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ABSTRACT

Gamma is a C++ library for sound synthesis that was cre-
ated to address some of the limitations of existing sound
synthesis libraries. The first limitation is that unit gener-
ators cannot easily be organized into separate sampling
domains. This makes it difficult to use unit generators with
different sample rates and in other domains, namely the
frequency domain. The second limitation is that certain
internal unit generator algorithms, such as interpolation,
cannot be customized. This tends to lead to closed architec-
tures consisting of multiple unit generators with only slight
algorithmic differences. Gamma makes explicit two novel
abstractions—assignable sampling domains and algorithm
Strategies—to help overcome these limitations and extend
the application range of its unit generators.

1. INTRODUCTION

There currently exist myriad C++ libraries oriented towards
real-time sound synthesis. Each is based on the unit gen-
erator abstraction [1] in order to allow construction of a
large variety of synthesis instruments and effects. Where
the libraries differ, however, is in the more specific kinds of
generalizations incorporated into the provided unit genera-
tors. Gamma is a C++ sound synthesis library that aims to
provide a basic set of lightweight, efficient, and, most im-
portantly, flexible unit generators both in terms of how they
can be connected and what types of data they can process.
Unlike existing libraries, Gamma utilizes both sampling do-
main and generic programming abstractions to extend the
range of applicability of its unit generators. Not only can
unit generators run at different rates, but they can also be
used in the frequency domain. In addition, unit generators
are type generic, and in certain cases, algorithm generic so
that they can easily be customized and extended without
having to re-implement certain core functionality.

In this paper, we first introduce related work and then dis-
cuss the motivation and design principles of Gamma. The
next sections discuss two novel abstractions—assignable
sampling domains and algorithm Strategies—that are used
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to increase the range of application of Gamma’s unit gener-
ators.

2. BACKGROUND

Existing C++ libraries that are oriented towards real-time
sound synthesis include CLAM [2], the CREATE Sig-
nal Library (CSL) [3], the ICST DSP library [4], IT++ 1 ,
JamomaDSP [5], Marsyas [6], Maximilian [7], Nsound 2 ,
sig++ 3 , SndObj [8], SPKit [9], SPUC 4 , the Synthesis
Toolkit (STK) [10, 11], and UGen++ [12]. We identify at
least three main distinctions between the implementations
of unit generators in these libraries: (1) processing granu-
larity (single-sample and/or block-based), (2) support for
processing generic types, and (3) ability to run at multiple
sample rates.

One distinction between the available libraries is their pro-
cessing granularity, namely, whether the unit generators
operate on blocks of samples or process one sample at a
time. The advantage of single-sample processing is that it
allows arbitrary routing of signals between unit generators
making it trival to implement, for instance, loop filters and
feedback FM. Approximately half of the libraries identi-
fied above use block-based processing, while the others
are based on single-sample processing. The block-based
processing libraries typically require unit generators to be
connected into a graph structure in order to be used. With
single-sample processing, unit generators simply contain a
method that returns the next sample which obviates the need
for a separate graph structure. sig++ and SPKit are excep-
tions to this, where unit generators are explicitly connected
into a graph.

Another distinction that can be made, given that C++
supports generic types through its template mechanism,
is whether the unit generators can process generic types.
Kronos [13], a descendent of PWGLSynth [14], serves as a
good example of generic-type processing in musical DSP
albeit it is not a C++ class library. IT++ uses three different
generic types for the input samples, output samples, and
coefficients of its filters. SPUC also uses generic types for
its filters, but only one type, Numeric, for both the input
and output samples. IT++ and SPUC, however, are mainly
oriented towards filtering and more general signal process-

1 http://itpp.sourceforge.net/devel/
2 http://nsound.sourceforge.net/
3 http://sig.sapp.org/
4 http://spuc.sourceforge.net/
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ing tasks rather than (musical) sound synthesis. Mozzi 5

uses generic sample types for several of its unit genera-
tors, however, most are specialized for integer types. While
several libraries allow generic sample types, none of them
permit generic algorithms for customizing the unit gener-
ators. What is typically seen are suffixes added to unit
generator names to designate different behaviors, such as
different interpolation policies. Csound/SndObj and Super-
collider/UGen++, for example, take this approach.

Synthesis libraries need to have a mechanism for keep-
ing unit generators synchronized with a sampling domain.
Synchronization typically occurs according to either: (1)
a pull model whereby unit generators simply read a sam-
ple rate variable whenever control parameters are updated
or (2) a push model whereby unit generators are notified
of a change in sample rate. While the pull model is sim-
pler to implement, the push model lends itself better to
optimizations involving pre-computing certain intermediate
variables, such as phase increment factors. In addition to
the push or pull approach, the sample rate is typically either
defined globally to be used by all unit generators or defined
locally within each unit generator. Defining the sample rate
locally permits unit generators to run at multiple sample
rates. Maximilian and Ugen++ unit generators read a global
sampling rate variable to stay synchronized. This has the ad-
vantage of simplicity, but does not allow unit generators to
run with multiple sample rates. CSL, NSound, and Marsyas
allow the sample rate to be specified locally for each unit
generator, thus allowing multiple sample rates. However,
the unit generator sample rates must be synchronized man-
ually. In JamomaDSP, sig++, SndObj and STK, the unit
generator base classes have a virtual method permitting
specific tasks to be executed by unit generators when the
sampling rate changes. STK also allows unit generators to
ignore notifications of a change in the global sampling rate
so they can be used in a multi-rate context.

3. LIBRARY DESIGN

The purpose of this section is to introduce some of the
motivation and design decisions underlying Gamma. Since
the purpose of this paper is not to introduce the library in
detail, it is recommendation that interested readers peruse
the available documentation on the Gamma homepage 6 .

3.1 Design Motivations

The overall goal of Gamma is to provide an easy-to-use
library for constructing complex, yet efficient synthesis
instruments and effects that can run on a wide variety of
platforms. This goal implies a design that

1. has a standard set of unit generators (oscillators,
noise, sample player, envelopes, filters, and variable
delays),

2. has a short-time Fourier transform (STFT),

3. performs single-sample processing,

5 http://sensorium.github.com/Mozzi/
6 http://www.mat.ucsb.edu/gamma

4. supports generic types, and

5. strives for low per-object memory and CPU consump-
tion.

C++ was desired largely for its zero-overhead rule of “what
you don’t use, you don’t pay for” [15] and for its templates
which support generic programming. Generic typing is es-
pecially useful for signal processing as many processing
algorithms are, at their core, simply algebraic formulations.
Single-sample processing was preferred over block-based
processing as it makes the least assumptions about how unit
generators should be used and keeps control parameter and
processing updates separate. Low memory/CPU consump-
tion has obvious performance benefits, but is also seen as
an important component of scalability. A well-made library
should run efficiently on as many platforms as possible,
especially those with limited resources.

At the moment, there are no other sound synthesis libraries
satisfying all of these design requirements. The Synthesis
Toolkit [10, 11] comes close, but lacks an STFT class and
does not support generic types.

3.2 Unit Generators

Unit generators in Gamma are divided into generators and
filters. Generators produce a sequence of samples and filters
transform an input sample into an output sample. The basic
generators and filters are listed and described in Fig. 1 and
Fig. 2, respectively.

Unit generators are implemented as function objects [16].
Function objects are essentially objects with an overloaded
function call operator that performs the object’s main action.
The main action for unit generators is simply to process
the next sample. Generators overload the nullary function
call operator while filters overload the unary function call
operator. For example, the next output of a generator gen
is obtained by calling gen() and the next output of a filter
flt is obtained by calling flt(x) where x is the input.

4. PROCESSING ABSTRACTIONS

Gamma provides two primary abstractions that greatly ex-
tend the range of application of its provided unit generators.
The first of these is the use of generics for unit generator
sample and parameter types and processing algorithms. The
second abstraction is assignable sampling domains where
unit generators can operate under arbitrarily defined one-
dimensional sampling domains.

4.1 Generic Types

Generic types are used to increase the versatility of genera-
tors and filters without needing to change their underlying
algorithm. Gamma uses C++ templates to allow concrete
classes to be made according to generic types. The advan-
tage of this approach over, for example, macros or typedefs,
is that the library can easily accommodate different sam-
ple types in application code without needing to resort to
multiple explicit compilations. This makes it easy to define
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Accum Phase accumulator/timer

Osc Wavetable oscillator

LFO Non-band-limited oscillator

Sine Sine wave

SineR(s) Sine resonance (bank)

SineD(s) Damped sine resonance (bank)

CSine (Damped) complex sinusoid

DSF Discrete summation formula

Impulse Band-limited impulse train

Saw Band-limited saw wave

Square Band-limited square wave

SamplePlayer Sample/sound file player

NoiseWhite White noise

NoisePink Pink noise

NoiseBrown Brown noise

Env N-segment exponential envelope

Decay Exponential decay

Seg Interpolated segment

Figure 1. Generator classes.

processors having different precision within the same appli-
cation. For example, single- and double-precision one-pole
filters can be declared as:

OnePole<float> opf;
OnePole<double> opd;

Beyond permitting different precision types, unit genera-
tors can also operate on non-scalar types, such as complex
numbers and vectors. For example, it is often necessary
to apply the same filter to a stereo signal. Ideally, only
one set of filter coefficients should be used to save memory
and eliminate duplicate effort in computing the coefficients
from parametric controls. A one-pole filter that processes a
2-vector using the provided n-vector class, Vec, is declared
as:

OnePole<Vec<2,float> > op2;

For convenience, Gamma provides 2-vector float2 and
double2 types, so the previous example can be written

OnePole<float2> op2;

4.2 Strategies

One can broaden the scope of generics beyond types to
also include algorithms. In the parlance of design patterns,
a Strategy is an object that represents an algorithm [17].
Strategies are light-weight function objects, typically hav-
ing little or no data, that conform to an identical interface,

OnePole 1-pole filter

AllPass1 1st-order allpass

AllPass2 2nd-order allpass

Biquad 2-pole, 2-zero filter

Notch 2-zero notch

Reson 2-pole resonator

BlockDC DC blocker

Integrator Leaky integrator

DelayShift Fixed n-sample delay

Delay Variable length delay

Comb Comb filter/feedback delay

Multitap Multitap delay

Hilbert Hilbert transformer

Figure 2. Filter classes.

yet behave differently. Strategies permit certain behaviors
of a class to be swapped out or customized without having
to define a new class.

In Gamma, Strategies are employed for two main pur-
poses—to reduce the number of base unit generator types
and to permit unit generators to be extended more easily
than by subclassing. For example, Listing 1 shows how
Strategies are used to declare different types of a wavetable
oscillator class. The Strategies used in Gamma are compile-
time rather than run-time so that they can be efficiently
inlined. Two main Strategies are utilized—interpolation
and phase increment.

// Oscillator with truncating interpolation
Osc<float, ipl::Trunc, phsInc::Loop>

// Oscillator with linear interpolation
Osc<float, ipl::Linear, phsInc::Loop>

// One-shot with linear interpolation
Osc<float, ipl::Linear, phsInc::OneShot>

// Ping-pong oscillator with cubic
interpolation

Osc<float, ipl::Cubic, phsInc::PingPong>

Listing 1. Different oscillator types based on
combinations of interpolation and phase increment
Strategies.

Interpolation Strategies are used to specify the interpo-
lation method used in delay lines, table-based oscillators,
and envelope segments. Two types of interpolation Strate-
gies are present in Gamma: random-access and sequence.
Random-access interpolation Strategies are used for interpo-
lating values at arbitrary positions along an array. Sequence
interpolation Strategies are for interpolating a stream of
sample points.

The currently provided random-access interpolation
Strategies are Trunc, Round, Linear, Cubic, and
AllPass. The Switchable Strategy allows switching
between any of the aforementioned interpolation types at
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namespace ipl{

// Truncating interpolation strategy
template <class T>
class Trunc{
public:

T operator()(
const T * src, int size,
int iInt, double iFrac) const

{
return src[iInt];

}
};

// Linear interpolation strategy
template <class T>
class Linear{
public:

T operator()(
const T * src, int size,
int iInt, double iFrac) const

{
return src[iInt] +

(src[(iInt+1)%size] -
src[iInt])*iFrac;

}
};
}

// Wavetable with interpolation strategy
template <int N, class T, class InterpStrat>
class Wavetable{
public:

T read(double index) const {
unsigned i = int(index);
double f = index - i;
return mInterpStrat(mTable,N, i,f);

}

private:
T mTable[N];
InterpStrat<T> mInterpStrat;

};

// Declare table w/ linear interpolation
Wavetable<1024,float, ipl::Linear> tableL;

// Declare table w/ truncating interpolation
Wavetable<1024,float, ipl::Trunc> tableT;

Listing 2. Example interpolation Strategy class
definitions and usage with a Wavetable class.

run-time. Listing 2 gives example class definitions for
truncating and linear interpolation Strategies and their us-
age with a Wavetable class. Each interpolation Strat-
egy shares the same function operator prototype to access
an array. (In practice, there could be many such func-
tion operators for specific types of array access.) The
Wavetable class takes an interpolation Strategy as a tem-
plate parameter and then creates a member of that type.
In Wavetable::read, the interpolation Strategy’s over-
loaded function operator is called to compute the interpo-
lated value.

Sequence interpolation Strategies maintain a small FIFO
buffer of samples from which an interpolated value can
be computed using a specific interpolation method. At
the moment, Trunc, Linear, Cubic, and Cosine se-
quence interpolation Strategies are provided. For example,
the Linear sequence interpolation Strategy operates as
follows:

iplSeq::Linear lerp;
lerp.push( 0);
lerp.push(20); // sample points are 0, 20
lerp(0.5); // returns 10
lerp(0.1); // returns 2
lerp.push(40); // sample points are 20, 40
lerp(0.5); // returns 30

The Seg unit generator utilizes a sequence interpolation
Strategy to create an envelope between two sample points.
The basic operation of Seg is to interpolate between two
values over some specified length and then hold the end
value indefinitely. In this way, it can be used to smooth low
sample rate synchronous or asynchronous signals. Another
mode of operation allows periodic generation of segments
in a process similar to upsampling. This is accomplished
through an overloaded function call operator that takes a
function object as an argument. Whenever the end of the
segment is reached, it requests the passed-in function object
to generate its next sample, pushes this onto the segment’s
internal FIFO buffer, and starts the segment over. This ef-
fectively starts a new segment that is piece-wise continuous
with the old one. Perhaps one of the most useful applica-
tions of this mode of operation is producing low-frequency
signals from stochastic, non-linear, or other sequence gen-
erators. Listing 3 demonstrates how the NoisePink and
Seg unit generators can be used together to create low-
frequency, cubic-interpolated pink noise.

// SETUP
// Pink noise generator
NoisePink<> noise;

// Interpolated segment running at 10 Hz
Seg<float, iplSeq::Cubic> seg(1./10);

void audioCallback(...){
for(int i=0; i<blockSize; i++){

float s = seg(noise);
}

}

Listing 3. Low-frequency, cubic-interpolated pink noise
built from the NoisePink and Seg unit generators.

In the example above, the noise object (not a noise sample)
is passed as an argument to the segment’s function operator
in the sample loop. The segment’s function operator will
generate the noise’s next sample and update the segment
endpoints on the condition that the end of the segment
has been reached. Otherwise, the next interpolated sample
between the existing endpoints is returned.

Phase increment Strategies include Loop, OneShot,
NShot, PingPong, and Rhythm (Fig. 3). Loop repeat-
edly cycles the phase, like a typical phase accumulator driv-
ing an oscillator. OneShot cycles the phase once and then
holds its end value. In this way, it can be used for one-shot
playback, such as with sample playback and table-based en-
velopes. PingPong is a bidirectional loop that alternates
the phase forward and backward. NShot and Rhythm are
slightly more complex Strategies that permit specific kinds
of phase patterns. NShot is like OneShot, except cycles
the phase a specified number of times. Rhythm repeatedly
cycles or holds the phase for one period according to a bi-
nary pattern of up to 32 bits. If the bit is 1, then the phase
wraps. If the bit is 0, then the phase holds its position for
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one period.

Loop OneShot

PingPong

Rhythm

NShot

Figure 3. Phase increment Strategies. The dashed lines
indicate the Strategy’s long-term (repeating) pattern. The
Rhythm Strategy has the pattern string “/.//”.

Rhythm allows complex rhythmic patterns to be pro-
duced at both audio and sub-audio rates, as with pulsar
synthesis using burst masking [18]. Rhythm patterns can
be specified using a 32-bit unsigned integer where the most
significant bit is the start of the pattern or as a C-style char-
acter string. Character strings follow the convention of ‘.’
indicating off and ‘/’ indicating on in a similar fashion to
GROOVE [19]. For example, we can use Rhythm to apply
a rhythmic envelope to an oscillator (Listing 4).

// SETUP
Osc<> src(400);
LFO<phsInc::Rhythm> env(8);
env.phsInc().pattern("/../../.");

void audioCallback(...){
for(int i=0; i<blockSize; i++){

float s = src() * env.downU();
}

}

Listing 4. Using the Rhythm Strategy to apply a
rhythmic envelope to an oscillator source.

4.3 Assignable Sampling Domains

Perhaps the most novel abstraction of Gamma is assignable
sampling domains, a way to dynamically assign unit gen-
erators to a particular sampling domain. The original mo-
tivation behind this design was to make it easy to run unit
generators in both the time domain and frequency domain.
Of course, it also allows unit generators to be configured
to run at various rates, such as audio or block rate or some
windowed analysis rate.
The abstraction utilizes an Observer pattern [17] so
that groups of unit generators can be notified when-
ever their associated sampling interval changes. There
are two main classes involved with assignable sampling
domains, Domain and DomainObserver, which are
the subject and observer, respectively, of the Observer
pattern. By default, all unit generators inherit from
DomainObserver. A DomainObserver attaches it-
self to a Domain so that it is notified whenever the sam-
pling interval changes. The overloaded << operator is used

to attach a DomainObserver to a Domain. The follow-
ing illustrates this

DomainObserver obs;
Domain dom;
dom << obs;

It is possible to instantiate more than one Domain so that
multiple sampling intervals can be used within a single
system. DomainObservers can attach to any Domain,
but always have exactly one Domain.

Most of the time, unit generators will only need to observe
a single sampling rate. For convenience, a default Domain
called master is supplied. All DomainObservers are
automatically attached to master when constructed. The
master domain is initialized with a sample rate/interval
of 1. To set it to a specific sample rate, say 44.1 kHz, one
calls

Domain::master().spu(44100);

where spu stands for samples per unit. A slightly more
complex situation involves unit generators running at both
sample and control rate. For this, an additional control-rate
domain can be utilized. Listing 5 illustrates how one could
implement a vibrato effect operating at block rate.

// SETUP
Domain::master().spu(44100.);
Domain blockDomain(44100./blockSize);
Sine<> mod(5);
Sine<> car;

// Attach modulator to block domain
blockDomain << mod;

void audioCallback(...){

car.freq( mod()*5 + 440 );

// SAMPLE LOOP
for(int i=0; i<blockSize; i++){

float s = car();
}

}

Listing 5. Control-rate vibrato implemented using a
block-rate time domain.

A perhaps more interesting use of assignable domains is
configuring unit generators to operate in frequency domain.
For example, an oscillator or a break-point envelope can be
used as a magnitude envelope. Listing 6 demonstrates how
one can create a barber-pole combing effect using an STFT
and two sine oscillators.

All unit generators have as their last template parameter a
domain class which is inherited by the unit generator. The
default domain class is DomainObserver. A special
type of domain, Domain1, can be used for unit generators
that function entirely with normalized frequencies in the
interval [0, 1]. Domain1 has the advantage that it does not
consume memory or need to do unit conversions since both
its sampling frequency and sampling interval are fixed at 1.
This is also especially useful for composite objects where
unit conversions from a particular domain may only need
to be done once by the composing object.
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// SETUP
Domain::master().spu(44100.);

STFT stft;
Sine<> env(1/100.);
Sine<> envPhase(1);

stft.domainFreq() << env;
stft.domainHop() << envPhase;

void audioCallback(...){

// TIME SAMPLE LOOP
for(int i=0; i<blockSize; i++){

float s = ...; // current sample

// Check if next spectral frame is
ready...

if(stft(s)){
env.phase(envPhase()*0.5 + 0.5);
int N = stft.numBins();

// FREQUENCY SAMPLE LOOP
for(int k=0; k<N; ++k){

stft.bin(k) *= env();
}

}

// Resynthesis
s = stft();

}
}

Listing 6. Barber-pole combing effect using hop- and
frequency-domain oscillators.

5. CONCLUSION

Gamma attempts to maximize the flexibility of its sup-
plied unit generators by utilizing single-sample processing,
generic types and algorithms, and assignable sampling do-
mains. Single-sample processing has proven to be very flex-
ible and efficient if one is satisfied with static unit generator
graphs. Generic types and algorithms add more complexity
to the library, but it seems to be a reasonable trade-off as
they bring a whole new dimension of code reuse and exten-
sibility, which are generally considered good. Assignable
sampling domains make it easy to manage unit generators
running at different rates. By allowing standard unit gen-
erators such as oscillators and envelopes to operate in the
frequency domain many possibilities for new and exotic ef-
fects emerge. It remains to be seen if LCCD filters, such as
biquads, have any meaningful applications in the frequency
domain. One unique attribute of the frequency-domain is
that it is non-causal, unlike the time-domain, and thus IIR
filters can be made linear phase through bidirectional filter-
ing. Instead of filtering across frequency, one could filter
the temporal trajectories of individual bin magnitudes to
produce spectral blurring and other effects. This would
require filters to efficiently handle arrays as sample types,
something not handled in Gamma at the moment.
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