A. Georgaki and G. Kouroupetroglou (Eds.), Proceedings ICMC|SMC|2014, 14-20 September 2014, Athens, Greece

i-score, an Interactive Sequencer for the Intermedia Arts

Pascal Baltazar
L’ Arboretum
pascal@baltazars.org

ABSTRACT

The i-score intermedia sequencer allows to design com-
plex interactive scenarios by coordinating heterogeneous
and distributed media systems. Based on software frame-
works issued by several long-term research iniatives, this
application does not produce any media of its own, but
rather controls other environments parameters, by creating
snapshots and automations, and organizing them in time in
a multi-linear way. In this article, we describe the main
features of the software, in order to guide the workshop
participants towards actual creation of interactive scenar-
ios by controlling their favorite software environment.

1. INTRODUCTION

Recent technological developments in real-time media com-
puting, as well as aesthetic evolutions of the contemporary
arts converge in the generalization of distributed technical
setups for media-management. Even though, some of these
setups include systems for scripting scenarios in time, it is
very often complicated to coordinate these heterogeneous
systems with the ease and flexibility that the artistic pro-
cess requires. Furthermore, while the temporal scripting in
the context of fixed-time media (such as in DAWSs) has now
come to a mature state with well-defined and stable user-
interaction paradigms, the introduction of interactivity ren-
ders these paradigms almost inoperative. Time-scripting
in interactive works (such as performances or interactive
installations) is typically managed with cues, as points of
synchronisation throughout a scenario, with very few pos-
sibilities for designing evolutions of expressive parameters
in time, compared to what automations in fixed-time media
softwares do. The Ableton Live' or Qlab? applications
offer such cue management with some capabilities for au-
tomation editing. More experimental sequencers such as
Duration? and Vezér* allow even more complex automa-
tion capabilities. However, cues and automations are man-
aged in these softwares as a linear list of events to be suc-
cessively triggered, without further temporal organization.

! https://www.ableton.com
2 http://figure53.com/qlab/
3 http://www.duration.cc

4 http://www.vezerapp.hu

Copyright: (©2014 Pascal Baltazar et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Théo de 1a Hogue
GMEA
theod@gmea.net

Myriam Desainte-Catherine
LaBRI
myriam@labri.fr

Also, even if they are capable of controlling remote appli-
cations and devices through the OpenSoundControl proto-
col, the manual management of OSC addresses is often a
tedious process involving a lot of typing.

The i-score interactive sequencer proposes solutions to
these problems by offering an organized way to structure
events in time, while keeping degrees of liberty for inter-
activity. It is also built upon the concept of networked
devices, presented as a visual interactive tree structure in
order to intuitively control them in the scenario.

The workshop will focus on hands-on practice: partici-
pants will use i-score with their favorite multimedia envi-
ronment and will be guided, following the article’s struc-
ture, towards the actual creation of interactive scenarios.

2. PROJECT HISTORY

i-score” is the result of several research initiatives along

the last fifteen years. The paradigm of using temporal
relations in order to keep temporal consistency in a sce-
nario was introduced in the Boxes[1] spectral composition
software. Further implementations of this paradigm were
carried on in Boxes 2, Acousmoscribe[2] and Iscore [3],
an implementation for the OpenMusic composition envi-
ronment. Interactivity was introduced during the Virage
research project, under the concept of trigger points, and
it was implemented in the libIscore library. This library
was used as an engine for both Acousmoscribe 2 and Vi-
rage sequencer[4], the latter addressing specific problems
of the performing arts, in particular those relating to the
concept of flexible time, as pointed out in [5]. As both of
these softwares used similar user-interaction concepts and
were based on the same engine (libIscore), the decision
was taken to merge both development efforts into one and
only software. This was achieved by injecting concepts
and designs implemented in the Virage sequencer into the
Acousmoscribe 2 code, in order to create the i-score se-
quencer. Many efforts on user-friendliness and ergonomics
were made in the process, in order to turn proof-of-concept
prototypes into actually usable professional software. Fur-
ther development of the system was carried on in the frame
of the OSSIA ¢ project. In the first place, the libIscore li-
brary was refactored on the basis of the Jamoma frame-
work[6] in order to create the Score library, which will be
further described in Section 4. i-score was then refactored

3 http://i-score.org/

6 OSSIA is a collaborative research project financed by the French
National Agency for Research. It aims at the formalization of logico-
temporal constraints for hierarchical, non-linear and multi-user interac-
tive scenarios, for the contexts of video-games and museal installations

- 1826 -

mailto:pascal@baltazars.org
mailto:theod@gmea.net
mailto:myriam@labri.fr
https://www.ableton.com
http://figure53.com/qlab/
http://www.duration.cc
http://www.vezerapp.hu
http://creativecommons.org/licenses/by/3.0/
http://i-score.org/

A. Georgaki and G. Kouroupetroglou (Eds.), Proceedings ICMC|SMC|2014, 14-20 September 2014, Athens, Greece

upon this library, and extended, along with Score, in order
to deal with non-linear temporal structures through condi-
tionnal branching. This effort produced the version 0.2 of
i-score which is discussed in this article and that will be
used for the proposed workshop.

3. USER INTERFACE

The i-score sequencer is an open source ' standalone ap-
plication developed in C++ with the Qt® cross-platform
framework. It is currently available for the Mac, Linux
and Android platforms. As mentionned above, and further
described in section 4, i-score is based on the Score and
Modular frameworks, which provide the majority of the
services required for temporal and content management.
In contrast with most sequencers, i-score does not pro-
duce any media of its own, but rather controls parameters
of remote applications, by creating snapshots and automa-
tions, and organizing them in time in a multi-linear way.
Its design is led with the emphasis on several concerns:
Speed and responsiveness in the edition of scenarios: In
order to keep the creative workflow as fluid as possible, the
interface design allows the user to create states or evolu-
tions (sometimes composed of dozens of parameters) in a
matter of seconds. The user can do so by creating a tempo-
ral object, associating a set of parameters to it and creating
snapshots or interpolations of theirs states in a few clicks,
without having to type or manage any text-based content.
Evolutivity is then another important matter, as the user
must be able to precisely and thoroughly refine its scenar-
ios, in particular by precisely designing automations of pa-
rameters. Temporal structure must also be refineable in or-
der to accomodate with the evolutions of the scenario over
time, in particular if it interacts with human performers.
Clarity and intuitivity are key features in the overall de-
sign of the interface, and are kept in mind whenever im-
plementing new features, in order to keep the whole user
interface consistant and its look-and-feel as clear and min-
imalist as possible.

3.1 General presentation

Figure 1. Overview of the i-score sequencer user interface.

7 available at https://github.com/i-score/i-score
8 http://qt-project.org/

i-score’s user interface is organized in two sections: a
tree-based interface on the left, for managing multiple re-
mote devices’ parameters; and a timeline-based interface
on the right, allowing to arrange temporal objects in time.

3.2 Content management

As mentioned above, i-score controls other environments’
parameters. In order for the user to do so, the first step is
to declare such an environment, or device in i-score’s par-
lance, by clicking on the [+] button labeled “Add a device”
at the bottom of the inspector. A pop-up window will then
open, where network parameters of the device can be set
up, such as IP, port and protocol. The device, in Minuit, or
its descriptive file in OSC, will then be scanned, in order
to display its structure as a tree in the inspector.

Figure 2. The devices inspector

The example provided here uses the Jamoma 0.6 for Max
patcher described in [7], connected through the Minuit pro-
tocol °. The elements displayed in the inspector, notably
the selection of nodes and the values associated with them,
are contextual to the currently selected box. For instance
Figure 2 displays the actual content of the “Intro” box of
Figure 1. The lines highlighted in blue are those whose pa-
rameters are contained in the box’s events and/or automa-
tions. For instance, the start event of the box contains the
values 1. for the samplerateRatio parameter, and 12 for
the bitdepth parameter. Other parameter values under the
audio node are also contained in the start and end events (as
the checkbox indicates), but they are hidden by the folding
of the structure under this node. Parameter values can be
entered manually by typing them in the appropriate cells.
They can also be queried programmatically from the re-
mote device, by selecting a set of nodes and pressing the
Start or End buttons on the top of the inspector. When
nodes with descendants are selected, the algorithm will re-
cursively query all descendants for values, even when these
are hidden from the inspector view by folding them out.

When looking at Figure 1, we can notice that the “Intro”
box contains two breakpoint functions, reflected in the in-
spector by the checkboxes in the column between the start
and end values. These automations can be created by sev-

9 Minuit is a query system based on OSC. Actual connection between
i-score and Jamoma is achieved through an interface patcher available on
https://github.com/Minuit/minuit

- 1827 -

https://github.com/i-score/i-score
http://qt-project.org/
https://github.com/Minuit/minuit

A. Georgaki and G. Kouroupetroglou (Eds.), Proceedings ICMC|SMC|2014, 14-20 September 2014, Athens, Greece

eral ways: When differing numerical values of a parameter
are assigned to the start and end events of a box, a linear
interpolation is automatically created in the interval, which
the user can disable by unchecking the automation check-
box. An automation can be created by checking this same
checkbox, even if no value is present in the box’s events:
these will then be automatically filled with the minimum
and maximum values of the parameter, displayed in the
rightmost column of the inspector. Finally, automations
can be recorded live by listening for a remote parameter.
This function is enabled during the edition by Command
(for Mac) or Control (for Linux) clicking on the check-
box. Then, during the execution, i-score will listen for the
changes in the selected value(s) and it will record them
as an automation. Once created, the automations can be
edited in the boxes, by choosing their parameter address
in the top-right menu. Points in the breakpoint functions
can be moved, added or deleted, and curve coefficients can
be edited by shift-clicking on the last point of a segment
and dragging up or down. Functions can also be free-hand
drawn in the box by holding the Command/Ctrl key.

3.3 Temporal arrangement of objects

The arrangement section is based on the timeline paradigm,
as in most media-editing softwares. Time is represented
from left to right on the horizontal axis. The vertical axis
has no predetermined meaning.

Temporal objects (also called boxes) can be placed on
the timeline, moved and resized. They contain a starting
event and an ending event, in which parameter states can
be stored. They can also contain temporal processes, such
as automations and sub-scenarios.

By default, when creating a box, it will be played at the
date which is represented on the timeline. It is then possi-
ble to create fixed-time scenarios by simply drawing boxes
on the timeline. Execution can be launched by pressing the
play button on the top and stopped by pressing the stop but-
ton that then replaces it, or alternatively toggled by repeat-
edly pressing the space bar. Execution can be started from
any date by clicking on the time ruler on the top and press-
ing play. In this case, all previous content of the scenario
will be compiled and dumped just before actually starting
the execution, in order to start from a similar state of the
system as if the scenario had been played normally from its
beginning. During execution, the global speed (or clock-
rate) of the scenario can be changed on the fly, by dragging
the slider on the top, or by sending a numerical value to its
associated OSC address.

It is also possible to detach the execution of a particular
box from the fixed flow of time, thus rendering it interac-
tive, by adding trigger points at its beginning or end. This
is easily done by clicking on the small oval quarter on the
top corners of the box, which will create triangles repre-
senting the trigger points. At execution time, these trigger
points, and thus the execution of the associated boxes, can
be triggered manually by clicking onto them, or by hitting
the right arrow or one of the number keys. Available trig-
ger points will be associated with number keys based on
their respective dates: the earlier one will be triggerable

with the 0 key, the next one with the 1 key, and so on.
Trigger points can also be triggered remotely by listening
to a remote or local address and/or evaluating expressions
based on values of remote or local parameters.

Relative positions of boxes can be organized in time and
maintained by temporal relations. This is useful for fixed-
time scenarios (i.e. without trigger points) in order to main-
tain the temporal consistency of a scenario while moving
parts of it or when inserting new objects inbetween existing
ones. In the absence of trigger points, relations are consid-
ered rigid, and represent a constant duration, that can be
modified by the user during the edition by click-dragging
them horizontally. At execution time, these rigid relations’
durations will always be respected.

When the end of a relation is connected to an interactive
event (i.e. associated with a trigger point), it becomes flex-
ible. This is represented by a discontinuous line. Even
if it is represented with a certain length on the timeline,
such a flexible relation has no predetermined duration, as
its end will be interactively triggered during the execution.
It is however possible to restrict this duration to a bound
interval. This is achieved by setting minimum and/or a
maximum bounds to the relation. The minimum bound is
always accessible for edition: it is placed by default at the
very beginning of the relation and can be moved by drag-
ging it to the desired duration. During execution, this min-
imum bound will prevent the trigger point to be triggered
before the chosen duration. In order to make the maxi-
mum bound appear, the user needs to double-click on the
relation, and is then able to drag it to the desired duration.
At execution time, conversely to the minimum bound, if
the trigger point is not yet triggered when the maximum
duration is elapsed, it will then be automatically triggered.

Alternatively to the temporal relations, events can be linked
by logical relations. By pressing the alt key while creating
a relation, the user is able to create a conditionnal relation
between two or more events, which will also create a trig-
ger point on each of the related events. At execution-time,
all expressions of the conditionnaly-related events will be
evaluated simultaneously. Those being true will be trig-
gered, the others will be disposed of, as well as their suc-
cessors, thus creating diverging branches in the scenario.

4. A SHAREABLE ENGINE

The i-score engine is based on two C++ libraries: Score '°

and Modular'! , which respectively offer services for tem-
poral organization and devices management.

4.1 Score

The Score library is organized in four main classes : Time-
Event, TimeCondition, TimeProcess and TimeContainer.
The TimeEvent class has an indicative date, a status (wait-
ing, pending, happened, disposed) and can refer to states
to recall when it is actived. The TimeCondition class takes
care of i-score’s trigger points with an event table classified
by Expressions, which are evaluated in order to activate

10 https://github.com/OSSIA/Score
! https://github.com/jamoma/JamomaCore/tree/master/Modular

- 1828 -

A. Georgaki and G. Kouroupetroglou (Eds.), Proceedings ICMC|SMC|2014, 14-20 September 2014, Athens, Greece

each event or dispose of them. The TimeProcess class de-
fines an interface to compile the actions that are performed
on the start, during execution and at the end of any tem-
poral content Currently, there are two TimeProcess plug-
ins available: Interval and Automation. The development
of a mapper and a generator plug-ins is planned and it is
also possible to third-parties to create dedicated plug-ins
for media management. The TimeContainer class inherits
from TimeProcess. It defines an interface to add, delete and
manage actions on TimeEvents, TimeConditions and Time-
Processes list. For the time being, the only TimeContainer
plug-in is Scenario. The Scenario plug-in implements a
constraint manager to keep precedence relations consistant
between events during edition (based on the GeCode li-
brary) and compiles into a Petri net in order to check exe-
cution validity.

4.2 Modular

The Modular library helps to develop Model-View-Cont-
roler oriented applications, in order to represent their ser-
vices as a tree structure and to expose them remotely. i-
score uses this library to manage communication protocols
via a plug-in interface, which considers that any protocol
can be reduced to some basic operations like listen, get, set
or explore. For the time being two plug-in are available for
the OSC and Minuit protocols.

5. PERSPECTIVES AND FUTURE WORK

The use of i-score still raises many real-life problems and
the integration of the new Score library also introduces
some new ways of managing time.

First of all, i-score’s current interface is based on a du-
ration management approach where each box has its own
start and end and where boxes have to be preceded or fol-
lowed by relations. This workflow is problematic when a
user simply wants to edit a set of cue events and create
transition between them. With the use of Score it is now
possible to edit single events, while intervals and an au-
tomation are now seen as specific processes that can share
their events. This new architecture also allows to have sev-
eral processes attached to the same start and end events.
Since Scenario is also a process, the hierachy feature is
now fully functionnal.

To accomodate with these various changes, a team of
developers is currently developing a new version of the
graphical interface from scratch, called i-score 0.3. This
new interface will introduce several graphical conveniences,
allow to navigate between hierarchical levels and to verti-
cally pile different processes of the same box as storeys, in
order to help editing them in parallel. A track system will
also be created to split the timeline and explorer interfaces
vertically in order to break down large sets of parameters
into smaller parts, thus increasing readability.

Finally, as the Score library can now be compiled for the
linux environnement, it will be possible to embed it into
units like the BeagleBoard or Raspberry Pi. This leverages
possibilities for the edition of distributed scenarios inside
the same i-score interface and for the synchronization of

their execution. This also allows the development of dis-
tributed setups of many media players, which can be useful
for many applications in the museographic domain.

6. CONCLUSIONS

The development of the i-score sequencer has emerged from
joint concerns and long-term collaborations between artists

and researchers. The application has been used in a pro-

fessional production context, and now requires to increase

its user base in order to accomodate with more use cases

and situations. Feedback and comments from the work-

shop participants will then be a valuable input for future

development and research around this project.

Acknowledgments

Development of i-score has been supported by LaBRI, I’ Ar-
boretum and GMEA, with funding from the 2012-2015
OSSIA ANR-12-CORD-0024 research project. The au-
thors would like to thank developpers Nicolas Hincker, Jai-
me Chao and Clément Bossut for investing a lot of energy
in the development and for providing some content for this
article, and Jaime Arias Almeida for proof-reading.

7. REFERENCES

[1] A. Beurivée and M. Desainte-catherine, ‘“Represent-
ing musical hierarchies with constraints,” in Proceed-
ings of CP’01, Musical Constraints Workshop, Paphos,
Cyprus, 2001.

[2] M. Desainte-Catherine and J.-L. D. Santo,
“L’acousmoscribe, un éditeur de partitions acous-
matiques,” in Proceedings of Electroacoustic Music
Studies Buenos 09 Aires, 2009.

[3] A. Allombert, M. Desainte-Catherine, and G. Assayag,
“Iscore: A system for writing interaction,” in Proceed-
ings of the 3rd International Conference on Digital In-
teractive Media in Entertainment and Arts, 2008.

[4] A. Allombert, R. Marczak, M. Desainte-Catherine,
P. Baltazar, and L. Garnier, “Virage : Designing an
interactive intermedia sequencer from users require-
ments and theoretical background,,” in Proc. of the In-
ternational Computer Music Conference, 2010.

[5] P.Baltazar, A. Allombert, R. Marczak, J.-M. Couturier,
M. Roy, A. Sedes, and M. Desainte-Catherine, “Virage
: Une réflexion pluridisciplinaire autour du temps dans
la création numérique,”’ in Actes des 14 d’Informatique
Musicale, Grenoble, 2009.

[6] T. De La Hogue, J. Rabin, and L. Garnier, “Jamoma
Modular: une librairie C++ dediee au developpement
d’applications modulaires pour la creation,” in Proc.
of the 17es Journées d’Informatique Musicale, Saint-
Etienne, France, 2011.

[7] T. Lossius, T. de la Hogue, P. Baltazar, T. Place,
N. Wolek, and J. Rabin, “Model-view-controller sep-
aration in max and jamoma,” in Submitted to the joint
ICMC/SMC conference, Athens, Greece,, 2014.

- 1829 -

