STRATEGIES FOR CONTINUOUS
PITCH AND AMPLITUDE TRACKING IN
REALTIME INTERACTIVE IMPROVISATION SOFTWARE

Christopher Dobrian

Department of Music
University of California, Irvine
Irvine CA 92697-2775 USA
dobrian@uci.edu

ABSTRACT

In a realtime interactive work for live performer and
computer, the immanently human musical expression of
the live performer is not easily equalled by
algorithmically generated artificial expression in the
computer sound. In cases when we expect the computer
to display interactivity in the context of improvisation,
pre-programmed emulations of expressivity in the
computer are often no match for the charisma of an
experienced improviser. This article proposes to achieve
expressivity in computer sound by “stealing”
expressivity from the live performer. By capturing,
analyzing, and storing expressive characteristics found in
the audio signal received from the acoustic instrument,
the computer can use those same characteristic expressive
sound gestures, either verbatim or with modifications.
This can lead to a more balanced sense of interactivity in
works for live performer and computer.

1. INTRODUCTION

In the genre of pieces for live instrumental performance
in combination with computer, many composers are
employing custom-written software that functions in real
time during performance in a so-called “interactive”
relationship with the live performer. The rubric of
“interactivity” is in fact often applied to any work that
involves realtime software, regardless of whether the
software actually exemplifies true interaction between
computer and human performer. A significant distinction
may be drawn between software that is “reactive” and
software that is truly interactive.

A shortcoming of many works for live performer of
an acoustic instrument in combination with computer is
that these two elements—human and computer—are
inherently disparate, both in terms of sound quality and
expression. Because the means of sound generation by
computer is significantly different from that of
traditional acoustic instruments, digitally synthesized
and processed sound is often significantly different from
live instrumental sound, and in many cases lacks the
complexity of sound production and performance gesture
found in acoustic instruments. This disparity of sound
between instrument and computer can be used
intentionally to create an obvious contrast, but one may
also strive to introduce more complexity and interest in
the computer sound. Although digital sounds can be
made arbitrarily complex mathematically, this is not
necessarily equivalent to the type of complexity we find
engaging in human performance. This paper discusses an

approach to using some of the complexity of human
performance for direct control of computer audio, based
on the premise of “stealing” expressivity from a live
performer.

2. CHARACTERISTICS OF INTERACTIVITY

If a computer responds instantly to the sound or gestures
of a live performer based on a programmed algorithm,
this is not necessarily an example of “interactive”
computer music. The program is reacting to its input in
a pre-determined way. The computer can only be
purported to be acting autonomously if it is programmed
to make some decisions of its own that are not fully
predicted by the algorithm. This implies inclusion of
some elements of unpredictability: the use of pseudo-
randomness at some structural level. Likewise, the
relationship between computer and live performer cannot
be described as interactive if the performer is playing
from a fully fixed score, because the unpredictable
behavior of the computer will have no influence on the
live performer. The prefix inter- in the word
“Interactivity” implies mutual influence between agents
that are also in some way autonomous decision makers.
Neither agent may be fully predetermined in its
behavior; each must be able to modify its behavior—to
improvise—based on unpredictable behavior by the
other. Therefore, improvisation by both human and
computer is an essential component of any truly
interactive work. In order for a computer to respond
effectively to improvisation by a live performer, it must
have some capability for cognition as well as
independent action. Although computer cognition,
intelligence, and expression are all artificial, they can
still give the impression of interactivity.

3. STEALING EXPRESSIVITY

Just as the —ivity suffix in the word “interactivity”
connotes “a quality of” interaction that can only be
artificial in a machine, “expressivity” for a computer can
only be a demonstration of an artificial or simulated
quality of being expressive in the sense that we apply it
to human music making: the conveyance of meaning or
feeling. Much research has been focused on formulaic or
algorithmic modeling of expressive phrasing (e.g., in
jazz or classical music), and on developing new control
interfaces that will permit more intimate and intuitive
physical control of digital sound parameters. In this
article I propose a direct method of achieving
expressivity in computer music, by “stealing” it from a

live performer. Rather than trying to abstract a concept
of musical expression and devise a formulaic generative
method to simulate it, it can be more effective in some
cases simply to capture and use expressive characteristics
of an actual performance. This is particularly appropriate
in an improvised interactive context, when the type of
computer expression that might be a suitable response to
the live performer may not be known in advance.

It is very difficult to describe formulaically the
characteristics of computer sound that will make it seem
expressive in a way that is comparable to human musical
expression, but we can use human expressive gestures to
shape the computer sound. The composer and
programmer must determine what characteristics of the
live performance are important to expression in a given
work, and what characteristics of the performance can be
captured and analyzed. When the live performer is using
only an acoustic instrument, without MIDI, sensors, or
other digital input, the primary source of information
from human to computer is the sound of the instrument
itself. The computer program can analyze the audio
signal, derive characteristics that the composer has
deemed important, and use that information directly to
control the musical expressivity of its own sound.

4. PITCH AND AMPLITUDE TRACKING

In interactive pieces for acoustic instrument and
computer, direct analysis of the audio signal received
from the instrument is the main source of information
for any cognitive function in the computer program.
From the audio signal we can, with varying degrees of
success, analyze the pitch, amplitude, and timbre
(spectral content) of the signal, and from that
information we can derive some information about
specific events, notes, dynamic changes, and rhythm.
Because of the difficulty of performing such analysis
accurately and meaningfully, one must carefully consider
what information is desired—which can vary based on
the musical context of the moment—and must develop
strategies for acquiring that information reliably.

In my recent pieces for flute and computer, I have
focused on pitch and amplitude tracking in an effort to
give the computer some sense of the musical expression
of the live performer. In the following paragraphs I
describe some of the strategies I have used. Notably, I
will focus on the tracking strategies I developed that are
specially suited to the Korean flute daegeum, an
instrument that idiomatically introduces some stylistic
and expressive traits that are often not the focus of
Western classical music.

5. CONTINUOUS PITCH TRACKING

For computer pitch analysis of melodic instruments, the
fiddle~ software [1, 6] has had widespread usage among
programmers in Pd [5] and MSP [3, 7]. (Other software

for pitch detection in MSP exists, such as pitch~ [4],
yin~ [2], and others. A comparison of all of those
methods is beyond the scope of this article.) The fiddle~
implementation in MSP is largely successful for
detecting pitch in most Western classical music contexts
where the music is conceptually organized as discrete
notes each having a single stable fundamental pitch.

In the idiomatic style of the daegeum, however, the
identity of a note with a single stable pitch is much
more difficult to specify, and indeed is musically
inappropriate in many cases. Often in daegeum music,
the conceptual equivalent of a note—that is, a distinct
period of relative pitch stability within a scale—entails a
constant fluctuation of pitch ranging as wide as a
semitone above or below the conceptual pitch center.
Much of the musical interest and expressivity in this
idiom lies in the curve of this pitch variation, in
combination with simultaneous variations of amplitude
and timbre, as much as or more than the sequential
organization of discrete scale steps as would be the case
in most Western music. For a computer to capture the
expressive nature of pitch in daegeum music, ascribing a
single pitch to a note is inadequate; it is the ongoing
curve of pitch fluctuation that is more important.

The fiddle~ object does provide the MSP
programmer with an ongoing report of estimated pitch
without trying to determine a single precise pitch per
note, and it is this ongoing report that is more useful for
idiomatic daegeum music. However, because of the wide
range of spectral variation possible within a single
sustained daegeum note, fiddle~ is prone to make some
“wrong” pitch assessments that are briefly displaced by
an octave from the perceived overall pitch. Although
octave melodic leaps are not uncommon in daegeum
music, they most commonly appear between phrases,
and only much more rarely occur as a smooth legato
transition; therefore it is reasonable and beneficial to
ignore instantaneous leaps equal to or greater than an
octave, on the assumption that they are but spurious
artifacts of fiddle~’s analysis. It is also possible to
ignore any of fiddle~’s pitch estimates that lie beyond
the range of the instrument—estimates that may be the
result of turbulent embouchure noise, an inadvertent
grunt or loud inhalation by the performer, etc. Pitch
estimates that occur when the note has insufficient
amplitude can also be filtered out. Once the “bad”
guesses are removed, and the “good” guesses have been
smoothed with low pass filtering, the result is a pitch
curve that perceptually very closely resembles that of the
performance (Figure 1).

The continuous pitch curve, now in the form of a
signal, can be used to control the pitch of synthesized
sounds, modulating oscillators, pitch shifting, etc. in
real time, can be transposed or modified with any
standard DSP technique such as compression, and/or can
be recorded in a buffer~ for later use.

sebs the amplitude
below which pitehes
will mot be repored

loadbang

seb the low and high
amplitwde limits for

envelope Eollowing

sﬂnﬂtahemuhmﬂ.[;1_Jémp—range s0 50| [

these numbers are in

fiddle~'s perception of

. decibels [which wswally

split S0. 100, goes Wp o abouk 96

fiddle™
£
— 1
only allow piteh if
amplitude i in ramge; -
zek ko [otherwisze =&_=

* 0,

limit piteh ramge to

convert to MIEE deeibels,
in which 04E referenees

daggenm range, bo

split 57.5 89.5

remove bad data

tffh

if abs($f1-$£27<=10.0 then Hfl

mtof

sig™

—— if piteh leaps more
£ tham & m7, assume
! it iz & spwrious
ciebamre eirar, unless
1 it persists till the
next windaw

[+ P32 32T75 | eomwert b Erequene iy

smooth the transitions
betyween numbers

— 95, |an amplitude of 1
then eonvert from dE
HlEpe to rawr amplitude

=i~

F

rampsmooth™ 512 512

rampsmooth™ 512 512

D piteh enwelope

[limited and smoothed)

EI amplitwde envelope
[gated]

Figure 1. Continuous pitch follower, filtering out spurious values and smoothing the curve

6. AMPLITUDE TRACKING

In MSP it’s a simple matter to make an envelope
follower that tracks and mimics the over-all amplitude
envelope of an audio signal. At a periodic control rate
much lower than the audio sampling rate—usually well
below the fundamental frequency of the note being
analyzed—one can accumulate samples and find the
maximum magnitude within the control period, using
the peakamp~ object. These maxima describe the
general amplitude envelope of the sound, and can be
converted back to an MSP signal with interpolation, for
use as a control signal for synthesized sounds (Figure
2). As with the continuous pitch curve, the amplitude
envelope can be modified with DSP, repurposed to
control other sonic parameters, and/or recorded into a
buffer~ for later use. Once stored, these control signals
derived from the live performance can be treated as
musical motives that can recur verbatim or with
modifications.

sigmal Famp time

[]]

peakamp™ #1

pack 0. #1
=—

line™
Ii‘l envelope of peak amplitwde
of input sigmal

Figure 2. Simple amplitude envelope follower

As was done with the pitch follower described
above, we may wish to ignore signals of low amplitude
that we deem to be beneath the level of the desired
signal, i.e. part of the ambient noise floor. When
dealing with signal amplitude, eliminating low level
signals can be accomplished by gating—*“ducking” all
the way to 0 any signal below a given threshold—or by
downward dynamic expansion—increasingly reducing a
signal the more it falls below a threshold. A ducking

feature can easily be added to the envelope follower just
by comparing the incoming peak amplitude to a
threshold and converting the value to 0 if it is below
the threshold (Figure 3).

sigmal

1

peakamp™ Z0.

Famp time threzhald

1

if $f1 = $£f2|then $£fl1 =l== 0.

" ——
t £h

£ 20,

-.=i
line="™

]
|:| gaked amplitude enwelope

Figure 3. Simple amplitude envelope follower with
low amplitudes converted to 0

source igmal
[amplitude]

[

in dE

I

in iE

[

inms

I

In actual practice, some more refinements are usually
necessary. Precaution should be taken so that peak
amplitude levels that hover around the threshold,
fluctuating rapidly just above and just below it, do not
cause the gate to be opened and shut repeatedly, which
would result in a distorted envelope. This can be
accomplished by setting a longer attack and/or release
time for the opening and closing of the gate. It has the
added advantage of creating more graceful attack and
release at the beginning and end of the amplitude
envelope signal, adjustable to the needs of the situation.
The following figure shows one solution, in which the
amplitude envelope signal (which might be coming
from the simple follower shown in Figure 2 above) is
gated by a thresh~ object, with the effect of the thresh~
being smoothed by rampsmooth~. In this example,
thresholds and ramp times can be specified
independently for the attack and release of the thresh~
gate (Figure 4).

att. threzh. ark, time rel. thresh. rel. rime
inms

[

patcherargs —-120 0 —120 0

unpack 0. 0. 0. 0.

! I

ah=" S Etod AEtod Arguments: attadle threshold in 4R,

——— y = y 2 attack time in mE, release threshold

thresh™ in dF, release timke in ms

'

i

; mstosanps"™ |(mstosanps™

E rampup F1 | |rampdn:u':lm F1 |

H I]

rampsmooth™ The input sigmal is gated avconling

ko the specified atback snd release
e : thresholds. The transition from
—— g clozed to open [attack] and open ta
D gated sigmal D gate envelope elosed [release] is ramped ower a

specified time.

Figure 4. Attack and release thresholds and ramp times for gated envelope follower

7. NOTE BOUNDARY DETECTION

The periodic peak amplitude values gathered by
peakamp~ can be used to recognize sound events and
silences, which can be interpreted as the beginning and
ending boundaries of individual notes or phrases. Once
again, the problem is not quite so simple as just
detecting when the peak amplitude goes above or below
a particular threshold. An instrument such as the
daegeum has a very wide dynamic range and
idiomatically wide amplitude vibrato (a.k.a. tremolo)
that might easily dip below the ambient noise floor
many times within the course of a note. In order to
avoid wrongly interpreting such an amplitude vibrato as
repeated notes, one can specify a “wait time” before
determining that a note has ended; if the peak amplitude
goes back above the threshold before the wait time has

passed, the note is presumed to be continuing. In the
same spirit, one might specify a minimum note
duration, less than which a note cannot be presumed to
have ended.

The daegeum, like most flutes, often has a very
gradual attack and release, and this must be taken into
account when evaluating the attack amplitude of a note.
If we only look at the amplitude at the moment it passes
the detection threshold, we may get an inaccurate
assessment of the note’s attack velocity, because the true
peak of the attack—the “downbeat”, or “sync point” if
you will—may actually occur a fraction of a second later
than when it first passes the threshold. In order to allow
for this possibility, we can track the increasing
amplitude from the time it passes the threshold on the
attack, and only report the true peak of the attack once
we see that the amplitude is steady or is starting to

diminish.

The following figure demonstrates these ideas. The
input amplitude is expected as a floating-point value
expressed in decibels. This would come from an input
signal, the peak amplitude of which is periodically

Detect an audio event
(i.e. a"note") when it
SUrpasses a certain

awlio peak AE

]

attack
threshold 4R

[

evaluated by peakamp~ and then converted to decibels
with atodb. Some default values for attack threshold,
release threshold, minimum note duration, and “wait
time” are shown here, but they can be adjusted by new
values received in the inlets (Figure 5).

min. noke
duration

Iy

release

thresholl 4B min. off time

dB threshold Fl
Lt fh
| I = 1 1
f -9&. f -95.
1 I —
b =gl > —96. |[==
gate &1
el 01 if $iZ2 |if mote is off snd
|—'| .ﬂ. then $£1(thresholl is passed)..
onebang |5tDP | '
1 L £h f -95.
-=* *=
delay 25 -_lf:-l.
w:ut.ax least minimum I
off time, then turn py—
note off and hegin p— ' track amplitude till it
looking for et event if $il then $i2 stops inereasing, then
] bwn note on and report
t£fb b b peak amplitude of attack
| I
[1]
delay 95 | wait at least minimum note time. ..

amplitude of attack |:| |:| 10 = note-on'woke-off

Figure 5. Detect a sound event and report its beginning, ending, and attack amplitude

When an amplitude value comes in, we compare it to
the threshold. If it exceeds the threshold and no note is
currently on, then we track future amplitudes until they
are no longer increasing. At that time, the note is
presumed to have reached its peak attack amplitude, so
we send a | out the right outlet to say that an event has
occurred, and we send the peak attack amplitude out the
left outlet. Also, we update the note’s on/off status (in
the & object) and we start the note duration and wait
time clocks (the delay objects). From that time on,
incoming amplitudes are continually evaluated to see if
they remain above the release threshold. If not, and once
both the minimum duration and the wait time have
passed, the note is reported as having ended.

This type of note boundary detection is very useful
for triggering events or processes based on the attack
detected in an incoming audio signal, and ending them

when a note release is detected. For example a
synthesized or recorded sound can be started and stopped
in response to these note boundaries, and peak attack
amplitude can be used to determine how loudly the
computer will play its sound. A program might also
make higher level evaluation of a series of events, such
as estimating tempo, measuring and storing played
rhythms, etc.

8. USE OF TRACKED PITCH AND
AMPLITUDE DATA

The control signals derived from the amplitude and
pitch of an input audio signal can be applied
instantaneously to control parameters of the computer
audio. Additionally, they can be modified in MSP
before being used, and/or can be applied to parameters

other than amplitude and pitch, such as panning, filter
cutoff frequency, etc. Figure 6 shows a straightforward
example of how the patches shown in the previous
figures can be used to provide expression to a
synthesized sound. The patches called pitchfollower~,
envelopefollower~, threshgate~, and detectevent corre-
spond to Figures 1, 2, 4, and 5 above. The patcher
soundsynthesis could be any synthesis algorithm, with
the four inlets being used to provide amplitude curve,
frequency curve, attack peak amplitude, and note on/off

indicator. Note how easily the frequency curve can be
transposed, and the amplitude curve can be repurposed
to control panning from left to right as the amplitude
increases.

This example (Figure 6) shows realtime use of
expressive information signals from a live performer.
Alternatively, once those control signals have been
recorded into a buffer~, they become motives that can be
recalled later in the performance, and can be modified by
any DSP technique.

patcher soundsynthesis

adc™ 1

i i tr‘ﬁmp.t}'——lﬂ. | peakamp™ 5

H H I

P [z)]s 12| |2todb [};-3” H?*I-E” |P’|95 H?’IEE |
A 1 T 1 1
envelopefollower™ 20 E pow detecterent
[’ 1
threshgate™ -30 50 —40 250(|(pitchfollower™ |[dbtoa

{ -

: ———

jroeoresessesransosecssaressegy fresrres [

]
L4 "

pan”™
F—i
dac™

Figure 6. Amplitude and pitch curves used to control synthesis and panning

9. CONCLUSION

For expressivity in a realtime improvised interactive
work, it is often effective to “steal” expressive
information from a live performer and apply it to the
computer music. In works for acoustic instrument and
computer, the audio signal is the primary source of such
information. Continuous curves derived from the pitch
and amplitude of the sound source can be used to control
parameters of the computer audio, lending a sense of
human expressivity to the computer music. These
expressive curves, when expressed as a signal in MSP,
can be modified with DSP, can be reassigned to other
sonic parameters, and can become motives for
improvisational use by the computer later in the piece.
The computer sounds more expressive because it is in
fact basing its own sonic gestures on information
derived directly from the live performance.

10. REFERENCES

[1] Brown, J. C. and Puckette, M. 1993. “A High-
Resolution Fundamental Frequency Determina-
tion Based on Phase Changes of the Fourier
Transform”. Journal of the Acoustical Society
of America, 94:2, pp. 662-667.

Cheveigné, A. and Kawahara, H. 2002. “YIN, a
fundamental frequency estimator for speech and

music”. Journal of the Acoustical Society of
America, 111:4, pp. 1917-1930.

Dobrian, C. 1998. MSP: The Documentation.
San Francisco: Cycling *74.

Jehan, T. and Schoner, B. 2001. “An Audio-
Driven, Spectral Analysis-Based, Perceptual
Synthesis Engine”. Proceedings of the
International Computer Music Conference. San
Francisco: International Computer Music
Association.

[3]

[4]

[5] Puckette, M. 1996. “Pure Data”. Proceedings of
the International Computer Music Conference.
San Francisco: International Computer Music

Association, pp. 269-272.

[6] Puckette, Miller and Apel, Theodore. 1998.
“Real-time audio analysis tools for Pd and
MSP”. Proceedings of the International
Computer Music Conference. San Francisco:
International Computer Music Association, pp.

109-112.

Zicarelli, D. 1998. “An Extensible Real-Time
Signal Processing Environment for Max”.
Proceedings of the International Computer
Music Conference. San Francisco: International
Computer Music Association.

[7]

