be recognized by our auditory sys-
tem. We don’t know how our auditory system can do this,
but we can try to find a way to replicate this behavior.
Irino and Patterson in [5] have pointed out that our audi-
tory system can do a kind of scale normalization (maybe
using a Mellin transform) and in another paper [4] they
present an application to this idea to their Auditory Image
Model. Our objective is to study the hypothesis to apply
the Mellin transform to the spectral envelope of the sig-
nal in order to achieve some kind of pitch, gender, age
normalization of the pronounced vowels, and all this in
an efficient (fast, or quasi-realtime) way. Related works
have been presented in [13] and [11] to obtain normal-
ized envelopes or spectra and in [9] and [10] using Mel-
scale warping and scale-cepstral coefficients for the same
purpose. In [8] an application of the scale-cepstrum for
speech analysis has been presented and in [12] an im-
plementation of STCC (scale-transform cepstrum coeffi-
cients) has been developed and compared to MFCC (Mel-
scale cepstrum coefficients).

2. PITCH AND VOCAL TRACT IN VOWELS

From a temporal point of view, the signals of the same
vowels pronounced by the same person, but with different
pitch are not equal. But a more accurate analysis of the
signal reveals that a single period of the vowel presents
similarities with the single period of the other. The differ-
ent part of the signals is the “gap” between periods. So

Figure 1. Five periods of an ‘a’ vowel (top), same vowel
with a lower pitch, no change to vocal tract (middle), same
vowel with same pitch and a shorter vocal tract (bottom).

we can build an artificial change of pitch taking a single
period of a vowel, add zeros in tail and replicate this struc-
ture. For example you can get a new vowel pronunciation
with a lower pitch with this modification (see figure 1).

Different ages and different genders can be studies us-
ing the ideas presented in [4]. Basically, the vocal tract
of every person can be modelled with a lossless acoustic
tube, so this tube is different only in length between differ-
ent persons. The impulse responses of those tubes are one
the scaled version of the other. So, again, if we take a sin-
gle period of a vowel and confront it with another person
(with a different length of the vocal tract) single period of
the same vowel we should get two scaled versions of the
same signal (see figure 1).

Now, the problem with these two ideas is that, for each
signal, we must extrapolate the single period, find its start
point and end point, and compare (directly in the pitch
modification case, and with a scale normalization for the
varied vocal tract case) the signals. Finding the single pe-
riods can be very difficult (pitch detection problem, cnfr.
[7]) and results can be bad because a single period is short
(too few samples) and can be different from others (we
need some kind of mean).

But there is another way and we want to investigate
about this other solution. Instead of working directly in
time domain we can work on frequency domain. This give
us two advantages: the first is that we “loose” time, so we
don’t care about time shifts between signals and we can



Figure 2. Fourier magnitude and spectral envelopes of
the figure 1 signals. The envelopes estimations are very
similar (top and middle) or in scale relation (same curve
but more or less compressed, bottom).

avoid synchronization problems, the second is that if we
work on the envelope we can avoid the signal preprocess-
ing (find the single period, the start point, end point and
compute some kind of mean).

So, the idea is to take the spectrum of the signal (only
positive frequency1 , e.g. work on analytic signal), extract
the envelope2 and apply the scale transform to the enve-
lope. Since the envelope of the discussed signals stays
the same (with a different compression factor for different
length vocal tracts, see figure 2), making a scale transform
gives us a magnitude distribution identical for all this sig-
nals. In this way, in theory, we have a system to recognize
the same vowel pronounced by different people with dif-
ferent pitches.

Naturally, this is a simplified model, because there are
some differences that we discard (vocal tract geometry
is slightly different between males and females, for ex-
ample females have shorter pharynges in relation to their
oral cavities [13]). Moreover, there is not a perfect con-
stant compression factor between envelopes (authors of
[10] suggest a Mel-scale warping instead a compression),
so our results can be affected by these simplifications, but
verifying that these reductions are not too heavy is part of
this study.

3. THE SCALE AND MELLIN TRANSFORMS

The Mellin transform of a functionf is defined as:

Mf (p) =
∫ ∞

0

f(t) tp−1 dt , (1)

wherep ∈ C is the Mellin parameter. The scale transform
[2] is a particular restriction of the Mellin transform on

1 The whole support is redundant and can cause a zero-in-head prob-
lem (reintroduction of a shift/synchronism problem that destroys the
scale relation between envelopes).

2 We cannot use directly the spectra because, in general they are not
in scale relation, but their envelope are.

the vertical linep = −jc+ 1
2 , with c ∈ R. Thus, the scale

transform is defined as:

Df (c) =
1√
2π

∫ ∞

0

f(t) e(−jc− 1
2 ) ln t dt. (2)

The scale inverse transform is given by

f(t) =
1√
2π

∫ ∞

−∞
Df (c) e(jc− 1

2 ) ln t dc. (3)

The key property of the scale transform is the scale in-
variance. This means that iff is a function andg is a
scaled version off , the transform magnitude of both func-
tions is the same. A scale modification is a compression
or expansion of the time axis of the original function that
preserves signal energy. Thus, a functiong(t) can be ob-
tained with a scale modification from a functionf(t), if
g(t) =

√
αf(αt), with α ∈ R+. Whenα < 1 we get

a scale expansion, whenα > 1 we get a scale compres-
sion. Given a scale modification with parameterα, the
scale transforms of the original and scaled signals are re-
lated by

Dg(c) = αjcDf (c). (4)

This property derives from a similar property of the Mellin
transform. In fact, ifh(t) = f(αt), then

Mh(p) = α−pMf (p). (5)

In both (4) and (5), scaling is reflected by a multiplicative
factor for the transforms, and for (4) such factor reduces
to a pure phase shift. So, the scale transform magnitude
of the original signal and the scaled signals is the same.

|Dg(c)| = |Df (c)|. (6)

4. ALGORITHM

Following the theory we have built an algorithm for study-
ing the applicability of this method in practice and evalu-
ating its performance. The goal is to obtain an automatic
and simple (few or none controls, no tuning, no active con-
trol) recognition system that can map the same vowels to
the same distribution and different vowels to different dis-
tributions. The system can be viewed as a sequence of
steps: the first step is the computation of the Fourier trans-
form magnitude for positive frequencies (or the Fourier
transform magnitude of the analytic signal).

The second step is to build the spectral envelope. There
are different algorithms and ideas on how to extract a spec-
tral envelope (Channel Vocoder, LPC, Cepstrum). For our
purpose we chose the cepstrum method [1]. The cepstrum
method allows the estimation of a spectral envelope start-
ing from the Fourier transform of the signal. First the
signal (or a frame of the signal) can be windowed with
a Hanning, Hamming or Gaussian window, then the log
of the Fourier transform magnitude is computed (real cep-
strum), after that the inverse Fourier transform is calcu-
lated, weighted with a particular low pass window [6] and



Figure 3. Algorithm graphical description.

finally another Fourier transform is applied. In our imple-
mentation we don’t apply the windowing (for these exper-
iments we work directly with already windowed signals
chunks) and we compute the envelope on the positive fre-
quencies only. The only parameter that we need to “tune”
is the cut quefrency3 value (the low pass cut value). For
our purpose the envelope must be smooth enough to “ab-
sorb” the slight differences between same vowels, but not
as smooth as to have different vowels mapped to simi-
lar envelopes. To achieve a good tradeoff, we applied a
low pass filtering of the spectrum (before computing the
real cepstrum) and another low pass filtering applied to
the spectral envelope. Low pass filters cut frequencies are
computed using the quefrency value, so we still have only
one tuning parameter.

The third step is the scale transform of the spectral en-
velope. In theory, same vowels have same spectral en-
velope (or same envelope but with different compression
or scale factor), so using the scale transform we should
obtain the same magnitude distributions. Using the fast
Mellin transform [3] algorithm we can compute the scale
magnitude quickly (O(n ln2 n), see below).

The fourth and last step is a normalization of the scale
magnitude distribution for comparisons between signals
with different energy, although we can make this normal-
ization before computing the scale transform.

Like already said, the algorithm has a unique control,
the quefrency parameter for the envelope estimation and
this makes using this technique very straightforward. The
major flaw in this method is the envelope estimation. In
fact the envelope is not a well defined curve, and different
techniques or parameters give us different results. There-
fore, for getting sufficiently good results we need to com-
pare signals of the same class (e.g. same sampling factor,
same quantization, similar recording conditions, etc.).

The asymptotic complexity of the entire procedure is
O(n ln2 n), wheren is the number of samples of the au-
dio signal. In fact, the first two steps areO(n lnn), be-
cause we need to compute Fourier transforms (FFT), the

3 The term “quefrency” is commonly used when referring to the inde-
pendent variable of the cepstrum domain.

third step isO(n ln2 n), because this is the computational
complexity of the scale transform [3], and the last step is
linear.

5. TESTS

For testing the applicability of the whole idea, we have
used artificial and real vowels.
The artificial vowels have been built from a unique real ‘a’
vowel (acanonA1 T1 real).
A single period was extracted and replicated to build an ar-
tificial ‘a’ (same pitch, same vocal tract, acanonA1 T1).
With the same period we built another ‘a’ with a lower
pitch, as described in section 2 (zero padding to have a
longer period, acanonA1 T15 low). Then other two ver-
sions have been created: one (acanonA2 T1 high) is the
simulation of a vocal tract reduction (again, as described
in section 2, obtained by compression of the single period
and zero padding the period to have the same length of the
original one) and the last version is a pitch and vocal tract
modification at the same time (acanonA2 T3 cmpr high,
not shown in the figures, acanonA2 T1 high has an al-
most equal distribution).

The real vowels are acanon (acanonA1 T1 real is
the first 0.132 seconds of it), ecanon, icanon, ocanon
and ucanon.

As can be seen in figure 4, all the artificial vowels can
be mapped to very similar distributions. The scale axis
is zoomed in the0 − 5 interval because there differences
or similarities can be appreciated, and the magnitude is
normalized. Of course they are not perfectly identical, but
results are encouraging, especially when comparing a real
‘a’ vs. the artificial ‘a’ (figure 5).

Real vowels distributions (figures 6 and 7) appear dif-
ferent (even if there’s not dramatic differences, for exam-
ple ‘a’ and ‘u’ present some similarity) so they are distin-
guibile from each other.

The next step will be to make comparisons with real
sounds between different genders and pitch, with an intro-
duction of other components (e.g. an algorithm for auto-
matic computation of quefrency parameter) in the system
to go deeper in the study of applicability of this method
for vowel recognition. Moreover, some kind of clustering
must be done to verify that all the vowels can be mapped
in different sets.

6. CONCLUSIONS

In this paper we have analyzed the applicability of the
Mellin/scale transform for vowels recognition, focusing
on spectral envelope scale distribution. We have reached
a first indication that this idea can be pursued. The algo-
rithm implemented is not usable yet, because it does not
provide us a clear-cut answer (e.g. this vowel is equal to
that), and it needs spectral envelope tuning (quefrency pa-
rameter). An expansion of the algorithm should be possi-
ble using automatic tuning. The tests have been limited to
two classes of vowels, artificial (‘a’) and real (all vowels)



Figure 4. Log plot of the normalized magnitude of three
envelope scale transforms. An ‘a’ vowel, a pitch lower ‘a’
and an ‘a’ pronounced by a shorter vocal tract. All the
vowels are artificial.

Figure 5. Log plot of the normalized magnitude of three
envelope scale transforms. An artificial ‘a’ vowel, a real
‘a’ and a different length real ‘a’.

Figure 6. Log plot of the normalized magnitude of three
envelope scale transforms. A real ‘a’ vowel, a real ‘e’ and
a real ‘i’.

Figure 7. Log plot of the normalized magnitude of three
envelope scale transforms. A real ‘a’ vowel, a real ‘o’ and
a real ‘u’.

and can be further extended with real vowels only after the
aforesaid algorithm modifications. The asymptotic com-
plexity of the entire procedure isO(n ln2 n), so it shall be
usable in realtime or quasi-realtime environment (depends
on the signal length). The experiments have shown us that
following the idea of a time-shift normalization (through
Fourier transform and spectral envelope in particular) and
a scale normalization (through scale transform) applied to
audio signal can be pursued to make some kind of vowel
recognition or normalization independent from who (age,
gender) have pronounced the vowel and what pitch has
been used.

7. REFERENCES

[1] D. Arfib, F. Keiler, and U. Z̈olzer. Source-filter pro-
cessing. In U. Z̈olzer, editor,Digital Audio Effects,
pages 299–372. John Wiley and Sons, Ltd., Chich-
ester Sussex, UK, 2002.

[2] L. Cohen. The scale representation.IEEE Trans.
on signal processing, 41(12):3275–3291, December
1993.

[3] A. De Sena and D. Rocchesso. A fast mellin trans-
form with applications in dafx. InProc. of the 7th
Int. Conference on Digital Audio Effects (DAFx’04),
pages 65–69, October 2004. Naples, Italy, October
5-8.

[4] T. Irino and R. Patterson. Extracting size and shape
information of sound source in an optimal auditory
processing model. InCASA workshop, IJCAI-99,
August 1999.

[5] T. Irino and R. Patterson. Segregating information
about the size and the shape of the vocal tract us-
ing a time-domain auditory model: The stabilised
wavelet-mellin transform.Speech Communication,
36(3):181–203, March 2002.



[6] A. V. Oppenheim and R. W. Schafer.Digital Signal
Processing. Prentice-Hall, 1975.

[7] M. R. Schroeder.Computer Speech. Springer, 1999.

[8] S. Umesh, L. Cohen, N. Marinovic, and D. J. Nelson.
Scale-transform in speech analysis.IEEE Transac-
tions on Speech and Audio Processing, 7(1):40–45,
January 1999.

[9] S. Umesh, L. Cohen, and D. Nelson. Frequency-
warping and speaker-normalization. InICASSP-
97, IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 2, pages 983
– 986, April 1997.

[10] S. Umesh, L. Cohen, and D. Nelson. Frequency
warping and the mel scale.Signal Processing Let-
ters, 9(3):104 – 107, March 2002.

[11] S. Umesh, S. B. Kumar, M. K. Vinay, R. Sharma,
and R. Sinha. A simple approach to non-uniform
vowel normalization. InICASSP ’02, IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing, volume 1, pages 517 – 520, May 2002.

[12] S. Umesh, R. C. Rose, and S. Parthasarathy. Ex-
ploiting frequency-scaling invariance properties of
the scale transform for automatic speech recogni-
tion. In ICSLP-2000, volume 1, pages 301 – 304,
October 2000.

[13] H. Wakita. Normalization of vowels by vocal-tract
length and its application to vowel identification. In
IEEE Transactions on Acoustics, Speech, and Signal
Processing, volume 25, pages 183 – 192, April 1977.


	1  Introduction
	2  Pitch and vocal tract in vowels
	3  The Scale and Mellin Transforms
	4  Algorithm
	5  Tests
	6  Conclusions
	7  References

