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ABSTRACT

Methods from string and pattern matching have recently
been applied to many problems in music retrieval. We
consider the so-called lead sheet problem, where the har-
mony, melody, and, usually, bass line are presented sepa-
rately. This is a common situation in some forms of pop-
ular music but is also significant for ”classical” music in
many cases. A number of different but related musical sit-
uations are analysed and efficient algorithms are presented
for music retrieval in each one.

1. INTRODUCTION

Recently a new approach to music analysis has been taken
that attempts to take advantage of the tools of string and
pattern matching from computer science. This has re-
quired new formalisations of many problems in music re-
trieval and in some cases a loss in the richness of the orig-
inal musical source. As a result, arguably the most impor-
tant innovations have been in increasing the sophistication
of the way computational music analysis problems are
represented. For example, where previously music was
largely assumed to be monophonic, data structures and
algorithms for polyphonic music are now commonplace.
Furthermore, distinct representations for voiced and un-
voiced polyphonic music allow more appropriate meth-
ods to be applied to each. For situations where pitch and
rhythm alone are not sufficient, new methods for search-
ing in sets of high dimensional data straddle the border be-
tween computational geometry and stringology. Perhaps
even more importantly, formal translations of the concept
of musical similarity have been extended away from their
previous form which was largely inspired by text editing
and bioinformatics.

We focus here on music that can be considered in two
separate but related parts. First, the melody is given as
a monophonic sequence of notes. Accompanying it is the
harmony presented as a sequence of chords; usually which
note of each chord is the lowest (the bass line) is specified
as well. The sequence of chords can either be given ex-
plicitly, as is usually the case in lead sheets for popular
music, or it can be implicit, the usual case in a “classi-
cal” piece, for example. The task of music retrieval using
data of the form described is termed the lead sheet prob-
lem. We present four different variants on the lead sheet
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Figure 1. Chord symbols in an excerpt from Alice in
Wonderland

problem and give efficient algorithmic solutions for each.
Readers who are not familiar with basic concepts of

music theory should consult a standard text such as [4].

2. DEFINITIONS

A lead sheet generally accompanies the melody only with
chord symbols that do not explicitly indicate the bass line;
but, in a lead sheet (as distinct from traditional music no-
tation), a chord symbol is usually taken as implying root
position by default. In Figure 1–the first few measures of
”Alice in Wonderland”–the labels written under the staff
such as ”Dmin7” and ”G7” are chord symbols. If the
chords are in root position, the bass (lowest) note of the
first chord is D and of the second chord, G.

The subject of musical representation for use in com-
puter applications has been discussed and debated exten-
sively over the past 30 years, if not longer (see for exam-
ple, [10, 2, 7, 9, 11, 3]). For the rest of the paper, we
consider only traditional classical music notation; but all
of the ideas apply to lead sheets, and many can readily be
extended to other music representations.

We use a simple representation system for harmonic
progression and encode all notes in terms of pitch classes.
Each chord can be represented using the following nota-
tion:

� PC = pitch class (
�����

, ��� �
	
, � �

�
�������
)

� Write
	���� ���

, for example, for a chord in which the
lowest note is PC 1; the chord also includes PC 5
and PC 8 in any order.

By using pitch classes we represent notes that that are sep-
arated by an exact number of octaves in the same way.
Therefore, there are a total of

	 �
possible pitch classes

corresponding to the notes in the chromatic scale. Each



Figure 2. Ending of Chopin’s Ballade in F minor, includ-
ing the final four chords

Melody PC Chord Name Representation� � � � major � 	�� � �����
� � 	 �

half-dim ��� � � 	�� ��	 � � �	�
�� �
maj-min

�
th � �
� � �
� � 	 � �� � �

minor � � ��� �����

Table 1. A representation of the last four chords of Figure
2

pitch class is also only represented once per chord whether
or not the some note occurs in different octaves. Figure 2
shows the final cadence of Chopin’s Ballade no. 4 in F
minor, Op. 52. The cadence ends with a sequence of four
chords, each accompanying one note of the melody. Our
representation separates the melody from the harmony and
is given in Table 1.

Some basic definitions are required to allow us to for-
malise the musical representation.

Definition 1. We call a sequence of sets of characters a
set string. Throughout we say that the number of sets in
a pattern set string � equals � and the number of sets
in a text set string � equals � . As the alphabet size � , is
bounded by a constant then � ������� � � � and � ������� � � � .
Definition 2. We say that a set string � occurs in set string
� if ����� 	! �  �"�#�%$ 	 such that &(')� 	* '  �
�(+-,.�/+10325476 . In other words, all the notes in chords in �
occur in the corresponding chords of � but there may be
chords in � that have “extra” notes which do not occur in
� .

Definition 3. Consider a set string � with a subset of each
set �82 identified as the lead set. We call such a sequence
an LN string.

Definition 4. Consider an LN string � . Assume there is
some (possibly different) total ordering applied to the char-
acters of each of the lead sets of � . We call such a sequence
an OLN string.

Definition 5. For any LN or OLN string � , consider the
unique set string 9 with the property that &��:� 	; �  
�:912 � the lead set of �<2 . We call such a set string the
(ordered) lead set string of � . Consider also the unique set
string �=9 with the property that &��:� 	� �  ���=9 2 �
� 2?> 9 2 . We call such a set string the (ordered) non-lead set
string of � . We write � �%� 9 � �=9 � when we need to refer to
the lead and non-lead set strings of � .

Definition 6. Consider a pattern � and a text � and an
order preserving function @A�B� 	 ������� � � �DC �
� ��������� � � .
If �E+ � �GFIH +KJ for all

	D '  � then we call @ an align-
ment between � and �5L � ����� �3M . If furthermore �ON
P3+ � @ � 'Q$	R� �S@ � ' ���; UT

then we say that @ is an
T

-alignment.
Where �(+ and �GFWV +YX are ordered sets then we require both
that �(+ � �GFZH +[J and that the ordering of their elements is
the same.

3. PROBLEMS AND SOLUTIONS

Given a musical pattern and text expressed in terms of a
melody and corresponding harmony, the general task is to
find all positions in the text where there is a match. The
exact definition of a match and the type of data that is used
as input will determine the algorithm that we propose. We
describe four main problems.

3.1. LN string matching

The input pattern and text are split into lead set strings,
which correspond to the melody, and non-lead set strings,
which correspond to the harmony. The task is to find all
positions in the text where both of the following condi-
tions are satisfied:

1. There is an exact match of the melody of the pattern
and the melody of text and

2. The harmony of the pattern is included in the har-
mony of the text.

For our purposes we define harmonic inclusion to require
that the pitch classes at each position of the pattern are a
subset of those in the corresponding position of the text.
The problem is expressed more formally as follows:

Problem 3.1. Consider an LN pattern � �\� �E9 � �E�=9 � and
an LN text � �]� �/9 � �^�=9 � . Find all positions � that satisfy
the following conditions:

1. � occurs at position � of � (see Definition 2)

2. �(9 � �/9GL � ����� �_$#�\� 	 M
The special case where the lead sets only have one mem-
ber each is an instance of this problem. This corresponds
to the situation where either the pattern or text (or both) is
monophonic.

Solution

We first encode �E9 , �E�=9 , �/9 and �^�=9 as strings of bit-vectors
called �(9a` , �b�=9c` , �/9c` and �^�=9c` respectively. Each bit-vector
represents a set of pitch classes and is defined as follows:

� Let the � th bit of the bit-vector be set to
	

if the
pitch class � is in the set. Set all remaining bits to�

.

It is clear that each bit-vector has length � bits. The fol-
lowing steps are sufficient to solve Problem 3.1:



1. Construct an array � with the property that � L �WM �	
if �(9a` � �/9a`8L � ����� � $ � � 	 M . Let � L �WM � � other-

wise. Let N be the number of 1s in the array � .

2. Construct an array � with the property that

�!L �WM �
��� ��
	

if �b�=9c`3,:�^�=9c`aL � ����� �_$#�%� 	 M and� L ��M � 	�
otherwise

Step 1 takes
��� �3� � time using standard exact string match-

ing techniques (for example [1, 8, 5]). The time required
in Step 2 for each � is

��� �3� � , as we can check each set
in �b�=9c` in turn (�E�=9a`cL '8M has at most � elements). The to-
tal running time of Step 2 is therefore

��� �7N
� � . This is
because we can restrict ourselves to only checking every
position � of �^�=9c` for which � L �WM � 	 . The overall method
is shown in Algorithm 3.2.

The position of the 1s in array � give the solution that
is required. The overall time complexity is

��� �3�7� � 1 as in
the worst case N � � . However, in our case � is a constant
and in real musical data N is likely to be very small. This
means that the running time will likely be closer to linear
time in practice (see Section 4).

Algorithm 3.2. LN matching
� � � � �� Input: pattern and text both LN strings� Output: All locations where pattern occurs in text

Begin
lmatch � Boyer-Moore

� �E9 � �/9 �
for ' in lmatch do

match L '8M � ISSUBSET
� �b�=9 � �^�=9 � ' �

End

3.2. OLN string matching

The input pattern and text are split into lead and non-lead
sets as before. However, in this case we consider that the
order of the notes in the lead sets has to be preserved for
there to be a match of the melody.

Problem 3.3. Consider an OLN pattern � � � �E9 � �E�=9 � and
an OLN text � � � �/9 � �^�=9 � . Find all positions � that satisfy
the following conditions:

1. � occurs at position � of �
2. �E9 � �/9�L � ����� ��$ �\� 	 M
3. &(' � 	  '  � the ordering imposed on the sets
�E9�L '8M and �/9GL �_$#' � 	 M is the same.

1Recall that the total size of the input data is in fact �
	��
	����
����� not��	��
����� . This is because � and � are the number of sets in the input
and each set can have � elements. Therefore, the complexity �
	��������
is in fact better than the �
	���������� one would have expected if the sizes
of the input set strings had simply been multiplied.

Solution

As the lead sets are ordered they must be encoded differ-
ently to the non-lead sets. We encode the data as follows:

� Encode �b�=9 and �^�=9 as strings of bit-vectors called
�E�=9a` and �^�=9a` respectively, using the same encoding
as in Problem 3.1.

� As the lead sets are ordered, each element in a par-
ticular set will have a rank that corresponds to its
position in the ordering. For example, in the or-
dered set

� � 	 � �
, the rank of

�
is
	
, the rank of

	
is�

and the rank of
�

is � . Let �ZN
� � �"!Z� be the rank
of element

!
(with respect to a particular ordered

set). We encode each element
!

in each ordered set
as an integer

! ` � � � �IN
� � ��!Z� � 	I� $ !
. For ex-

ample, the ordered set
� � 	 � �

would be transformed
to � � � 	 � ��� ��� if � � 	 �

. This encoding is always
unique as

!$# 	 ����� � . Let �(9c` be a string of integers
consisting of the encoded elements of each set �E9�L '8M
in order. We define �/9c` in the same way as a string
of encoded elements from �/9 .

Steps 2 combined with Step 3 can be solved by applying
a linear time pattern matching algorithm to the expanded
arrays �E9 ` and �/9 ` . The total length of �/9 ` is �3� and so the
total time required for these two steps is

��� �3� � . The run-
ning time of Step 1 is

��� �7N
� � , if we restrict ourselves to
checking every position � of �^�=98` for which there is match
in Step 2. This is

��� �3�7� � in the worst case but will be
closer to linear time in practice (see Section 4).

3.3. LN matching with
T

- bounded gaps

Matches of the melody and harmony in the pattern and text
may be obscured by the presence of extra notes or chords
in the text. In this formulation we allow gaps to be in-
serted into the pattern when attempting to find a match. In
order to ensure that the match still has musical relevance
the size of the gap is bounded by an integer

T
.

Problem 3.4. Consider an LN pattern � � � �E9 � �b�=9 � , an
LN text � � � �/9 � �^�=9 � and an integer bound

T
. Find all

positions � that satisfy the following conditions:

1. There is an
T

-alignment @ between �E9 and �/9GL � ����� �3M .
2. &3' � 	� '  � �BL '8M=,:�5L @ � ' � M

In other words, we want to find matches between � and �
allowing gaps of size up to

T
in the alignment.

Solution

The basic idea of the algorithm is to compute
T

-alignments
of increasing prefixes of pattern � in text � . This is achieved
by dynamic programming using a table � with � rows
and � columns. The value at � +"% 2 contains the last index
in � that �76 ����� �(+ has successfully been aligned with or

�



if the gap to the last successful alignment is larger than
T

.
We define � +��� � 2 to mean that � + matches � 2 .

��+"% 2 �
���������� ���������

� if �E+��� �82 � � � ��+a476 % 25476  T $ 	 �
� +a476 % 25476 � �

� +"% 25476 if �E+�� �82 � � ��+a476 % 25476�� T $ 	
� +"% 25476 if �E+��� �82 � � � ��+a476 % 25476 � T $ 	 �

� � � + % 254=6 � T $ 	�
otherwise

Boundary conditions for the matrix � are as follows:

��� % � � 	 � � + % � � � and ��� % 2 � �
The second and third boundary conditions reflect the

notion that nothing aligns with the empty string but that
the empty string aligns with everything. The first bound-
ary condition is simply by definition. Locations in � for
which there is an LN match with � with

T
-bounded gaps

will correspond to the entries in matrix � where �	� % 2 �
� . These can be found by inspecting the final row of �
once it is completed2. Algorithm 3.5 gives an overview of
the method.

At every entry in matrix � it may be necessary to check
if �(+ matches �<2 and also some previous value in the � .
The time required for this is

��� � � and so the total time
required to construct � is

��� �3�7� � . As we regard � to be
a constant, the overall computation time is

��� �7� � .
Algorithm 3.5. LN matching with

T
-bounded gaps (p,t)� Input: pattern and text both LN strings� Output: All locations where pattern occurs in text

with gaps bounded by
T

Begin
Set boundary conditions for matrix �
for � in � 	 ����� � � do

for ' in � 	 ����� � � do
Update entry ��+"% 2 following rules above

od
od
Find all entries such that � � % 2 � �

End

3.4. OLN matching with
T

-bounded gaps

If the order of notes in the lead sets has to be preserved
for there to be a match then we can formulate our final
pattern matching problem. A match is required between
the pattern and text with gap size bounded by

T
. A further

requirement is that the order of notes in the corresponding
matching lead sets must be the same.

Problem 3.6. Consider an OLN pattern � , an OLN text �
and a bound

T
. Find all positions � that satisfy the follow-

ing conditions:

2To find the full alignments, as opposed to only the locations in the
text where alignments finish, it is necessary to perform a trace-back by
reversing the direction of the rules for creating 
 . The space requirement
can also be reduced to �
	�� � ��� by the application of a divide-and-
conquer method due to Hirschberg [6].

1. There is an ordered
T

-alignment @ between �E9 and
�/9�L � ����� �3M .

2. &3' � 	� '  � �BL '8M=,:�5L @ � ' � M
Note that condition 1 requires that the ordering imposed
on �(9GL '8M and �/9GL '8M be the same.

Solution

The method of solution is the same as that for Problem
3.4. We only need to modify the definition of a match be-
tween �E+ and �82 so that the order of the elements in the lead
sets are taken into account. The recursion for computing
matrix � is defined in the same way and so the overall
running time is

��� �7� � as before. The space requirement
can also be reduced to

��� �*$ � � if required as explained
in Footnote 2.

4. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

Each of the four algorithms was implemented in C and
compiled using gcc 3.3.2 with the -O2 optimisation flag.
The tests were then run on a

� � � �
GHz Pentium

�
proces-

sor with
� 	 �

MB of RAM. Random texts and patterns of
different lengths were created using the method described
in Section 4.1. Each experiment was repeated

	��
times

and the average of the running times calculated. The tim-
ings given are for the search algorithms only and do not
include the time required to create the data.

4.1. Creation of test data

In order to test the different algorithms, random input data
is used. Although this form of data is not realistic in a
musical sense we expect that the running times given are
an accurate indication of what can be expected in practice.

Text: LN matching with/without � -bounded
gaps

The lead sets are chosen uniformly and independently at
random from the space of possible sets with alphabet size	 �

. Non-lead set creation are also chosen at random but
any elements that are in common with its corresponding
lead set are then removed. The result is that there are no
elements in common in a lead/non-lead set pair.

Text: OLN matching with/without � -bounded
gaps

The ordered lead sets are created by the following algo-
rithm:

1. Uniformly sample a random set � from the space of
possible sets with alphabet size

	 �
2. Uniformly sample a random permutation of the set
�
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Figure 3. Running times for LN matching using patterns
of different lengths

The result is an ordered set of random size. The lead sets
are chosen independently using this scheme. The non-lead
sets are chosen in the same way as for LN matching.

Pattern: OLN/LN matching

A random position in the text is chosen and an OLN/LN
string of the appropriate length is copied and used as the
pattern.

Pattern: OLN/LN matching with � -bounded
gaps

A random position in the text is chosen as before. Then
the following algorithm is used:

1. Copy current lead and non-lead set from text and
add to pattern

2. Skip 9 positions in the text. 9 is chosen uniformly at
random from the range L � ����� T M

3. Loop until the pattern has length �

4.2. Running times

Implementations of LN and OLN matching were tested
and the results shown in Figures 3 and 4. Pattern lengths
of
	��

,
	 ���

and
	 ��� �

sets were used. The running times
are practically linear as discussed in Sections 3.1 and 3.2.
The Boyer-Moore algorithm, which is typically faster for
longer patterns, was implemented for the linear search
step. This is the reason for the speedup that can be seen
as the pattern length is increased. The limit on the size
of the input in each case was the size of available RAM.
It is important to note that OLN matching requires con-
siderably more RAM than LN matching as the lead sets
must be stored explicitly as arrays of integers rather than
as bit-vectors. This is reflected in the maximum input
sizes tested for each. The overall running time for both
experiments was always less than

� � �
seconds.
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terns of different lengths
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Figures 5 and 6 show the running times for LN and
OLN

T
-bounded matching, respectively. Pattern lengths

of
	 �

,
	�� �

,
	 ��� �

were tested. The running times of these
dynamic programming algorithms do not vary with

T
(this

was also confirmed empirically). The results shown are
for

T � �
.

The results show that in practice available RAM and
not computational complexity is the limiting factor the
size of the input that can be processed. As the dynamic
programming method that was implemented has

��� �7� �
space complexity, increasing the pattern length correspond-
ingly decreases the maximum text size that can be searched.
An implementation utilising Hirschberg’s

��� �B$_� � divide-
and-conquer approach would allow much larger databases
to be searched at the cost of roughly halving the search
speed. As the size of musical databases increases the need
for such space saving techniques will undoubtedly become
more prominent.
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5. CONCLUSION

Four new algorithms have been given for music retrieval
in data where the melody and harmony are presented sep-
arately. Each is algorithmically efficient and shown to
be very fast in practice, taking at most a few seconds to
search the largest dataset. An exciting open problem that
would greatly enhance this work is to consider more musi-
cally sophisticated concepts of approximation, especially
for comparing harmonies. For searching very large databases
that will become available in the future, faster algorithms
with improved worst case time complexity may also be
required.
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