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ABSTRACT

This work presents a strategy for developing an estima-

tor of tonehole configuration or “fingering” applied by a

player during performance, using only the signal recorded

at the bell. Because of a player can use alternate finger-

ings and overblowing to produce a given frequency, de-

tecting the sounding pitch does not produce a unique re-

sult. An estimator is developed using both 1) instrument

transfer function as derived from acoustic measurements of

the instrument configured with each of all possible finger-

ings, and 2) features extracted from the produced sound—

indirect correlations with the transfer function magnitudes.

Candidate fingerings are held in sorted stacks, one for each

feature considered and a final decision is made based on a

fingering’s position within the stack, along with that stacks

weighting. Several recordings of a professional saxophon-

ist playing notes using all fingerings are considered, and

features discussed.

1. INTRODUCTION

Much of the work presented here is motivated by a dis-

cussion with a professional tenor saxophonist[1] who fre-

quently employs extended techniques in addition to his well-

disciplined virtuosic playing:

I have sometimes been frustrated by the lim-

ited control of the saxophone, particularly in

lower registers where controlling the sounding

pitch is done mainly by applying a particular

fingering.

Miller continues to say that, as a result, transitions between

notes at low frequencies is slow, and sliding between notes

is nearly impossible. Control, from his point of view, starts

to get interesting when playing in higher registers:

Though it’s more difficult to play up there, I

feel as though I’m playing a more responsive

instrument, one that is more ideal, one that ap-

proaches the human voice.

This work presents preliminary research toward the end

objective of identifying a saxophone fingering, that is, a
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configuration of open/closed toneholes, as shown in Fig-

ure 1, during real-time performance. In so doing, a per-

former would be able to apply or map estimated fingerings

to parameters of a synthesis model, perhaps even a phys-

ical model of his/her very own instrument, allowing for

both the benefits of 1) better nuanced control in altissimo

playing (as described in the above quote), and 2) improved

sound such as that available in the lower saxophone reg-

ister or an altogether different processed sound. For this

to be of use to most saxophonists, identification would re-

quire only appending a microphone at the bell—a sensor

with which they are usually accustomed. Any additional

sensor or device might not withstand the rigor of playing,

or might impede the player’s technique, ultimately inter-

fering with expression on the the instrument.

Though a pitch estimator can get an idea of fingering, it

doesn’t consider the whole story. In extended techniques,

many notes are produced by overblowing or bugling, re-

sulting in several possible alternate fingerings that can be

used to produce a given note. Furthermore, since resonant

frequencies of the saxophone are not precisely harmonic,

that is, they are not strictly integer multiples of a funda-

mental but rather are stretched with increased frequency,

overblowing on a particular fingering can produce a note

that may be sharper than expected—sometimes by as much

as a semitone or more. Though the player can adjust the

tuning with embouchure, it might happen after the attack

which could be too late depending on the desired latency.

The problem of fingering estimation is, therefore, a sys-

tem identification problem, akin to that of extracting the

glottal pulse from recorded speech [2], the inverse prob-

lem for a trumpet physical model [3], or of estimating the

clarinet reed pulse from instrument performance [4]. In the

former case for speech, it is common to use Mel-frequency

cepstral coefficients (MFCC), linear predictive coding (LPC)

[5], or more distinctly and recently, convex optimization

[2] to separate a source-filter model. In the case of the sax-

ophone (and indeed the clarinet) however, the reed has a

much smaller mass than the vocal folds, and its vibration

is more effected by the internal state of traveling waves

in the bore. This, along with the fact that it generates a

more significant reflection than a fleshy biological valve,

makes source-filter estimation methods less appropriate—

that is, the “filter” for woodwind reed instruments is not

well described by an all-pole representation of the pro-

duced sound’s spectral envelope. That approximation is al-

ready tenuous for speech; it is even more remote for blown

closed cane reeds.
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Figure 1. The fingerings or tonehole configurations, for the tenor saxophone.

Furthermore, the dynamics of a played note can signif-

icantly alter the spectrum of the produced sound, vastly

changing the spectral envelope. In quieter notes there is

less (if any) beating of the reed and the input pressure to

the bore is relatively pure in frequency content. As a result,

the resonances of the instrument are less likely to be ex-

cited, and there is less contribution of the instrument bore

and bell which characterize a particular fingering.

As described in Section 2, we expand upon a previously

described measurement technique for obtaining the instru-

ment transfer function (the filter) at the bore base (mouth-

piece), HM , and the transfer function outside the bell, HB ,

corresponding to all regular fingering used on the tenor

saxophone [6]. We then attempt to explain salient features

of a sound spectrum, incorporating known characteristics

of a particular fingering.

Figure 2. Joel Miller, saxophonist, applies fingering dur-

ing a measurement session.

2. OBTAINING FINGERING TRANSFER

FUNCTIONS

2.1 Saxophone Waveguide Model

The transfer function of the saxophone bore and bell make

be approximated in one-dimension with a bi-directional

delayline accounting for the acoustic propagation delay in

a conical bore, as well as filter elements λN (z) and RM (z)
accounting for the propagation loss, and reflection at the

mouthpiece, respectively, and elements RB(z) and TB(z)

describing the reflection and transmission functions of the

bell, the non-cylindrical/non-conical section at the end of

the instrument [7]. This leads to the following instrument

transfer functions as measured at the mouthpiece

HM (z) =
YM (z)

X(z)
=

1 +RI(z)

1−RM (z)RI(z)
(1)

and the bell,

HB(z) =
YB(z)

X(z)
=

TI(z)

1−RM (z)RI(z)
(2)

where X(z) is the pressure input into the bore, the product

of volume flow and the characteristic of the bore, YM (z) is

the transfer function of the pressure at the bore base (down-

stream from the reed), YB(z) is the transfer function of the

pressure recorded outside, and on axis with, the bell, RI is

the round-trip instrument reflection function (from reed to

bell then back to reed) given by

RI(z) = RB(z)λ
2

N (z)z−2N , (3)

and TI(z) is the one-way transmission (from reed to bell)

given by

TI(z) = TB(z)λNz−N . (4)

If RB(z) and TB(z) are permitted to have “long-memory”

acoustic information, the model given by (1) and (2) can be

made to include tonehole configurations by lumping open

tonehole radiation and scattering into RB(z) and TB(z).
Here, however, we apply an existing measurement tech-

nique in [6] for obtaining RI(z) and TI from measure-

ment, and we apply the technique for all possible fingering

in the range of the tenor saxophone (see Figure 2).

2.2 Measurement Setup

Since the spectral characteristic of any particular fingering

is governed by its transfer function, measurement of the

horn is required for each of the possible fingering within

the playable range of the tenor saxophone.

It’s well known that if the input to an LTI system is an

impulse, the output is the impulse response of the system.

There are problems, however, in using an impulse as the

test signal—an impulse having sufficient energy to excite
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cylinder, speaker−saxophone

cylinder, speaker−closed

2 meters

Figure 3. The measurement system consisting of a 2-meter

tube with a speaker and co-located microphone at one end.

The tube is measured first closed (top), then with a sax-

ophone appended (bottom) to produce the measurement’s

impulse response under both terminating conditions.

the system above the noise floor will likely produce distor-

tion (and nonlinearities) in the driver. An alternative is to

use a sine swept linearly, or logarithmically (as was here),

over the frequency range of interest. By smearing the im-

pulse in time, more energy can be applied to the system

without introducing distortion.

Estimating the round-trip instrument reflection R̂I(z) is

done by first taking a measurement of the tube with a closed

termination as in Figure 3 (top). Following the steps de-

scribed in [8] allows for estimation of speaker transmis-

sion, the reflection off the speaker, and the propagation loss

of the measurement tube. All these filter elements related

to the measurement system are necessary before further

estimating round-trip reflection and one-way transmission

from a second measurement, taken with the saxophone ap-

pended to the measurement tube as in Figure 3 (bottom).

following the steps in [6], the measurement system can be

expressed algebraically before isolating for RI and TI .

3. ESTIMATOR

Once measurement and postprocessing is complete for each

fingering, a stack S is produced containing candidate mag-

nitudes GB(θ) = |HB(θ;ω)| for tonehole configuration

θ. Each GB(θ) may be consulted by the estimator as de-

scribed below before making an informed decision as to

which fingering θ is most likely to have produced the sound

spectrum recorded at the bell YB(ω).
In developing an estimation strategy, a stack of magni-

tude transfer functions Sµ is created and sorted according

to the strength by which GB(θ) possesses the feature de-

scribed by µ. The final candiate fingering θ is selected

based on the position of each GB(θ) in the stack, as well

as the weighting of feature µ.

In the following, the features are described and illustrated

with examples of how recorded data YB(ω) might fare.

3.1 Selection of Initial Candidates Based on

Frequency

Initial selection of stack Sf0 is done based on an estimation

of the fundamental frequency f0 of the sound recorded at

the bell YB(ω)—consistently its lowest resonant peak for

the saxophone. Possible candidate fingerings θ are selected

and sorted based on the whether there is a peak in GB(θ)

that is in alignment, within a certain threshold to allow for

flexible tuning, with f0 (see Figure 4). Though it’s possible

to do this theoretically, i.e. fingering candidates θ could

be reduced to those for which f0 is an integer multiple of

the pitch frequency of HL(θ;ω), but since GB(θ) is not

strictly harmonic, alignment with actual transfer functions

obtained from measurement greatly improves accuracy.

Figure 4. An initial selection of candidates is made by

comparing the fundamental of YB(ω) with all measured

fingerings HB(ω; θ) and finding fingerings with an aligned

partial (within a threshold of tolerance).

3.2 Presence (and Absence) of Subharmonics

As shown in Figure 5, it is often the case that, if a note

is overblown, the magnitude of YB(ω), will have peaks

present below the fundamental frequency f0, called sub-

harmonics. If this occurs, the task of estimation, and the

creation of stack Sh for subharmonics h, is facilitated con-

siderably. In the presence of subharmonics, the note is cer-

tainly overblown and certain candidates θ can be omitted

altogether in the formation of Sh.

Furthermore, the subharmonics will typically correspond

to the resonant peaks of GB(θ), and so can be used in sort-

ing Sh. As shown in Figure 5 (left), an example of middle

C played with a low C fingering produces subharmonics

at the octave below. In this case, an estimation of the fre-

quency of the subharmonic clearly shows that the sounding

note is the second harmonic of the fingering for low C. It is,

of course, often the case that more than one subharmonic is

produced. In Figure 5 (middle), there are 3 subharmonics,

clearly making the fundamental f0, corresponding to note

high C, the 4th harmonic of GB(θ), for θ being low C (2

octaves below). It is often the case, however, that the mag-

nitudes of the subharmonics are so slight they might not be

detected, or their inharmonicity makes it difficult to sim-

ply detect a pitch for determining θ. Consider, for exam-

ple, the magnitude of the second subharmonic in Figure 5

(right)—it is so low in amplitude that it risks not being no-

ticed by a peak detector. Other examples, not shown here,

have shown 3 subharmonics with the amplitude of the sec-
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Figure 5. Subharmonics for middle C played with low C fingering, high C played with low C fingering, and high B with

low B fingering. Though the subharmonics are rarely actual “harmonics”, i.e. they are typically not evenly spaced, their

presence greatly simplifies the estimation task.

ond harmonic being significantly more pronounced than

the first and/or third—possible suggesting to a peak detec-

tor that the sounding frequency f0 is actually the second,

rather than the fourth harmonic corresponding to fingering

θ (producing an error of an octave).

It is preferable, therefore, to use a salience measure be-

tween the subharmonics of YB(ω) and GB(ω; θ) when sort-

ing S—again showing how the existing measured transfer

functions can inform, and provide greater accuracy to, the

estimator.

In addition to the presence of subharmonics, their ab-

sence can be similarly revealing. With the current data set

of recordings, subharmonics have been observed in YB(ω)
for all cases where f0 is two or more octaves above the

sounding frequency of GB(ω; θ). Though it’s too early to

say whether this is a definitive feature, a stack is, never-

theless, created and sorted based on the absence of sub-

harmonics. If no subharmonics are detected in YB(ω), the

stack is reordered giving less priority to candidate finger-

ings for which f0 would the the fourth (or greater) har-

monic of GB(ω; θ). Though this stack is created, because

of the uncertainty of the feature, it is not as strongly con-

sidered in the final estimation.

3.3 Gains in YB(ω) Spectral Envelope

The natural state of harmonics in the spectrum produced

by a vibrating reed attached to a cylinder is for them to

decrease with frequency. It follows, therefore, that gains

(peaks in the spectral envelope) in the sounding note that

occur above the fundamental frequency are explained by

resonant peaks in the instrument. It should perhaps be em-

phasized, however, that the spectral envelope of the sound-

Figure 6. Absence of subharmonics in YB(ω) (top) re-

duces the likelihood of a candidate fingering having a

GB(θ) (middle and lower) pitch frequency two octaves be-

low the sounding frequency. Though the figure suggests

removal of candidates low C and low F, the stack is actu-

ally sorted giving these candidates less priority.

ing note bears very little resemblance to the magnitude

of the instrument transfer function (why the use of LPC

for estimation of HB(z) is not accurate). For this reason,

the magnitude GB(ω; θ) cannot be used to directly to esti-

mate the fingering from YB(ω. It can, nevertheless, be of

tremendous use.

Because gains are a result of resonances in the instru-

ment, overblown notes typically have a steep decay in the
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spectral envelope—harmonics of the vibrating reed are not

being supported by resonances of the instrument beyond

the fundamental. But a decaying spectrum in YB(ω) can-

not necessarily be used to identify an overblown note; a

note played at a soft dynamic, one where the input pressure

X(ω) is nearly sinusoidal, will similarly exhibit a decay in

energy above the fundamental frequency.

This suggests, therefore, that gains in the spectral peaks

of YB(ω) can be used as a feature that is explained by

closer observation of GB(ω; θ). As shown in Figure 7,

the frequencies of harmonic peaks in YB(ω) are first de-

termined, producing vector fh; the ratio of the amplitudes

at these frequencies produces a ratio vector R which may

be used to determine significant gains at frequencies fh.

The gain in GB(ω; θ) at frequencies fh is then observed

(as shown by the black dots in Figure 7 (left)), and the ra-

tios similarly taken to sort a stack Sg , based on a closest

match.

Figure 7. Frequencies of peaks in YB(ω) are looked up

under the curve GB(ω; θ) (black dots on dotted line in

right-most figure). The slope of amplitudes at peaks in

YB(ω), given by R1, R2, R3, etc., are used to determine

gains above the fundamental frequency (formant peaks in

the spectral envelope). The similarity between gains in R

and gains under the curve in GB(ω; θ) is used to sort Sg .

3.4 Frequency-Centered Energy Above the Noise

Floor (Subbands)

It is sometimes the case that the magnitude spectrum of a

recording YB(ω) will have neither gains nor subharmon-

ics, making it difficult to estimated accurate based on the

features previously discussed.

Subbands are defined as regions centered about a fre-

quency having increased energy above the noise floor. Sub-

bands are related to subharmonics, and though subharmon-

ics may not have been detected by a peak picker, it may

be possible to determine the presence of subbands using

a salience measure, such as a cross correlation of YB(ω)
with each HB(ω; θ), up to the fundamental frequency f0.

Figure 8 shows and example of pitch high D played with

a middle G fingering—no subharmonics are present, and

Figure 8. A magnitude spectrum of YB(ω) shows a decay

in amplitude with frequency (i.e. there are no character-

istic gains in the spectral envelope) and no subharmonics).

Zooming in to the region below the fundamental frequency

however, shows the existence of energy in clearly define

frequency bands—called subbands. In this example, the

increased energy centered around 350 Hz coincides with

the first peak in GB(ω; θ) for the fingering middle G.

the spectral magnitude is decaying with frequency. Zoom-

ing into the the region below f0, however, shows the ex-

istence of subbands, centered approximately around 175

Hz and 350 Hz. These peaks correlate most strongly with

the peaks in GB(ω; θ) for middle G fingering, however a

sorted stack Sb is created holding correlation values for

all fingerings.. Had the region centered about 175 Hz been

stronger to that centered about 350 Hz, the subbands would

have better correlated with the low G fingering. This is a

reasonable result given that the primary difference between

the GB(ω; θ) for low G and middle G is that the latter has

reduced amplitude at the first resonant peak (caused by the

applied octave key) which makes it easier to overblow.

Once stacks Sf0 , Sh, Sg , Sb, are created and sorted for

features pitch (fundamental frequency), subharmonics, spec-

tral gains, and subbands, respectively, the final candidate

may be chosen by assigning each fingering a score. The

score is determined based on the position of each fingering

θ within stacks Sf0,h,g,b (the lower the position index, the

lower the score and the greater the likelihood the fingering

was used to produce the sound), weighted by the strength

of each feature.

4. CONCLUSIONS

In this work, features of sound recorded at the saxophone

bell, played with an applied fingering, are discussed in re-

lation to instrument transfer functions derived from mea-

surement, with measurements taken of the instrument con-

figured with of all possible fingerings throughout its range.

A databased of sound, having notes played with alternate

fingerings and overblowing, is used to assess four (4) fea-

tures that may be used to inform an estimator which makes

a final decision on the most likely fingering used to pro-

duce a given sound. Candidate fingerings, represented by
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transfer function magnitudes GB(θ), are held in stacks,

one for each feature considered, and sorted according to

the salience of a feature in a particular fingering. Each fin-

gering is given a score based on the index of GB(θ) within

a stack, as well as that stack’s weighting.

It is likely, in future work and algorithm refinement, that

the final feature measuring the salience of subbands could

replace several of the other features. Focusing on this has

become of higher priority since the spectral envelopes and

gains vary so tremendously with dynamics, making es-

timation based on gains in the spectrum rather tenuous

and unreliable. It is believed that perhaps looking at what

seems to be absent might be as revealing as what is obvi-

ously present.

Though performance of the algorithm is quite successful

with the current database and shows good promise, refine-

ment is needed before brining it into a real-time perfor-

mance situation, where increased noise floor, and possible

bleed from other instruments, will introduce further diffi-

culties.
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