
Laminae: A stochastic modeling-based autonomous performance rendering
system that elucidates performer characteristics

Kenta Okumura
Nagoya Institute of Technology
k09@mmsp.nitech.ac.jp

Shinji Sako
Nagoya Institute of Technology
sako@mmsp.nitech.ac.jp

Tadashi Kitamura
Nagoya Institute of Technology
kitamura@nitech.ac.jp

ABSTRACT

This paper proposes a system for performance rendering of
keyboard instruments. The goal is fully autonomous ren-
dition of a performance with musical smoothness without
losing any of the characteristics of the actual performer.
The system is based on a method that systematizes combi-
nations of constraints and thereby elucidates the render-
ing process of the performer’s performance by defining
stochastic models that associate artistic deviations observed
in a performance with the contextual information notated
in its musical score. The proposed system can be used to
search for a sequence of optimum cases from the combi-
nation of all existing cases of the existing performance ob-
served to render an unseen performance efficiently. Evalu-
ations conducted indicate that musical features expected in
existing performances are transcribed appropriately in the
performances rendered by the system. The evaluations also
demonstrate that the system is able to render performances
with natural expressions stably, even for compositions with
unconventional styles. Consequently, performances ren-
dered via the proposed system have won first prize in the
autonomous section of a performance rendering contest for
computer systems.

1. INTRODUCTION

In recent times, several autonomous systems for automatic
performance rendering have been proposed [1, 2]. Their
main motivation is elucidation of the existing performance
and the realization of a virtual performer [3, 4]. Such sys-
tems generally control the rules that determine performance
expression without asking for interaction with the user in
the rendering process of the performance. Our focus is on
the ability to render performances without losing any of
the characteristics of the human performer, and to repli-
cate such characteristics. One of the most rational ideas
for achieving this is to relate the expression included in
segmented cases of the performance of human virtuosi and
the information that describes the conditions in which they
were performed.

The typical method used to handle expressions included
in each case is to transcribe the statistical trend in sections
of accumulated cases [5–7]. The advantage of that method
is that unnatural expressions are less likely to occur in the
rendered performance. However, that method is not nec-
essarily advantageous as it may not faithfully reproduce
the performer’s characteristics, since the features of the
performer that were originally provided in the cases are
smoothed by the statistics. Conversely, there is a method
that directly transcribes the expression of the particular

Copyright: c©2014 Kenta Okumura et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

case among the cases that have been accumulated [8–10].
This is a more suitable method for faithful reproduction
of the performer’s characteristics because of its certain re-
tention of the feature of the cases. However, the problem
with this method is that the performances may lose natu-
ralness since they are rendered by connecting cases that are
not continuous in the original performance. In the existing
methods, the rules used to select the case are not optimized
for the composition to render a performance by the system
because they are constructed based on the compositions
originally performed by the performer. To solve this prob-
lem, we propose a method that searches for the optimum
case to transcribe the expression from the alternatives, aug-
mented by the moderation of a strict rule. This is done with
the assumption that the possibility exists a case with an ex-
pression that can render a more natural performance exists
in those cases that are never selected because they are not
strictly in accordance with the selection rule.

The information that describes the conditions of the case
that was originally performed must be elucidated with gen-
erality to select the optimum case for every direction upon
rendering of the performance. Most existing autonomous
systems require the information related to the interpreta-
tion of the composition by the performer as input. How-
ever, it is difficult to acquire rules that can accurately de-
scribe the relationship, even when it is analyzed by experts.
In addition, to explain the relationship with generality is
also difficult for the performer because of fluctuations in
the interpretation itself [11]. We consider an approximate
description of the relationship using the combination of
simple information obtained uniquely from the score rather
than a higher-order interpretation of the performer. We
previously proposed a method that enables systematic as-
sociation of the relationships without using such unstable
information, under the assumption that there is a tendency
in the behavior of the performer that depends on the con-
text of the performance directions locally derivable from
the score [12]. That method is able to eliminate the de-
pendency on any information other than the performance
itself, because it uses no such information containing the
fluctuations mentioned above. The essence of the problem
that the method resolves, in terms of classifying the cases
of existing performances based on the information from
the score, is congruent with our proposal.

2. METHODS CONSTITUTING THE SYSTEM

Performers interpret the directions S = (s1, . . . , sM ) that
are notated in the given score, and renders the performance
sequence R̂ = (r̂1, . . . , r̂N ) by applying their intended ex-
pression. On the assumption of the sequence of strict di-
rection Ŝ = (ŝ1, . . . , ŝN ) that represents the contents of
the performance, the applied expressions are observed as
sequences D = (d1, . . . , dN ) for factors F = (AT, GR,
DR, BR) between Ŝ and R̂ as follows:
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Figure 1: Formation of context-dependent models.

DAT (Attack Timing): Timing of striking of the key in beats
per quarter note.

DGR (Gatetime Ratio): The ratio of the time taken to de-
press a key in the performance to that note’s length on
the score. If the length of the performance is shorter
than the score’s instruction, the value is less than one.

DDR (Dynamics Ratio): Dynamics of keying in the ratio
of the notated dynamics. The value is acquired in the
same manner as DGR.

DBR (Local BPM Ratio): Ratio of the beat’s BPM to the
average BPM of the performance.

These are the main ingredients of the performance expres-
sion that are utilized in the operation of the instrument un-
der the artistic intention and physical constraints of the per-
former [13]. We also observe the difference in their quan-
tities between the preceding feature quantities, since it is
believed that the rendering of various quantities depend on
the tendency of their preceding direction. In the case of
performance r̂n and its direction ŝn, the feature quantities
and such differences for the factors F are extracted by the
following equations:

dFn =

{
r̂Fn − ŝFn , F = AT
r̂Fn /ŝ

F
n , F = (GR,DR,BR)

, (1)

d∆F
n = dFn − dFn−1, F = (AT,GR,DR,BR) . (2)

Even in the performance based on the score, another se-
ries of cases is excited if a trigger note that has the direc-
tion of insertion of notes, such as trill, for example, exists
in the vicinity. The following sequences of information
X = (x1, . . . , xN ) are described to consider the general
possibility that the number of cases for the note isM ' N :

XPS (Pitch Shift): Integer value of the distance from the
pitch directed by the score. The value is usually zero.

XKS (Key Strokes): Number of notes performed for the
corresponding note in the score. The value is usually
one.

This information makes possible to associate plural cases
for performance direction sm. The system can render the
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Figure 2: Systematization of context-dependent models.

performance sequence V̂ = (v̂1, . . . , v̂N ) that accommo-
dates the possibility of such a mismatch by referring to in-
formation in xm corresponding to vm, if the optimum se-
ries of cases V = (v1, . . . , vM ) to perform the sequence of
score S is determined by searching for cases that qualify
as candidates using the method discussed later.

2.1 Modeling and systematization of the cases

In this proposal, cases from existing performances are made
selectable by using only the performance direction infor-
mation available from the score. Context-dependent mod-
els for each case are defined to describe the relationship
of feature quantities and strict direction (Figure 1). The
tendency of G factors of feature quantities and difference
in the case of r̂n based on ŝn are regarded in this model
as the multivariate normal distribution with the probability
density function shown in the following equation:

P
(
dn|µn,σn

)
=
∏
f∈F

P
(
d
f
n|µ

f
n, σ

f
n

)
=

exp

−∑f∈F

(
d
f
n−µ

f
n

)2
2σ
f
n

√
(2π)G

∏
f∈F σ

f
n

(3)

{
F = (AT,GR,DR,∆AT,∆GR,∆DR) , G = 6, for note
F = (BR,∆BR) , G = 2, for beat .

Free parameters for each variable of the feature factor are
reduced by regarding them as independent. It is considered
that they are interdependent in the performer’s individual-
ity; however, determining the shape they take is difficult,
and interpretation problems also exist.

The combination of the contextual information derived
from ŝn−1, ŝn, ŝn+1 is associated with the model, based
on the assumption that the local context around the di-
rection contributes to the rendering of feature quantities.
For the direction about note, various types of information
derivable from the score are already under validation as
contextual factors [12]. They are primarily in respect of
the harmony, which can be regarded as a series consisting
of multiple voices and accompaniment, and the main and
sub-melodies. According to the orientation of stems of the
notes and positional relationship of the chord, each voice
part and can be determined automatically and uniquely.
Therefore, dn−1 and dn+1 for dn are defined with con-
sideration of the structure of the voices and the chords. In
the case of the beat, on the other hand, the quantity of in-
formation written in a range of one beat to become the ob-
servation unit of dn constantly changes in the score. For
models of each beat, directions about rhythm are associ-
ated as quantized patterns of keying for each voice and
their density, in addition to the global information about
the composition.

Refinement of the model with a variety of contextual in-
formation is required in order to obtain a context-dependent
model that can uniquely describe the rendering process of
any case. However, existing performances and the cases
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Figure 3: Decision tree backing-off concept.

derivable from them are limited. This means that acquir-
ing models that are able to correlate all the contextual in-
formation is effectively impossible. A solution that sys-
tematizes the sharing rules is desirable to use as an alterna-
tive to any of the finite context-dependent models even for
unseen contextual information.

By classifying all context-dependent models using tree-
based clustering [14], a decision-tree can be constructed
(Figure 2). The structure of the tree elucidates the method
by which the case can be rendered with some kind of trend
in the performance by the combination of contextual in-
formation. Classified context-dependent models for each
case are individually arranged at the leaf node of the ter-
minal, and questions about the contextual information be-
come classification criteria and are stored in each interme-
diate node. It is possible to reach the leaf node of the case
with the most similar feature quantities by tracing the in-
termediate nodes of the tree structure according to each
question from the root node. We believe this method effec-
tively identifies known cases with appropriate expression
for contextual information of the unknown composition.

2.2 Selecting cases for rendering performance

Owing to the dependence of the optimization criteria of
the tree structure on the tendencies of feature quantities
and the definition of contextual information, extreme dif-
ficulty involved in acquiring the optimum tree structure to
render the performance of unseen composition is an issue
in the proposal. This means that the corresponding leaf
node that is identified by descending the structure with
reference to the contextual information is not necessarily
the optimum for the performance to render. From exam-
ples of analyses obtained in our prior study [12], there is a
relatively high versatility that can be commonly explained
in the tendency of nodes located near the root of the tree
structure. On the other hand, it can be said that nodes near
each leaf are specialized in their particular trends. The tar-
get of the search for an optimum case should be a subset
around the corresponding leaf, and that subset can be aug-
mented by decision-tree backing-off [15]. Candidate cases
for the search are gradually augmented from the leaf node
cm,1, which corresponds to the contextual information of
the mth direction sm of S (Figure 3).

The sequence V is assumed as optimum to render the
performance of S . vm is selected from the candidate cases
Cm = (cm,1, . . . , cm,l, . . . , cm,Lm

) that are augmented by
the backing-off. If it is assumed that these selections are
allowed for each of sm, dynamic programming [16] may
be applied for this search according to the principle of op-
timality (Figure 4).
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Figure 4: Dynamic programming to select cases that con-
stitute the performance sequence V .

The likelihood based on the feature quantities dm,l that
are found in cm,l and the statistics of the middle node bm,l

are used to evaluate the suitability of selecting a case cm,l

for sm. First, selection of a case cm,l for sm is evaluated by
h1(c1,l). Next, selection of a pair of cases (c1,k, c2,l) for
(s1, s2) is evaluated by h2(c1,k, c2,l). This process contin-
ues until final evaluation by hM−1,M . The formulas used
to obtain these evaluation values are shown below:

h1

(
c1,l

)
= P

(
d
F
1,l|µ

F
1,l,σ

F
1,l

)
=
∏
f∈F

P
(
d
f
1,l
|µf

1,l
, σ
f
1,l

)
, (4)

hm

(
cm−1,k, cm,l

)
= P

(
d
F
m,l|µ

F
m,l,σ

F
m,l

)
P
(
∆d

F
m,l|µ

∆F
m,l,σ

∆F
m,l

)
(2 ≤ m ≤ M) . (5){

F = (AT,GR,DR) , ∆F = (∆AT,∆GR,∆DR) , for note,

F = BR ∆F = ∆BR, for beat.
.

∆dF
m,l = dF

m,l − dF
m−1,k are the differential quantities of

eachF obtained by assuming the selection of (cm−1,k, cm,l)

for (sm−1,k, sm,l). The search for optimum cases can be
viewed as a problem of maximizing evaluation values for
each direction of S in the objective function described be-
low:
J = h1

(
c1,l

)
+ h2

(
c1,k, c2,l

)
+ . . . + hM

(
cM−1,k, cM,l

)
→ max . (6)

All cases included in the tree structure can be candidates
for the search, since backing-off reaches the root node fi-
nally. However, a search targeting all cases is not always
necessary because the possibility that one of the cases in a
position significantly distant from the correspondent leaf
node in the tree structure is selected as the optimum is
unlikely. Therefore, more efficient search is also consid-
ered in terms of computational cost by controlling the scale
of any augmentation of candidate cases. Index value θm,l

(shown below) is used to determine continuation or termi-
nation of the backing-off, and is determined by the thresh-
old defined in advance:

θm,l =
(
bmax
m − bmin

m

)−1 {
P
(
dm,1|µm,l,σm,l

)
− bmin

m

}
(
0 ≤ θm,l ≤ 1

)
. (7)

bmax
m and bmin

m are the maximum and minimum values
among the likelihoods obtained for each intermediate node
and correspondent leaf node cm,1. Augmentation of can-
didates is restricted only to cases that are very close to
the correspondent leaf node if the threshold is close to
θm,l = 1.
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Dataset G(1) P(1) P(2)
Performer G. Gould M. J. Pires
Data to train context- W. A. Mozart’s Piano Sonata, the second and third movements W. A. Mozarts Piano Sonata, the
dependent models of K. 279 and the first movement of K. 310. second and third movements of K. 310.
Amount of data Nnote = 2305, Nbeat = 396. Nnote = 2292, Nbeat = 396. Nnote = 2475, Nbeat = 504.

Table 1: Datasets used for the training of context-dependent models.
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Figure 5: Concordance rate of selected cases for note.

3. EVALUATION OF THE SYSTEM

We implemented a system for performance rendering based
on the proposed method and evaluated the rendered perfor-
mances from plural terms. Datasets used for the training of
context-dependent models were obtained from a database 1

created by musical dictation of the waveforms of a num-
ber of virtuosi’s piano solo performances on specific MIDI
sound generators. The database contains such data related
to note and beat converted to the format described above.
Directions of the scores were converted to the data that
are associable with performance expression by using Mu-
sicXML.

3.1 Objective evaluation

In order to verify the effectiveness of the decision tree
backing-off method, a number of performances with cases
selected by differently scaled backing-off were rendered.
The scale of the cases to augment as candidates to search
was controlled by the criteria shown in Equation (7). The
score used to render the performance here is unified to
“W. A. Mozart’s Piano Sonata, the first movement of K.
279, (treble voice part),” which is unseen in all the data in
the datasets displayed in the Table 1 that are used to train
context-dependent models.

For reference assuming a search for all cases of the train-
ing data, the matching rates of the cases at the conditions
of varied search ranges were examined. The results for
note are shown in Figure 5, while those for beat are shown
in Figure 6. These figures show that the results of selec-
tion in any dataset were exactly matched with the results
of “search for all cases,” even when the candidates being
searched for were limited to only cases from 20% to 50%
of all those that are close to cm,1 in the decision tree. It can
be seen that the cases that are actually effective for any di-
rection are few; thus, effective selection of the case with
the optimum expression for such direction from among
them should be regarded as important. Decision tree
backing-off is a method that allows optimized search of
such cases by reducing the number of candidates that need
to be examined to find the optimum case for rendering the
performance of the unseen direction.

1 CrestMusePEDB ver. 2, http://www.crestmuse.jp/pedb
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Figure 7 shows the trajectories of the feature quantities
for each factor rendered by G(1). In general, similar trends
are obtained in terms of each search range. However, for
the w/o backing-off condition, there are many cases that
fluctuate in the direction opposite to the other conditions
and have variations that appear to ignore the trend of all the
others. This is a comparison without the correct sequence;
however, in general, it is unlikely that such significant lo-
cal variations without continuity engender naturalness in
the performance. The efficacy of introducing decision tree
backing-off can also be confirmed from the fact that these
strange variations are fixed even in a relatively small aug-
mentation of the search range such as θnotem,l > 0.9 in note,
and θbeatm,l > 0.2 in beat.

The trajectories of the feature quantities for each factor
rendered by P(1), P(2), and P(1+2) are shown in Figure 8.
Between these results, the dependence on the combination
of the composition and its performer, which is used as the
data for training of context-dependent models, is also clear.
It can be seen that the tree structure of the models can cap-
ture the characteristics of the rendering process of the per-
formance in such combinations. To obtain desirable results
for the rendering of unknown compositions, consideration
of not only the combination of compositions to train mod-
els, but also the difference in characteristics depending on
the performer is required. However, clear generalization
of the combination and the appropriate amount of training
data is difficult to obtain solely from the combination of
composition and performer available here. Validation us-
ing a context-dependent model separately trained by the
combination of cases obtained from a variety of perfor-
mances is needed.

3.2 Subjective evaluation

In order to verify the musical aspects of the performances
rendered by the system, they should be evaluated by hu-
man listeners. For this evaluation, three performers’ mod-
els were trained with the data described below:

C-A: F. Chopin’s Etude Nos. 3, 4, 23; Mazurka No. 5;
Nocturne Nos. 2, 10; Prelude Nos. 7, 20; and Waltz
Nos. 1, 3, 9, 10, performed by V. Ashkenazy. Nnote =
12092, Nbeat = 2566.
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Figure 7: Feature quantities in performances rendered by
G(1), for each search range of cases.

M-G: W. A. Mozart’s Piano Sonata, all movements of K.
279 and the first movement of K. 310, performed by
G. Gould. Nnote = 3112, Nbeat = 537.

M-P: W. A. Mozart’s Piano Sonata, all movements of K.
279, K. 310, and K. 545 and the second and third
movements of K. 331, performed by M. J. Pires. Nnote

= 13703, Nbeat = 2613.

Seven compositions that were not included in the train-
ing data and have irrelevant musicality were used for ren-
dering. Twenty participants who were chosen without re-
gard to any professional experience playing musical instru-
ments, evaluated them in five phases. The results obtained
for the entire evaluation and metrics used are shown in
Figure 9(a). The results obtained by transferring only fea-
ture quantity on notes or beats are also shown for reference.
Figure 9(b) shows the results evaluated for each composi-
tion.

In general, the results obtained are good, as evidenced by
the overall evaluation shown in Figure 9(a) having an ap-
proximate value of four. These values are generally higher
than those obtained for the condition in which only feature
quantities related to note are transferred, but the trend is
also seen to follow the results for the condition in which
only the feature quantity related to beat is transferred. In
the M-P model, there is a large bias relative to the con-
tribution to the quality of the performance between each
limited transcription condition. It is not necessary for their
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Figure 8: Feature quantities in performances rendered by
P(1), P(2), and P(1+2), search with all cases.

contribution to the performance to always be equal, but the
tree structure of the context-dependent model of beat may
not perform as well as that for notes as regards optimum
for unknown compositions.

In Figure 9(b), more than half of the compositions for M-
G have ratings above four. Simply using a lot of cases
to construct the tree structure should not be done lightly
because extension of similar cases as candidates that only
result in marginal difference in the selection of a case is
not desirable for search efficiency. The absolute amount of
training data used in M-G is less than that of M-P, but the
performances of M-G have a tendency of expression that is
able to efficiently capture and transcribe their characteris-
tics. Figure 9(b) also shows large differences in the ratings
depending on the compositions in C-A. Combinations of
contextual information suitable for the description of the
control of expression are different in some cases, since the
tendency of expression is also different from the difference
in characteristics of the composition even in the case of the
same performer. Constructing the tree structure by mixing
a large number of such cases is unlikely to be expedient
for performance rendering of a particular composition. A
simple comparison is difficult because of the difference in
compositions and performer, but the combination of Clas-
sical music used in M-G and M-P is able to render perfor-
mances with more stable quality than the combination of
Romantic music used in M-G and M-P even for composi-
tions with irrelevant musicality.
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Figure 9: Subjective evaluation scores.

4. CONCLUSIONS

This paper proposed an autonomous system for automatic
performance rendering with high reproducibility of the char-
acteristics of the performer. It uses stochastic models that
associate tendencies of expression in the existing perfor-
mance and their direction notated in the given score. The
structure of automatically systematized models enables ef-
ficient search for combinations of cases that are optimized
for rendering performances.

Objective evaluations conducted indicate that the deci-
sion tree backing-off algorithm enabled efficient search of
optimum case series for rendering. The subjective eval-
uation conducted showed that the system is able to render
performances stably even for compositions with unconven-
tional style. Consequently, performances rendered by the
proposed system won first prize in the autonomous sec-
tion of a performance rendering contest for computer sys-
tems [17]. The quality of this system was also validated
via a large-scale subjective evaluation with eighty partic-
ipants and piano performance experts. The performances
rendered on that occasion are available on the web site that
summarizes the results 2 . In addition, more samples ren-
dered in a variety of other compositions are available on
our web site 3 .
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