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Juan José Burred
Paris, France

jjburred@jjburred.com

ABSTRACT

Spectrogram factorization is a recent and promising al-
ternative to sinusoidal or source/filter modeling for anal-
ysis/resynthesis systems aimed at musical creation. This
paper presents a framework designed to perform a wide
range of sound manipulations based on Non-negative Ma-
trix Factorization (NMF), including a set of new tech-
niques for creating artificial cross-components not present
in the original analyzed sound. The system can process
individual sounds by modifying their internal structure, or
can be used for a flexible type of cross-synthesis between
two input sounds. The different processing modules are il-
lustrated by a collection of sound examples available on a
companion website.

1. INTRODUCTION

Analysis/resynthesis is one of the most widely used
paradigms of sound creation in computer and electronic
music. It comprises the successive stages of sound anal-
ysis, modification of the extracted parameters, and resyn-
thesis of a new sound from the modified parameters. In a
wide sense, the resynthesis stage can be either fully elec-
tronic or computer-based, or performed by acoustical in-
struments following scores or instructions derived from the
analyzed parameters. The latter approach was a central
technique used by the first spectralist composers from the
1970’s. In the present article however, analysis/resynthesis
is interpreted as a fully computer-based processing chain:
the user has access to the parameters and can modify them,
but the analysis and resynthesis stages are automatic.

Many sound analysis techniques, with their correspond-
ing resynthesis counterpart, have been proposed over the
last decades. Arguably, the most popular one is sinu-
soidal analysis/resynthesis, in which the main parameters
are the time-varying frequencies, amplitudes and phases
of the sinusoidal partials contained in the analyzed sound.
Analysis methods for such sinusoidal techniques include
the Short Time Fourier Transform (STFT) and the Phase
Vocoder [1]. Another important family of methods is
source/filter analysis/resynthesis, which is based on the
estimation and manipulation of spectral envelopes with
methods such as Linear Predictive Coding (LPC) [2]. As
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an example of a more recent approach, sparse decomposi-
tion into time-frequency atoms has been used for this pur-
pose [3].

Matrix factorization has been proposed in recent years as
a new analysis technique applied to musical creation [4, 5,
6]. Due to its ability to reveal latent sound sources when
applied to spectrograms, matrix factorization has been, and
still is, the method of choice in sound source separation,
and there is a huge body of literature in that area propos-
ing many variations on such algorithms for the purpose of
extracting instrumental sources from a mix. Nevertheless,
the potential of matrix factorization for the creation of new
sounds has been seldom explored.

When applied to a time-frequency matrix X of size F×T
(F frequency bands and T temporal frames), such as a
magnitude spectrogram, a matrix factorization algorithm
yields two factor matrices (W and H) that approximate the
original matrix when multiplied: X ≈WH. Matrix W is
of size F ×K and matrix H is of sizeK×T , whereK is a
parameter set by the user. The factor matrices can be inter-
preted as follows: each column wk of W is a spectrum of
F bins, and each row hk of H is a temporal function (or ac-
tivation) of T frames. The outer product of each spectrum
wk with each activation hk (denoted by wk⊗hk) produces
a F×T spectrogram that is called a component. Each com-
ponent can be visualized as a time-frequency layer; when
all K layers are added, an approximation to the original
matrix X is obtained. Fig. 1 illustrates the factorization
of a magnitude spectrogram of a three-note piano melody
with K = 3. The resulting activation functions are plot-
ted horizontally above the spectrogram, and the spectra are
plotted vertically to its left.

Thus, after an analysis by factorization, the composer or
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Figure 1. Illustration of spectrogram factorization by
NMF: three-note piano melody.
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sound designer has at his disposal a collection ofK spectra
and K activations, or alternatively a set of K components
obtained by multiplying pairs of spectra and activations.
The value of K and the spectra and activations are the
parameters that can be modified for resynthesis purposes.
This contrasts with sinusoidal analysis/resynthesis, where
the elements are individual sinusoids, instead of full spec-
tra, and the number of parameters to manipulate is usually
much higher. Also, when compared to source/filter meth-
ods, factorization approaches have the ability to process in-
ternal sound components individually, instead of process-
ing global features that act on the whole sound, such as
spectral envelopes. Depending on the used algorithm and
on the selected number of components K, the factoriza-
tion components can correspond to individual resonances,
transients, salient events or notes. The manipulation by the
user of such sub-events is thus a potentially powerful new
method of sound creation.

In their 2011 paper [4], Topel and Casey review several
compositions based on matrix factorization, in particular
based on Probabilistic Latent Component Analysis (PLCA).
The works cited therein exploit different techniques, from
manual arrangement and instrumentation based on the ex-
tracted parameters (in the spirit of spectralism) to auto-
matic matching of live sounds to PLCA components based
on a similarity measure. Sarver and Klapuri [5] propose
the use of Non-Negative Matrix Factorization (NMF) for
sound effects processing. The number and weights of each
of the components are controlled to generate timbre modi-
fications and compression and distortion effects.

Most of the cited approaches work by performing modifi-
cations at the component level: each spectrum wk remains
coupled with its corresponding activation hk with the same
index k. This is necessary if the final sound needs to be a
close approximation to the input, and is thus essential in
source separation or effects processing. For the purposes
of sound synthesis however, it is possible to go one step
further and decouple the spectra from their corresponding
activations: by multiplying pairs of wi and hj such that
i 6= j, new sounds are created that were not present in
the original sound. These can be called cross-components.
Such an approach was used in a previous work by this au-
thor [6], where automatic cross-synthesis based on NMF
was proposed. In it, activations from a source sound are
combined with spectra from a target sound, creating a hy-
brid sound where the temporal structure is provided by the
source, and the timbre by the target.

In the present work, that idea is further explored, and
the system has been extended with several new meth-
ods for automatic factorization-based sound creation and
modification. The principle of automatic cross-component
resynthesis has been extended from cross-synthesis of two
sounds to the processing of single sounds, and thus the
system has been generalized from a cross-synthesis frame-
work to a full analysis/resynthesis framework. More flexi-
bility has been added by introducing the possibility of au-
tomatic selection of spectra or activations based on objec-
tive features. Furthermore, the sound quality has been sig-
nificantly improved by using a resynthesis stage based on

Wiener filtering. All operations will be illustrated by sev-
eral sound examples available online 1 .

The ultimate goal of this line of research is to develop
a comprehensive analysis/synthesis software framework
that will allow composers and sound designers to exploit
the many possibilities of factorization-based processing,
including manual or automatic component-based, cross-
component and cross-synthesis processing. A preliminary
implementation, called Factorsynth, is available for down-
load (Sect. 6).

The two main sections of the paper concern the two main
synthesis modes implemented: Sect. 3 details several new
modules to perform cross-component synthesis from an
individual input sound. Sect. 4 briefly summarizes the
cross-synthesis system previously introduced in [6], and
introduces its new extensions, including the new activation
mapping module and constrained cross-synthesis. Finally,
Sect. 5 briefly discusses the new resynthesis module.

2. ANALYSIS STAGE

The first processing step for each input sound s(n) is the
extraction of its magnitude spectrogram matrix as the ab-
solute value of its STFT: X = |STFT{s(n)}|. The system
accepts stereo or multichannel signals, but handles them
by processing each channel separately, so notation denot-
ing multiple channels can be ignored. The spectrogram is
subjected to NMF, which requires that all elements on the
input and output matrices have to be zero or positive. NMF
is an iterative algorithm implemented as an optimization
that minimizes the reconstruction error, given by the sum
of an element-wise distance measure between observation
X and approximation WH:

D =
F∑

f=1

T∑
t=1

d(X(t,f),WH(t,f)). (1)

Different NMF algorithms exist, depending on the choice
of distance measure. Three possible choices were im-
plemented and tested: the Frobenius norm (used in [6]),
the Kullback-Leibler (KL) divergence [7] and the Itakura-
Saito (IS) divergence [8]. After some informal listening,
best-sounding results were obtained by the KL divergence,
given by

dKL(x, y) = x log
x

y
− x+ y, (2)

which was henceforth used 2 . The use of the KL diver-
gence as error measure leads to a set of simple multiplica-
tive update rules, first derived by Lee and Seung in their
2001 paper [7].

The crucial parameter at the analysis stage is the number
of components K, since it determines the level of detail
of the components. It is the single parameter having the
most important timbral consequences on the result. Several
guidelines on how to choose K depending on the desired
results are given on the previous work [6].

1 http://jjburred.com/research/icmc2014
2 More formal analysis and listening tests will be needed for a defini-

tive choice.
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(d) Constrained scramble

Figure 2. Conceptual overview of single-sound factorization-based operations. Vertically plotted curves are spectra, hori-
zontally plotted curves are temporal activations. The numbers are the original component indices after NMF. Green arrows
correspond to components, red arrows to cross-components.

3. CROSS-COMPONENT PROCESSING OF
INDIVIDUAL SOUNDS

After factorization by NMF, the sound is decomposed into
a set of K spectra (or spectral bases) and K temporal acti-
vation functions. A distinction will be made between com-
ponents and cross-components:

Components : Ck = wk ⊗ hk, (3)
Cross− components : Cij = wi ⊗ hj , i 6= j (4)

That is, components are obtained by multiplying spectra
and activations of the same index, and are actual sub-
entities of the original sounds. Cross-components, in con-
trast, are new sounds not present in the original input, cre-
ated by artificially combining spectra and activations of
different indexes. There are K possible components and
K2 − K possible cross-components (it should be noted
that Cij 6= Cji).

Source separation and NMF-based effects processing as
proposed in [5] both work by processing or filtering out
components. Here, the focus is on cross-components, and
three possible operations based on them are proposed in the
following subsections: scramble, rank, and constrained
scramble.

3.1 Scramble

The simplest way to obtain an output sound consisting en-
tirely of cross-components is to do a “scramble” (random
permutation) of either the spectra or activation indices be-
fore multiplication, keeping the other index set unchanged
(in other words, the multiplication pairs are randomly cho-
sen). This forces each and every spectra to be multiplied
by an originally unrelated activation (see Fig. 2(b)). The
main drawback of such an operation is obviously the lack
of control and unpredictability of results (beyond the abil-
ity to control the decomposition level K).

The audible results of scrambling could perhaps be de-
scribed as follows: the overall, external timbre and tem-
poral discourse of the original sound are both recogniz-
able, but the internal pitch (harmonic, resonance) contents
is completely different.

The best is to illustrate this with some example sounds,
available on the previously cited webpage. In the first ex-
ample (Sound 1), the first few measures of Wagner’s “Tris-
tan und Isolde” are factorized into K = 20 components,
and subsequently scrambled. In the resulting sound, it is
possible to hear timbral elements from the original, ar-
ranged in such a way that the dynamic evolution is main-
tained (note the emphasis on the main chord). In the sec-
ond example (Sound 2), an excerpt of the German Requiem
by Brahms, the dynamic evolution is flatter and the tex-
ture is highly homophonic. The resulting sound keeps the
timbral and texture contents, but completely alters the har-
mony.

3.2 Rank

A way of introducing some degree of control to automatic
cross-component processing is to independently sort the
spectra and activations following objective measures. It
should be noted that NMF and other factorization algo-
rithms suffer from the permutation problem: the ordering
of the components is random 3 , thus the value of the indi-
vidual ks has no physical interpretation whatsoever.

Here, it was chosen to rank the spectra by brightness,
measured by the spectral centroid:

SCk =
∑F

n=1 f(n)wk(n)∑F
n=1 wk(n)

, (5)

3 The random ordering of the components (indices k) produced by the
permutation problem should not be confused with the random coupling
between spectra and activations introduced by the scramble operation.
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where f(n) is the frequency at bin n, and the activations
by sparsity, measured by the kurtosis:

Kk =
1
T

∑T
t=1(hk(t)− µk)4

( 1
T

∑T
t=1(hk(t)− µk)2)2

, (6)

where µk is the empirical mean of hk(t). These were also
the two measures used in [5] for the rearrangement of com-
ponents, and were chosen here as well due to their simplic-
ity and perceptual relevance.

The spectra and activations are independently sorted ac-
cording to centroid and kurtosis, and then multiplications
are carried out for creating the cross-components (see Fig.
2(c)). In some cases, the spectra will find themselves op-
posite their original activation partners after ranking. For
instance, ranking the spectra by increasing brightness and
the activations by increasing sparsity turned out in prelim-
inary tests to produce output sounds close to the original
(i.e., most of the resulting products were components, not
cross-components). This indicates a high correlation be-
tween brightness and sparsity (in many music examples,
darker sounds are slower and more sustained than impul-
sive sounds, which naturally tend to be brighter). Thus,
more different output sounds were found by inverting one
of the rankings (forcing brighter spectra multiply slower
activations), which results in a sort of spectral inversion.

The difference between direct and inverse ranking oper-
ations is illustrated by the Kraftwerk excerpt on the web-
page. The first example (Sound 3) corresponds to direct
ranking: increasing brightness opposed to increasing spar-
sity. The output sound is, in character, quite close to the
original (the drums and low bass notes are kept), but with
several harmonic and slight timbral variations in the back-
ground. The second example (Sound 4) corresponds to in-
verse ranking. In it, some low sounds have been transferred
to the upper registers and the drum set has been greatly al-
tered.

3.3 Constrained scramble

One of the problems of the fully-random scramble opera-
tion described above is that some noisy components, ini-
tially present with very low energy in the original sound,
or corresponding to short impulses such as consonants or
drum hits, might get greatly amplified if they happen to
get multiplied by a high-energy or highly sustained acti-
vation function. In some cases, this can produce unpleas-
ant sounds with a high level of noise. For instance, in the
Brahms example discussed, there is a prominent oscillating
layer of noise on top many of the notes of the output.

To avoid this, and to introduce another way of control-
ling cross-component output, the scramble operation can
be constrained to be performed only on a subset of spec-
trum/activation pairs, leaving the rest coupled. For ad-
dressing the residual noise issue, it is highly effective to
leave a percentage of the high-centroid spectra, as mea-
sured by Eq. 5, out of the random permutation (see Fig.
2(d)). In the new Brahms example re-processed by this
kind of constrained scramble (Sound 5), the high-centroid
components, mostly corresponding to the consonants, are
left untouched, and the choral timbre is better preserved.

4. CROSS-SYNTHESIS

In cross-synthesis, two sounds (a source and a target) are
individually subjected to NMF analysis, and the resulting
spectra and activations from source and target can be com-
bined in a wide range of different ways. Direct, random-
order multiplication is possible, but is more likely to pro-
duce unsatisfactory results than single-sound scrambling,
due to the even higher unpredictability of the results. In-
stead, user control and predictability demands a criterion-
based selection of the cross-product pairings. Since no nu-
merical ranking is needed (such as in Sect. 3.2), the use
of better-performing multidimensional features is possible,
and consequently, similarity amounts to proximity in a fea-
ture space.

Cross-synthesis is implemented in the system in one of
two possible ways: one based on spectral similarity, and
one based on temporal similarity.

4.1 Cross-synthesis based on spectral similarity

Here, the source and target spectra are first mapped 4 ac-
cording to a measure of spectral similarity. Then, source
spectra are replaced by the most similar spectra from the
target, and multiplied by the source activations. This is
indicated by the red arrows on Fig. 3.

This approach was originally presented in [6]. The fea-
tures used for the computation of spectral similarity are the
widely-used Mel Frequency Cepstral Coefficients (MFCC),
which can be interpreted as a compact description of the
spectral envelope. This type of cross-synthesis should be
used when the emphasis is on keeping temporal structure
of the source sound. Many processing details and options
for controlling the matching are described in the cited pa-
per. On the sound example webpage, some new cross-
synthesis examples are included (Sounds 6-8).

4.2 Cross-synthesis based on temporal similarity

The current implementation of the system adds the dual
process: the mapping can now also be performed in the
space of activations, according to a measure of temporal
similarity. Then, source activations are replaced by the
most similar activations from the target, and multiplied by
the source spectra (blue arrows on Fig. 3).

The emphasis now is on keeping the timbre of the source
sound, adapting the temporal structure. Temporal similar-
ity is based on the computation of a two-dimensional vec-
tor consisting of a sparsity measure as given by Eq. 6, and
of a Dynamic Time Warping (DTW) minimum-cost align-
ment value, which can be understood as a measure of curve
shape similarity independent of curve length. Feature vec-
tors in this space (called here shape space) are compared
by means of the Mahalanobis distance.

4.3 Constrained cross-synthesis

The issue of artificially high noise cross-components, which
was discussed in Sect. 3.3 in the context of single-sound

4 Here, mapping refers to the computation of a similarity matrix be-
tween all two possible feature vectors, followed by the assignment of
each source feature vector to its closest target feature vector.
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Figure 3. Conceptual overview of cross-synthesis operations. Red arrows denote cross-synthesis based on spectral simi-
larity, blue arrows denote cross-synthesis based on temporal similarity.

processing, is also present here. Therefore, the possibil-
ity to use numerical ranking for discarding some spectra
(or activations) from the processing has been added. For
instance, in cross-synthesis based on spectral similarity,
target spectra having high centroid values can be flagged
to be ignored during the mapping stage. An example on
the webpage (Sound 9) compares cross-synthesis with and
without such a high-centroid discard condition.

5. WIENER-BASED RESYNTHESIS

Once the magnitude spectrogram of the output sound has
been obtained by adding the generated components or
cross-components, it has to be resynthesized back to the
audio domain. NMF processing does not take into account
phase information. Therefore, for resynthesis, phase has
to be either directly taken from the input complex STFT
(usually via Wiener time-frequency masking) or estimated
from the magnitude spectrogram.

The latter approach was used in the work previous to this
article [6], based on the Griffin and Lim phase estima-
tion algorithm. Therein, it was argued that time-frequency
masking was not appropriate for a non-subtractive task
where artificial cross-components are present. Indeed,
Wiener filtering works by generating a mask matrix M that
filters out the undesired sounds from the input sound. For
example, the STFT of a particular component k can be ob-

tained by

Sk = M ◦ S =
wk ⊗ hk

WH
◦ S, (7)

where S is the input STFT (complex), “◦” denotes
element-wise multiplication, and the division is also
element-wise. Since

WH =
K∑

k=1

wk ⊗ hk, (8)

the elements of the Wiener mask M are guaranteed to be
between 0 and 1, and thus the mask acts as a filter. In the
present case however, the artificial layers created by the
cross-components wi⊗hj do not add to the approximation
matrix WH, and so the “mask” is no longer bounded and
can take values significantly higher than one. It will filter
out some time-frequency points but at the same time it will
enhance others. The final processed STFT is thus given
now by

Sout =

∑
i,j wi ⊗ hj

WH
◦ S. (9)

However, even if this is not the usual implementation and
interpretation of Wiener filtering, it was found that the
quality of the resynthesis produced by Eq. 9 was signifi-
cantly higher (and more computationally efficient) than the
one obtained by Griffin and Lim estimation, mostly due to
the better definition of transients. A sound comparison is
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available on the website (Sounds 10-11). Finally, the last
step is to invert Sout back to the time domain via standard
overlap-add.

6. IMPLEMENTATION

The current analysis/synthesis framework exists as a soft-
ware tool called Factorsynth, which is currently available
in two different implementations: as a command-line tool
and as a Max/MSP external object called factorsynth∼.
Both are available online for download 5 . In the current
version, both command-line tool and Max/MSP object use
offline processing and are not real-time capable.

Concerning computational requirements, the current im-
plementation completes the processing in roughly 60% to
80% of the total length of the input sounds (measured on
a 2.3 GHz Intel Core i7 CPU with 4 GB of RAM). For
instance, for a 20s input sound, it will complete process-
ing in around 13s. For cross-synthesis, the sum of lengths
of both input sounds has to be considered. This will vary
a little depending on the operations performed and on the
number of components chosen, but for most operations this
was a consistent figure (it is assumed that the STFT analy-
sis parameters are always fixed).

For future implementations, the possibility of implement-
ing a graphical interface will be explored. Users could
use a graphical representation of spectra and activations to
do manual connections or selections, similar in concept to
Figs. 2 and 3, or to correct cross-components created by
the automatic algorithms. Or alternatively, to navigate the
full matrix of cross-components.

As another improved aspect of future versions, the feasi-
bility of a real-time implementation will be assessed. This
will require the use of online factorization algorithms [9].
For accelerating cross-synthesis, a possibility would be to
pre-compute and store the target spectra and activations,
and perform the source factorization and source-target map-
ping in real time.

7. CONCLUSIONS

The proposed framework implements some of the new
sound manipulation possibilities offered by spectrogram
factorization methods. By using relatively little control
data and computational requirements, it is possible to ob-
tain a wide range of complex sounds by manipulating their
internal structure. The user can control the sound complex-
ity and overall structure, as well as how much of the timbre
and temporal structure of the original sound is kept.

The focus of the current article was on the creation of
cross-components, which are artificial sounds not present
in the input, obtained by multiplying originally unrelated
spectra and activations. Another, still unexplored possibil-
ity, would be the individual processing of separate spectra
or activations. For instance, it will be possible to imple-
ment a selective time-stretching of only certain activations,
or a selective pitch-shifting of only certain spectra.

5 http://jjburred.com/software/factorsynth

Another line of improvement would be to consider more
advanced factorization models. The current system han-
dles stereo or multichannel signals by processing each
channel independently. Instead, explicit multichannel fac-
torization models [10] can improve the extraction of the
components and minimize the reconstruction error. An-
other path to explore is the use of factorization models
based on the source/filter paradigm, such as the one pro-
posed in [11].
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