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ABSTRACT 
In this paper we discuss our efforts in Soundscape Infor-
mation Retrieval (SIR). Computational soundscape 
analysis is a key research component in the Citygram 
Project which is built on a cyber-physical system that 
includes a scalable robust sensor network, remote sensing 
devices (RSD), spatio-acoustic visualization formats, as 
well as software tools for composition and sonification. 
By combining our research in soundscape studies, which 
includes the capture, collection, analysis, visualization 
and musical applications of spatio-temporal sound, we 
discuss our current research efforts that aim to contribute 
towards the development of soundscape information re-
trieval (SIR). This includes discussion of soundscape 
descriptors, soundscape taxonomy, annotation, and data 
analytics. In particular, we discuss one of our focal re-
search agendas in measuring and quantifying urban noise 
pollution. 

1. INTRODUCTION 
Some of the most complex sound environments are 
soundscapes, a term coined, and a field championed, by 
R. Murray Schafer. Soundscapes and acoustic ecology go 
hand-in-hand and many composers have engaged in 
soundscape composition either directly through strict, 
unaltered playback of field recordings; indirectly through 
sound synthesis interpretation; or via the creation of hy-
brid soundscape compositions where field recordings are 
processed and other “external” sound materials are intro-
duced in works such as Presque rien, numéro 1 (1970), 
Riverrun (1986), Ride (2000), and 48 13 N, 16 20 O 
(2004). Soundscape studies as a computational research 
field, however, are still in their early stages. This is espe-
cially the case when considering it is compared to speech 
recognition and music information retrieval (MIR). This 
may be due to a number of factors including the lack of 
datasets for training and development, overwhelming 
emphasis on speech recognition [1, 2], and the complexi-
ties surrounding soundscapes – literally any sound can 
exist in a soundscape, making this unconstrained sound 
classification task extremely difficult [3]. That is not to 
say that research in SIR is not vibrant. As a matter of fact, 
research papers related to music, speech, and environ-
mental sound tagging has increased from approximately 
10 in 2003 to over 45 in 2010 [1]. Also, numerous SIR 
research examples exist including projects related to sur-
veillance [4], bird species [5], traffic sounds [6], and gun-

shot detection [7]. Much fundamental research still has to 
be conducted, including topics concerning the taxonomy 
and vocabulary of soundscapes, dataset development, and 
creation of robust models that can be used to adapt to the 
vastly diverse soundscapes ranging from outdoor spaces 
such as urban environments, marshlands, tropical forests, 
woodlands, and Saharan deserts; to indoor spaces includ-
ing offices, train stations, shopping malls, and sports are-
nas. Our research in soundscape currently focuses on a 
small subset of soundscapes: urban noise and possibilities 
for musical applications.  

In 2011, the Citygram Project [8]–[10] was launched to 
develop dynamic non-ocular energy maps focusing on 
acoustic energy in its first iteration. Since the project’s 
inception, two of its driving forces have been acoustic 
ecology and soundscape research from both a “technical 
research” perspective as well as a musical application 
perspective. The former has centered on source capture 
and identification, and the latter, on engaging in real-time 
spatio-acoustic music interaction. More recently, in col-
laboration with New York University’s Center for Urban 
Science and Progress (CUSP) and the Sound Project, 
noise pollution has become a focal point of our sound-
scape research inquiry. In this paper, we present an over-
view of our efforts in contributing of the field we call 
Soundscape Information Retrieval (SIR). This includes a 
number of core components: (1) sound semantics, (2) 
sound annotation, (3) sound analysis tools, and (4) ma-
chine learning (ML).  

2. SOUND ANALSYSIS TOOLBOX (SATB) 

To facilitate our analysis efforts we are currently devel-
oping the Sound Analysis Toolbox (SATB) written in 
MATLAB. The system aims to provide a comprehensive 
platform for sound/semantic analysis, visualization, algo-
rithmic development, baseline ML exploration using We-
ka [28], and basic audio transport features. In this section 
we present the basic components of SATB and detail 
further utilization of its features in semantic analysis and 
AED/AEC below. 

Our current implementation includes a “quick plot” fea-
ture that allows efficient plotting of large sound files–a 
feature that is limited using MATLAB’s default plot 
function. The quick plot function uses an efficient pro-
prietary “min-max” envelope contour computation algo-
rithm that allows for quick plotting, zooming, and 3D 
visualizations. Additionally, SATB includes a simple 
“plug-in” feature for adding custom feature extraction 
algorithms and signal processing implementations. This 
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is accomplished by inheriting custom MATLAB classes 
with system methods that are called from the SATB con-
troller class. SATB is essentially a major revision and 
improvement of the EASY Toolbox [29], where SATB 
allows for more comprehensive exploration of all types of 
sounds, including soundscapes.  

2.1 Freesound MATLAB API 

A MATLAB Freesound API is also included in SATB. 
This module is used for pulling queried sound files and 
associate metadata and includes functions for tag query-
ing, downloading/saving audio files with associated 
metadata, checking for corrupt audio files, and formatting 
audio channels and sampling rates. The Freesound API 
will serve as a model for developing our own Citygram 
MATLAB API. 

2.2 Audio Transport 

Comprehensive sound analysis software systems require 
synchronization between audio and visualizations. MAT-
LAB, however, offers limited support in this area: syn-
chronizing audio to visualizations and playing long audio 
files is impractical. Although MATLAB provides its Data 
Acquisition Toolbox, this is only available for the Win-
dows operating system. To address these shortcomings 
we have adopted the open-source PsychToolbox [30] to 
access native audio hardware methods from MATLAB. 
In order to play large audio files without memory con-
cerns and to synchronize dynamic visualization, a double 
audio-buffering scheme has been implemented using 
PsychPortAudio's playback scheduling feature. This 
mechanism allows for synchrony between audio output 
and dynamic visualizations such as waveforms, feature 
vector plots, and spectrograms where cursor positions are 
synched to the current audio output sample. 

3. SOUNDSCAPE SEMANTICS 
One of the key components of the Citygram Project is the 
exploration of acoustic ecology. As part of our urban 
sound classification efforts, we have begun developing a 
number of software tools for sound analysis and visuali-
zation; machine learning modules for acoustic event de-
tection (AED) and acoustic event classification (AEC); 
development of annotated datasets; and tools for sound-
scape taxonomy exploration. On one hand, our research 
involves the investigation of acoustic ecology studies that 
are in resonance with the Schaferian school of thought 
[11] where the concepts include the identity of the sound 
source, the notion of keynote (definite background 
sounds), signal (foreground sound), soundmarks (cultur-
ally/symbolically important within a community), 
geophony (natural sound sources), biophony (non-human, 
non-domestic biological sources), and anthrophony (hu-
man-generated sounds). This is conceptually similar to 
what Gaver refers to as everyday listening opposed to 
musical listening [12]. On the other hand, we also con-
centrate in research that is in the realm of Big Data sci-
ence where waves of spatio-acoustic data are collected to 

develop DSP, feature extraction, and machine learning 
techniques for urban soundscape analysis. Big Data is 
one of the “hottest” topics in data analytics today, and in 
a sense, the notion of found data1 is quite fitting when 
viewed from the found sound and musique concrète per-
spective: a perspective where the data itself is the focus 
and starting point into research inquiry. In this section we 
discuss issues related to semantics of urban soundscapes. 

3.1 Urban Soundscapes are Noisy  

One of the sounds we are interested in automatically cap-
turing is urban acoustic noise. Our recent collaborative 
efforts with NYU CUSP has made this focus an espe-
cially intriguing one as urban noise pollution is a major 
problem for city-dwellers around the world including 
New York City (NYC). For instance, since the creation of 
the NYC non-emergency 311-hotline in 2010, the largest 
number of complaints has been noise. The urgency in 
developing mechanisms and technologies to measure, 
map, and help mitigate noise pollution, and thus improve 
the living conditions of urban communities is not difficult 
to imagine when we consider that 68% of the global 
population is projected to live in so-called megacities. 
While issues such as noise annoyance [13] have to be 
considered in noise research, fundamental technical is-
sues in capturing noise have to be addressed as well. 
Simply employing dB sound pressure level measurements 
is inadequate [11, 12] as both spectral and temporal 
acoustic dimensions have to be considered. For example, 
heavy rain measured at 90 dB SPL is experienced very 
differently to scratching a blackboard with fingernails at 
the same level. The first step in defining noise involves 
the measurement of spatial sounds from whence acoustic 
noise can be identified. Another step includes the devel-
opment of nomenclature, an “agreed-upon” acoustic 
noise taxonomy that reflects soundscapes, which can then 
be used for automatic soundscape classification. The ini-
tial first step of capturing spatio-temporal sound is en-
abled by the creation of a dense sensor network, a goal 
that the Citygram infrastructure aims to accomplish. 
Various aspects of the aforementioned steps are discussed 
in the following sections. 

3.2 Sound Semantics and Taxonomy 

A key element in supervised machine learning is the re-
quirement of large human-annotated datasets. The prob-
lem of automatic instrument classification in Classical 
music, for example, has a clearly defined search space: 
most, if not all, acoustic instruments and their associated 
names (classes) are known and thus easily labeled, and 
annotated datasets are available in abundance. For non-
classical music genres such as popular music, the instru-
mental taxonomical space becomes less clear due to the 
introduction of electronic instruments and for electro-
acoustic music, the ambiguity further increases and it is 
not uncommon to find diverse variance in sound nomen-
clatures for describing similar/same instruments/sounds. 
For urban sound taxonomy the question of what exists, 
                                                           
1http://www.ft.com/intl/cms/s/2/21a6e7d8-b479-11e3-a09a-
00144feabdc0.html#axzz2yJGerxRG 
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what we hear, and how we annotate and label is an inter-
esting problem in itself. Furthermore, developing a “stan-
dard” urban soundscape taxonomy and vocabulary is dif-
ficult in part due to its tremendous sonic variety, the 
dominance of vision in information processing, and an 
emphasis on speech signals [16, 18]. It is easy enough to 
imagine the usual urban noise suspects including sirens, 
jackhammers, garbage trucks, music, dog barks, and car 
horns. But things quickly become murky once the entire 
soundscape is considered. It becomes even more ambigu-
ous when we begin to consider what sound sources are 
perceived as “noisy.”  

 
Figure 1. City noise sources from 1930s New York. 

A number of soundscape taxonomies exist. One of the 
earliest was published in 1913 by Luigi Russolo, which is 
articulated in his The Art of Noises manifesto [20]. Other 
composers who have developed soundscape related tax-
onomies include John Cage. In Williams Mix (1952), 
Cage discusses the sound classes that are labeled as city 
sounds, country sounds, wind-produced sounds, and elec-
tronic sounds. Some 14 years later, Stockhausen devel-
oped his own intricate catalogue of sound class nomen-
clature–although not exclusively addressing soundscapes 
but rather moments – consisting of 68 labels for noise that 
included whirring, crackling, rustling, clapping, clank-
ing, falling, and thundering. Another soundscape taxon-
omy example can be seen in [21], produced as part of the 
Noise Abatement Commission of New York. In this 
study, a “noise truck” logged over 500 miles and col-
lected 10,000 measurements from over 18 locations as 
shown in Figure 1 [22]. More recent examples include 
work by Gaver [12] and Brown [23], where the former 
presents the idea of basic-level sound-producing events: 
liquids, vibrating objects, and aerodynamic sounds as the 
basis for mapping environmental sounds such as passing 
vehicles, motorboats, and lakes. Brown’s taxonomy is 
more rigid and uses a tree-branch-leaf structure with clear 
categorical divisions where top branches are more general 
and bottom leaves are most specific. Although strict 
“standardized” taxonomies can be helpful when begin-
ning to explore soundscapes and associated hierarchical 
semantic labels, they can also be biased, reflecting the 
opinions, priorities, and interests of the researchers devis-
ing them which may not necessarily reflect general public 
consensus [24]. For example, in Brown’s taxonomy, a 
bifurcation between amplified and non-amplified urban 

sound sources exists, a distinction that can arguably be 
difficult to make.  

3.2.1 Mining Collective Listening  
In the field of AED and AEC, ML-based algorithms typi-
cally classify audio events using ground-truth data: after 
defining a limited set of semantic labels, feature vectors 
are used as inputs to train ML algorithms. The trained 
algorithms then attempt to classify new sound input to its 
proper class. However, soundscape-based semantic labels 
and tags developed by researchers do not necessarily re-
flect a collective consensus. Conversely, crowdsourcing 
the annotation process may offer an auxiliary mechanism 
for a more robust repository of sonic semantics, and re-
verses this notion of “annotation by decree.” This ap-
proach is in resonance with developing soundscape se-
mantics via open-ended labeling and surveying method-
ologies [18, 25]. Inviting researchers and a larger com-
munity to define and refine the pool of semantic concepts 
in relation to novel sonic inputs can potentially contribute 
to a more agreed upon soundscape taxonomy. Further-
more, using crowdsourcing for taxonomical development 
may yield more than an expanded tag-pool for labeling 
audio events: it can potentially reveal connectivity be-
tween sounds and everyday concepts as defined by col-
lective consensus. As such, we are taking initial steps in 
using Big Data mining of audio semantics to reveal in-
sights into transforming subjective, qualitative associa-
tions between sounds and concepts into a quantifiable and 
communicable format. Of utmost importance in this ap-
proach is to ensure that the collected data is sufficiently 
large enough to develop a robust taxonomy. In determin-
ing the feasibility of developing a collective listening 
taxonomy, we are currently using a custom MATLAB 
API to pull crowdsourced audio files and its associated 
annotations from Freesound2 as further described in Sec-
tion 3.1. Subsequent collective listening exploration will 
entail mining sono-semantics from other existing datasets 
such as the NYC Open Data (noise complaint records) 
and the World Wide Web itself using keyword search 
strategies.  

3.3 Development of Datasets and Ground Truth 

One of the issues with soundscape-based ground-truth 
dataset is its accessibility and availability: existing anno-
tated datasets are difficult to find and often focus on in-
door environmental sounds [26]. A free online sound 
repository we have found very useful is Freesound. Free-
sound is an incredibly rich crowdsourced sound database 
resource with numerous annotations and tags that accom-
pany uploaded sounds. However, it is also limited for 
machine learning usage as each uploaded audio file can 
only be annotated by its contributor, and its tags represent 
the entire audio file regardless of duration. This is ideal 
for single, finely cropped sound files, but the majority of 
the uploaded sound files vary greatly in duration. Al-
though Freesound is not ideal a ground-truth resource, it 
provided an excellent opportunity in our initial efforts to: 
(1) develop procedures for soundscape audio annota-

                                                           
2 https://www.freesound.org/ 
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tion/labeling, (2) explore collective listening data mining 
strategies via crowdsourced annotations, (3) create an 
initial small dataset of ground truth, and (4) develop cus-
tom online interfaces and potential practices for sound-
scape data annotation. Our procedure (adopted in [27]) 
for open-ended annotation is shown in Figure 2 where 
sounds and tags are downloaded via our custom MAT-
LAB-Freesound API as part of the SATB Toolbox further 
discussed in Section 3. Sounds are then imported into 
Audacity3 as an audio track. This followed by creating 
“label tracks” to annotate acoustic events, which are 
saved as text files that, can be read into systems such as 
MATLAB.  

 
Figure 2. Annotation and labeling procedure. 

We are also currently finishing up our custom online 
crowdsourced annotation software. This software is based 
on our initial studies in taxonomy and ground-truth da-
taset development using existing tools and soundscape 
recordings that reside on the Citygram server. This soft-
ware will allow for multiple annotate, label, and segment 
audio events from a large pool of sound files and expect 
approximately 50 hours of multi-person annotations. 

4. SOUND ANALYTICS 
In this section we describe some of the ways we have 
used SATB for “organized” soundscape auditioning, fea-
ture space exploration, and soundscape tag analysis.  

4.1 Soundscape Exploration 

As we are in the beginning stages of exploring sound-
scape information retrieval research, gaining insights into 
the feature space, semantic space, and acoustic event di-
mensions is important. As a first step, k-means clustering 
was employed to automatically group acoustic events 
                                                           
3 http://audacity.sourceforge.net/ 

according to their low-level acoustic properties. Feature 
vectors currently being used include RMS, zero-crossing 
rate, spectral centroid, spectral flatness, spectral flux, 
spectral spread, and 13 MFCCs. Each sound file is seg-
mented into acoustic events using AED techniques fur-
ther described in Section 4.4. For each acoustic event, a 
38-dimensional feature vector is obtained by computing 
the mean and standard deviation across the analyzed fea-
ture values. In addition, the mean and standard deviation 
of the first and second derivatives are also calculated to 
provide velocity and acceleration information per acous-
tic event resulting in a total of 114 dimensions. At this 
point, the grouping task for the collection of acoustic 
events is reduced to a typical vector quantization problem 
that can be effectively done via k-means. 
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Figure 3. 2D event plot by the cluster hovering interface. 
 

When acoustic events are laid out and grouped in clus-
ters as a static plot, it is difficult to determine the charac-
teristics of each “data point” – e.g., what it sounds like, 
what its tags are, and what its relationship is to neighbor-
ing events. Motivated by being able to interact with im-
portant information associated with acoustic events in-
cluding its filename, tags, durations, and sound, we have 
begun developing an interactive the SATB “cluster hov-
ering” tool as shown in Figure 3. This feature space ex-
ploration tool can be used for multimodal monitoring and 
interaction with each of the acoustic events. In Figure 3, 
7,850 acoustic events from 1,188 Freesound soundscape 
recordings totaling 36 hours are organized into six clus-
ters and plotted in a 2D feature space, where the axes are 
chosen for maximum separation of the events via princi-
pal component analysis (PCA). Visual and auditory 
monitoring is done by simply moving the mouse around 
the events – the event that is the closest to the mouse 
pointer is automatically triggered to play in real time. The 
cluster hovering interface also provides a feature to “de-
noise” the dataset. This is accomplished by simply delet-
ing data points – acoustic events – that are considered 
irrelevant or clustered incorrectly. This may facilitate in 
quickly creating a ground-truth dataset for subsequent 
machine learning efforts. 

4.2 Crowdsourced Tag Incorporation  

Crowdsourced tags can be helpful in developing sound-
scape taxonomy, which effectively connects a continuous 
acoustic signal with semantic labels and descriptors pro-
vided by its contributor. In fact, simply interactively vis-
ualizing and monitoring acoustic events with a list of the 
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the associated tags helps in developing a sense of sound-
scape taxonomy. However, there is a fundamental issue 
with crowdsourced labels (e.g., Freesound) in that they 
are open-ended. There are little to no restrictions and 
guidelines as to how to tag each file. Hence, noise in the 
form of consistency, reliability, and relevancy are ren-
dered as artifacts. To address the issue of de-noising 
crowdsourced annotations, we have begun implementing 
simple pre-processing steps: (1) tag normalization, (2) 
spelling correction/lemmatization (grouping of the words 
with a same root form), and (3) occurrence pruning. Tag 
normalization entails removing all non-character symbols 
in tags and converting all characters to lowercase, which 
improves consistency while decreasing redundancy. The 
remaining tags are collected as a set that represents a 
given acoustic event. Spelling correction/lemmatization is 
currently implemented via computation of edit distance 
[31] for each and every pair of tags; when the edit dis-
tance is less than a predefined threshold, the pair is regis-
tered on a dictionary as potentially containing the same 
semantics. Since the morphological distance may not 
match the semantic distance, manual adjustments are ad-
ditionally made on the dictionary to discard the irrelevant 
pairs. After the tag pairs in the dictionary are lumped 
together, the occurrence pruning stage completes the pre-
processing procedure: occurrence of each tag is counted 
and infrequent tags, with less than five occurrences, are 
removed. Using the above procedures, 1,979 tags were 
filtered down to 373 tags obtained from 1,188 Freesound 
sound files. Figure 4 shows the five most representative 
tags for three example clusters after the pre-processing. 
The representativeness score is based on the occurrence 
ratio in the target cluster minus the maximum occurrence 
ratio among the rest of the clusters. 
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Figure 4. Five most representative tags examples. 

Upon observation of the remaining tags, it was clearly 
noticeable that additional filtering could be implemented 
to inform hierarchy and taxonomical information. For 
example, there were a number of tags that referred to 
geophonies, others referred to biophonies, while others 
were related to human sounds. Other observations were 
that it would also be possible to use thesaurus APIs and 
tools such as WordNet4 to further extract label hierarchies 
and taxonomies while reducing redundancies. 

                                                           
4 http://wordnet.princeton.edu/ 

4.3 Tag Hierarchy Extraction 

Currently, a simple statistical method is employed to de-
rive basic hierarchical information from the user-
uploaded tags. The conditional probability of the pres-
ence of tag A given the presence of tag B is calculated for 
each tag pair based on co-occurrence counts. When the 
conditional probability is close to 1 and its inverse prob-
ability is small but not insignificant, it can be inferred 
that tag A may be an antecedent of tag B. This forms the 
basis of our statistical approach, and more sophisticated 
methods will be devised to derive multi-level tag hierar-
chy. 

4.4 Acoustic Event Detection (AED) 

The majority of audio classification methodologies simul-
taneously do AEC and AED. Examples of popular AEC 
methods include HMM or GMM based classifiers [2], 
[4], [32]. Although such AECs have been proven 
effective, it is often required that the target audio scene is 
specific and the event classes are well-defined and small 
in number. In Citygram, we are starting to develop an 
approach where AED is conducted separately from AEC. 
That is, we first do a computationally light AED, and 
only when an acoustic event is detected do we run the 
classification module. This is due to a number of reasons 
including system efficiency, sensor network transmission 
bandwidth, and consideration of soundscape characteris-
tics, which greatly vary depending on location and time. 
In the continuous context of real-time soundscape classi-
fication using a heavy AEC system that runs 24/7 is 
therefore wasteful.  

4.4.1 AED Algorithm 
The AED algorithm was developed by manually varying 
SNR levels to mimic the dynamicity of “background 
noise.” The algorithm consists of four main modules: 
initialization, pre-processing, de-noising, and energy-
thresholding modules.  

Initialization 
When an RSD goes online for the first time, a “coarse” 
AED algorithm is employed to detect acoustic events 
based on (1) spectral peak of the STFT envelope, (2) 
magnitude of the spectral peak, and (3) spectral spread 
defined by band edges at -10dB below the peak magni-
tude. The three spectral parameters are adaptively up-
dated to initially determine acoustic event segments. As 
further discussed in the following section, an initializa-
tion period is required in order to roughly measure the 
noise profile which will be removed during the pre-
processing stage.  

Preprocessing: De-noising  
The noise floor, ambiance, or background noise of sound-
scapes vary with time and is dependent on in-situ ele-
ments such as traffic noise during rush hours. To improve 
the performance of our AED algorithm, we employ a pre-
processing module to spectrally remove background 
noise from the signal before applying a simple energy-
based thresholding procedure. Noise is assumed to be 
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ergodic in the short term but is also capable of significant 
variation in the long term. The noise profile is adaptively 
measured during non-acoustic event periods and is used 
to compute a representative spectral noise template of a 
continually changing soundscape. The de-noising algo-
rithm is based on [33], which produces an SNR matrix 
from a dynamical noise profile template. This matrix is 
used to discriminately weight the DFT frames’ individual 
magnitude components. The IDFT of the modulated spec-
trum renders the de-noised signal. The applied window 
size is 50ms with a hop size of 55% of of the window 
size. Each segment is then enveloped with a hamming 
window. The same windowing is also applied to RMS 
computation. Finally, we tested other de-noising algo-
rithms including LPC filtering and spectral subtraction. 
The latter two produced poor results. 

RMS thresholding 
The final stage in determining the acoustic event segment 
is achieved by first computing the RMS of the de-noised 
signal followed by its multiplication with the original 
signal’s RMS vector. A moving average RMS is dynami-
cally compressed and shifted up by the mean of the entire 
RMS values. This process attempts to dynamically model 
noise floor characteristics render an adaptive thresholding 
mechanism for robust AED. 

 
Figure 5. NYC Times Square recording: before and after 

de-noising (top is original). 

4.4.2 AED Test Results 
Three datasets were used in AED performance evalua-
tion: (1) a dataset from Freesound (annotated by Dhruv 
Bhatia) (2) an in-house NYC Times Square field-
recording set, and (3) a dataset with varying noise levels 
obtained from NYC soundscapes. AED performance was 
then evaluated on 80 in situ soundscape recordings con-
sisting of 248 events. We used three standard metrics for 
evaluation of AED performance: precision, recall, and 
AED-ACC [3], [34]. To simulate environmental SNR 
change, a set of audio samples with varying SNR were 
produced. Acoustic events such as gunshots, crowds 
cheering, musical sounds, and other sounds were mixed 
with increasing SNR levels. The sound classes were cho-

sen while considering diversity in spectral content, event 
duration, and amplitude envelope. The SNR level was 
modulated between 0.0 and 1. in 0.1 increments occur-
ring at every 10-second interval as shown in Table 2. 
 Freesound 

Tim
es 

Square 

SN
R

 m
od 

Num. of files 62 9 11 
Num events (min) 1 2 2 
Num events (max) 7 7 6 
Num events (total) 176 36 36 
Num events (mean) 2.84 4 4 

A
ud

io
 sa

m
pl

es
 

Duration total (s) 4481.0 1080 1320 
GT event dur min 0.42 1 1 
GT event dur max 59.84 34 6 
GT event dur mean 6.52 7.8 2.45 
AED event dur min 0.26 1.39 0.95 
AED event dur max 27.26 17.58 13.19 

Ev
en

t d
ur

. (
s)

 
AED event dur mean 5.27 5.26 3.70 
Precision 0.36 0.35 0.70 
Recall 0.73 0.61 1.00 

Pe
rf

. 

AED-Acc. 0.43 0.36 0.82 
Table 1. Summary of sample stats, segmentation stats, 

and AED performance. 
 

SNR Precision Recall AED-ACC 
0 .85 1 .92 

0.1 .83 1 .91 
0.2 .83 1 .91 
0.3 .83 1 .91 
0.4 .77 1 .87 
0.5 .71 1 .83 
0.6 .64 1 .78 
0.7 .60 1 .75 
0.8 .56 1 .72 
0.9 .53 1 .70 
1 .53 1 .70 

Table 2. SNR modulation results. 

4.4.3 Discussion  
A clear observation is that recall consistently outper-
forms precision, which means that AED identifies addi-
tional events not labeled by the annotator. It is currently 
difficult to arrive on a conclusive explanation given the 
size of our dataset. However, upon further considering 
the AED results and carful listening to the audio samples 
where the precision errors occurred, it was surprisingly 
difficult to assess whether the additional AED events 
were actually “incorrect.” This may perhaps suggest that 
different modes of audition – hearing vs. listening – may 
yield different results, much like when watching a foot-
ball game: humans would likely not notice a sparrow 
flying above the grounds even if the bird were within 
one’s line of sight. Another observation is that annotators 
tended to group sequences of short events (< 3 sec) into a 
single event while the AED algorithm identified short 
acoustic events separately. Again, upon more careful lis-
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tening, it was not clear whether the AED or annotator 
was actually “correct.” As a matter of fact, both seemed 
correct depending on perspective. This result suggests the 
possibility of including an “auditioning mode”–detailed 
vs. less detailed, listening vs. hearing –depending on 
what type of information is needed and for what purpose.
   Figure 4 shows event duration distributions where we 
note that the majority of events (> 50%) have short dura-
tions (< 5 sec). The overall distribution of the ground-
truth events and that of the AED events are similar except 
for the very short ones. The scarcity of very short acous-
tic events (< 0.5 sec) detected by our AED algorithm is 
the result of extending such potential events to render a 
longer acoustic event with multiple impulsive spikes.  

 
Figure 6. Distribution of events by duration. 

5. FUTURE WORK 
The recent developments of SATB have laid the founda-
tion for four important areas of future work: (1) large-
scale quantification of the efficacy and efficiency of vari-
ous ML approaches, (2) the collection and collation of a 
massive database of urban sounds, (3) investigation of 
collective listening strategies for semantic data mining, 
and (4) the development of additional exploration inter-
faces to help gain insights into complex feature spaces. A 
prevalent issue in ML is the correct parameterization of a 
model so as to avoid “over-fitting” and also “under-
fitting.” Currently, we are employing the aforementioned 
features, as they are common in traditional MIR tasks. 
However, as has been demonstrated, such a reliance on 
canonical tools may not make sense when approaching 
the problems unique to soundscapes. Although our AED 
algorithm will need to be further refined, our aim for the 
immediate future is to begin focusing on the AEC com-
ponent of the Citygram Project using SATB’s Weka 
module. 

As previously stated, there is a dearth of readily avail-
able datasets for soundscape research. Though field-
recording is a technique that has been utilized since the 
inception of electro-acoustic music, efforts to collate and 
label these sounds for research or artistic purposes have 
been difficult. As such we are finishing up development 
of custom cloud-based annotation software and expect 
approximately 50 hours of labeled ground truth data. 

In the longer term, Citygram’s over-arching goal is the 
collection of a large soundscape dataset, and the proposed 

large-scale deployment of dense sensor networks opens 
up the possibility for such a repository. Much like Free-
sound or the Million Song Database, future work in this 
area seeks to produce a “Million Sound Dataset,” and 
indeed this collection approach in concert with the wide 
inclusion of all sounds endemic to urban life may suggest 
that “Billion Sound Dataset” will be a more appropriate 
label.  Perhaps the feature of SATB currently underway 
most appreciable by its (currently) small user-base is the 
cluster hovering feature. This planned feature allows a 
user to interact with a multidimensional feature space, 
exploring it in an intuitive and poly-sensory manner. Cur-
rently, the feature allows for a single sound to be played 
when it is “hovered over,” future plans include an ex-
panded pallet of interaction options for playing single or 
multiple sounds. For instance, the “lasso” tool familiar 
from many graphics editing programs could be used to 
select and playback sounds within a given space.   

6. CONCLUSIONS 
In this paper, we have discussed ongoing efforts in the 
measuring, archiving, and quantification of soundscapes 
with an emphasis on data analytics. Using the notion of a 
densely deployed sensor infrastructure of the Citygram 
project, efforts are being made to build upon soundscape 
research in the domains of AED/AEC, and the design and 
application of a robust, descriptive taxonomy for urban 
soundscapes. It has been demonstrated that the problem 
of SIR is non-trivial and that it bears important dissimi-
larities from the field of MIR. In order to facilitate re-
search, exploration, and study of soundscapes we have 
started to develop SATB that includes extensible plugin 
architecture for analysis algorithm expandability, while 
handling interactive visualizations, proprietary AED 
methodology, and taxonomic exploration. 
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