
Ambisonics User Defined Opcodes for Csound  
 

Martin Neukom 
Zurich University of the Arts 

Institute for Computer Music and 
Sound Technology 

martin.neukom@zhdk.ch 

ABSTRACT 
This text describes the implementation of Ambisonics as 
user defined opcodes (UDOs) for Csound. The presented 
package of UDOs includes a basic encoder and a decoder 
up to 8th order, an encoder with distance correction, an 
in-phase decoder, opcodes for the two-dimensional 
equivalent of Ambisonics for any order, opcodes for Am-
bisonics equivalent panning (AEP) and several utilities 
such as coordinate converters, Doppler effect and more. 
Finally the usage of the UDOs is explained in some ex-
amples.  

1. INTRODUCTION 
Ambisonics is a technique for three-dimensional sound 
recording, rendering and storage. The fundamentals of 
Ambisonics were developed in the 70es by M. A. Gerzon 
[1]. In the first decade of the 21st century the theory has 
been enhanced and formulas for encoding and decoding 
have been published (see e.g. J. Daniel, 2003 [2], [3] and 
[4, pp. 438]). A short introduction into the principles of 
Ambisonics is given in Chapter 2. The presented Csound 
UDOs include in-phase decoding [2, p. 186], distance 
encoding (discussion and references for example in [5] 
and [6]), a two-dimensional equivalent to Ambisonics [2, 
p. 153] and Ambisonics equivalent panning AEP [7][8]. 
Not yet implemented are near field compensation [3], 
hemispherical encoding and decoding [9], decoding for 
not-ideal loudspeaker arrangements [10], and more. 
   There have been different reasons to realize Ambison-
ics UDOs for Csound. The Csound opcodes bformenc1 
and bformdec1 only support Ambisonics up to 3rd order, 
no enhancements and variations are implemented and 
decoding is restricted to a few standard speaker setups. 
Ambisonics is not easy to understand and to use. Thus I 
decided to write an introduction for the FLOSS manual 
[11] where theory, implementation and application are 
demonstrated step by step. The Csound UDOs are written 
in Csound language and can be understood and expanded 
by non-programmers without recompiling Csound.  
   The UDOs are saved in the text files ambison-
ics_udos.txt, ambisonics2D_udos.txt, AEP_udos.txt and 
utilities.txt and can be downloaded together with the 
Csound examples from the ICST homepage [12]. 

2. PRINCIPLES OF AMBISONICS 
Ambisonics is a surround-system for encoding and ren-
dering a three-dimensional sound field. In Ambisonics 
the position of a virtual sound source is encoded together 
with the sound itself in a multi channel sound file, the so-
called B-format which is independent of the speaker set-
up. The encoding can be carried out to an arbitrary degree 
of accuracy. The accuracy is given by the so-called order 
m of Ambisonics.  
   The formulas for ambisonic encoding are derived from 
the solution of the three-dimensional wave equation in 
the spherical coordinate system where a point is de-
scribed by radius r, azimuth az and elevation el. A signal 
S is encoded by multiplying the signal with the first m 
spherical harmonics [2][3]. The zeroth order corresponds 
to the mono signal and needs one channel. In first order 
Ambisonics the portions of the sound field in the direc-
tions x, y and z are encoded in three more channels. The 
order of resolution m defines the accuracy of the encod-
ing and the number n = (m + 1)2 of channels in the B-
format. 
   From a B-format file with n channels and a given set-up 
of at least n speakers the signals for the speakers can be 
calculated as a weighted sum of the B-format channels. 
The speaker signals for symmetrical setups of n speakers 
can be calculated from the B-format and the matrix of the 
B-format of the speaker signals. This symmetric solution 
is normally used, even if the speaker set-up is not exactly 
symmetric. (Ambisonics2D, distance encoding and Am-
bisonics equivalent panning are explained below with 
their implementation.) 

3. IMPLEMENTATION 

3.1 Prerequisites  

The provided UDOs should be simple to understand, to 
use and to enhance. They do not use flags, parameters 
and options. The single channels of the B-format are not 
visible to the user. Thus, only a single coordinate system 
is needed. The different encoding and decoding types as 
Ambisonics, Ambisonics2D and AEP each have their 
own UDOs. The UDOs are modular, i.e. absorption, 
Doppler effect and signal correction for speaker arrays 
with irregular distances to the centre are not included in 
encoder or decoder but implemented in their own UDOs.  
   The B-format is not visible to the user but written to a 
zak space. Therefore, zakinit must be run before any in-

Copyright: © 2014 First author et al. This is an open-access article dis- 
tributed under the terms of the Creative Commons Attribution License 3.0 
Unported, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 

A. Georgaki and G. Kouroupetroglou (Eds.), Proceedings ICMC|SMC|2014, 14-20 September 2014, Athens, Greece

- 804 -



strument definition (in the orchestra file after the header), 
providing at least n = (m + 1)2 channels for Ambisonics 
and n = 2(m + 1) channels for Ambisonics2D. zacl clears 
the za space and is called after decoding or writing the B-
format.   

3.2 Ambisonics 

The Ambisonics UDOs use semi-normalized spherical 
harmonics (the formulas for the spherical harmonics up to 
11th order can be found in [13]).  If the B-format is en-
coded or decoded with another program the same format 
must be used or the B-format must be converted. The 
syntax of the Ambisonics encoder is: 

k0   ambi_encode   asnd, iorder, kazimuth, kelevation 

   The order iorder is constant, the angles azimuth and 
elevation are control functions and given in degrees (the 
output k0 is 0). The following code sample shows the 
encoding up to second order. The B-format is stored in 
the zak space: zawm asnd, 0 accumulates the mono signal 
asnd as channel W to the first channel of the zak space, 
zawm kcos_el*ksin_az*asnd, 1 accumulates the y-
component of asnd to the second channel etc. 

opcode ambi_encode, k, aikk   
asnd,iorder,kaz,kel xin 
kaz = $M_PI*kaz/180 
kel = $M_PI*kel/180 
kcos_el = cos(kel) 
ksin_el = sin(kel) 
kcos_az = cos(kaz) 
ksin_az = sin(kaz) 
    zawm asnd,0   ; W 
    zawm kcos_el*ksin_az*asnd,1 ; Y = Y(1,-1) 
    zawm ksin_el*asnd,2   ; Z = Y(1,0) 
    zawm kcos_el*kcos_az*asnd,3 ; X = Y(1,1) 
    if iorder < 2 goto end 
i2 = sqrt(3)/2 
kcos_el_p2 = kcos_el*kcos_el 
ksin_el_p2 = ksin_el*ksin_el 
kcos_2az = cos(2*kaz) 
ksin_2az = sin(2*kaz) 
kcos_2el = cos(2*kel) 
ksin_2el = sin(2*kel) 
    zawm i2*kcos_el_p2*ksin_2az*asnd,4   ; V = Y(2,-2) 
    zawm i2*ksin_2el*ksin_az*asnd,5      ; S = Y(2,-1)  
    zawm .5*(3*ksin_el_p2 - 1)*asnd,6    ; R = Y(2,0 ) 
    zawm i2*ksin_2el*kcos_az*asnd,7     ; S = Y(2,1) 
    zawm i2*kcos_el_p2*kcos_2az*asnd,8   ; U = Y(2,2) 
    if iorder < 3 goto end  
... 

   The decoding is done in two steps. First the B-format is 
decoded for one speaker with an opcode called 
ambi_decode1. The formulas are the same as for encod-
ing (with different gains for compensation of the semi-
normalization) but the input angles of the speakers are 
constant. zar(0) reads channel 0 from the zak space. 

opcode ambi_decode1, a, iii   
iorder,iaz,iel xin 

iaz = $M_PI*iaz/180 
iel = $M_PI*iel/180 
a0 = zar(0) 
    if iorder > 0 goto c0 
... 

   In the second step an overloaded opcode produces the 
signals for n speakers. The number of output signals de-
termines which version of the opcode is used. The fol-
lowing code shows the opcode for two speakers. 

opcode ambi_decode, aa,ii 
iorder,ifn xin 
    xout   ambi_decode1(iorder,table(1,ifn),table(2,ifn)), 
              ambi_decode1(iorder,table(3,ifn),table(4,ifn)) 
endop 

   The opcodes ambi_encode and ambi_decode up to 8th 
order are saved in the text file ambisonics_udos.txt. 

3.3 Ambisonics2D 

If the virtual sound sources are arranged in a plane Ambi-
sonics can be replaced by a two-dimensional analogy 
called Ambisonics2D in what follows [4]. The number of 
channels is n = 2(m + 1). The position of a sound source 
in a plane (normally the horizontal plane) is given by two 
coordinates. In Cartesian coordinates (x, y) the listener is 
at the origin of the coordinate system (0, 0), and the x-
coordinate points to the front, the y-coordinate to the left. 
The position of a sound source can also be given in polar 
coordinates by the azimuth angle between the line of vi-
sion of the listener (front) and the direction to the sound 
source, and by its distance r. The formulas for Ambison-
ics2D encoding and decoding are derived from the solu-
tion of the wave equation in the cylindrical coordinate 
system. A signal S is encoded by multiplying the signal 
with the first m cylindrical harmonics which are just the 
sines and cosines of the multiples of the angle az. The 
syntax of the Ambisonics2D encoder is: 

k0   ambi2D_encode   asnd, iorder, kazimuth 

   The following code shows the encoding up to any or-
der.  

opcode ambi2D_encode, k, aik   
asnd,iorder,kaz xin 
kaz = $M_PI*kaz/180 
kk  iorder 
c1: 
   zawm cos(kk*kaz)*asnd,2*kk-1 
   zawm sin(kk*kaz)*asnd,2*kk 
kk = kk-1 
   if kk > 0 goto c1 
 zawm asnd,0  
 xout 0 
endop 

   The syntax of the Ambisonics2D decoder is: 

a1 [, a2]...[, a8] ambi2D_decode iorder, iaz1 [, iaz2]...[, 
iaz8] 

   where a1 ... a8 are the speaker signals and iaz1 ... iaz8 
are the azimuth angles to the loudspeakers. The formulas 

A. Georgaki and G. Kouroupetroglou (Eds.), Proceedings ICMC|SMC|2014, 14-20 September 2014, Athens, Greece

- 805 -



for the decoder are the same as for the encoder with the 
only difference that the channel W is multiplied by 1/2. 
The opcodes ambi2D_encode and ambi_decode2D are 
saved in the text file ambisonics2D_udos.txt. 

3.4 In-Phase Decoding 

Since only a few of the theoretically infinite number of 
channels of the decomposition of the encoded sound 
waves are used, the resulting speaker signals are not 
ideal. The loudspeakers near the virtual sound source 
indeed receive the strongest signals whereas all other 
loudspeakers have weaker signals. Still they do not be-
come continuously weaker with increasing distance to the 
sound source and some have negative amplitudes, that is, 
reversed phases (left figure below) 
 

 
Figure 1. Basic and in-phase decoding level functions. 

   These side-effects can be avoided by weighting the B-
format channels before being decoded. The weighting 
factors depend on the highest order used and the order of 
the particular channel being decoded [see e.g. 2]. The 
syntax of the in-phase decoders are: 
 
a1 ... [, a8]  ambi_dec_inph       iorder, ifn 
a1 ... [, a8]  ambi2D_dec_inph  iorder, iaz1] ... [, iaz8] 
 
   The following code sample shows the weighting factors 
stored in an array and the multiplication of the channels 1 
to 3 before decoding of the Ambisonics in-phase decoder 
  
opcode ambi_dec1_inph, a, iii   
 
iWeight3D[][] init   8,8 
iWeight3D     array \  
0.3333,0,0,0,0,0,0,0, 
0.5,0.1,0,0,0,0,0,0, 
0.6,0.2,0.0285714,0,0,0,0,0, 
0.6667,0.2857,0.0714,0.0079,0,0,0,0, 
0.7143,0.3571,0.119,0.0238,0.00216,0,0,0, 
0.75,0.4167,0.1667,0.04545,0.00758,0.00058,0,0, 
0.7778,0.4667,0.2121,0.0707,0.0163,0.0023,0.00016,0, 
0.8,0.509,0.2545,0.098,0.028,0.0056,0.0007,0.00004 
... 
a0 = zar(0) 
 if iorder > 0 goto c0 
aout = a0 
 goto end 
c0: 
a1 = iWeight3D[iorder-1][0]*zar(1) 
a2 = iWeight3D[iorder-1][0]*zar(2) 
a3 = iWeight3D[iorder-1][0]*zar(3) 
... 

3.5 Distance Encoding 

In basic Ambisonics only the angle of incidence of the 
sound waves is encoded. In order to simulate distances 
and movements of sound sources, the signals have to be 
treated before being encoded. The main perceptual cues 
for the distance of a sound source are reduction of the 
amplitude, filtering due to the absorption of the air and 
the relation between direct and indirect sound. In order to 
simulate realistically moving sound sources the Doppler 
effect can be integrated. The reduction of the amplitude 
outside the unit circle (r = 1), absorption, reverb and 
Doppler effect are applied to the sound before encoding 
(UDOs for the Doppler effect and for a simple absorption 
are included in the file ambi_utilities.txt).  

   The increase of the amplitude of sounds inside the unit 
circle must be limited and special care must be taken if 
the position of a virtual sound source coincides with the 
origin of the coordinate system, which for example can 
happen when the position changes randomly or by uncon-
trolled manipulation with interfaces. The amplitude arriv-
ing at a listener is inverse proportional to the distance of 
the sound source. If the distance is larger than the unit 
circle (not necessarily the radius of the speaker setup, 
which does not need to be known when encoding sounds) 
we simply can divide the sound by the distance. With this 
calculation inside the unit circle the amplitude is ampli-
fied and becomes infinite when the distance becomes 
zero. Another problem arises when a virtual sound source 
passes the origin. The amplitude of the speaker signal in 
the direction of the movement suddenly becomes maxi-
mal and the signal of the opposite speaker suddenly be-
comes zero.  

   A simple solution for these problems is to limit the gain 
of the channel W inside the unit circle to 1 (f1 in the fig-
ure below) and to fade out all other channels (f2). By fad-
ing out all channels except channel W the information 
about the direction of the sound source is lost and all 
speaker signals are the same and the sum of the speaker 
signals reaches its maximum when the distance is 0.                         

       
Figure 2. Amplitude functions: f1 for channel W and f2 
for higher order channels. 

   We would prefer that gain functions are smoother at 
d = 1. Ideally, the functions should be differentiable and 
the slope of f1 at distance d = 0 should be 0. For distances 
greater than 1 the functions should be approximately 1/d. 
In addition the function f1 should continuously grow with 

A. Georgaki and G. Kouroupetroglou (Eds.), Proceedings ICMC|SMC|2014, 14-20 September 2014, Athens, Greece

- 806 -



decreasing distance and reach its maximum at d = 0. The 
maximal gain must be 1. The function atan(dπ/2)/(dπ/2) 
fulfills these constraints. We create a function f2 for the 
fading out of the other channels by multiplying f1 with 
the factor (1 – e–d).   

  
Figure 3. Smoother amplitude functions: f1 for channel 
W and f2 for higher order channels. 

   The UDO ambi2D_enc_dist encodes a sound at any 
order with distance correction. The inputs of the UDO are 
asnd, iorder, kazimuth, kdistance. If the distance becomes 
negative the azimuth angle is turned to its opposite (kaz 
+= π) and the distance is taken positive. 

opcode ambi2D_enc_dist, k, aikk   
asnd,iorder,kaz,kdist xin 
kaz = $M_PI*kaz/180 
kaz =(kdist < 0 ? kaz + $M_PI : kaz) 
kdist = abs(kdist)+0.0001 
kgainW = taninv(kdist*1.5707963)/(kdist*1.5708)  
kgainHO = (1 - exp(-kdist)) 
kk = iorder 
asndW = kgainW*asnd 
asndHO = kgainHO*asndW 
c1:     
   zawm cos(kk*kaz)*asndHO,2*kk-1 
   zawm sin(kk*kaz)*asndHO,2*kk 
kk = kk-1 
    if kk > 0 goto c1 
    zawm asndW,0  
    xout 0 
endop 

3.6 Ambisonics Equivalent Panning AEP 

If we combine encoding and in-phase decoding, we ob-
tain the following panning function (a gain function for a 
speaker depending on its distance to a virtual sound 
source)[7]:  

 

€ 

P(γ,m) = ( 1
2 + 1

2 cosγ)m                 (1) 
 
   where γ denotes the angle between a sound source and a 
speaker and m denotes the order. If the speakers are posi-
tioned on a unit sphere, the cosine of the angle γ is calcu-
lated as the scalar product of the vector to the sound 
source (x, y, z) and the vector to the speaker (xs, ys, zs).  

    In contrast to Ambisonics the order indicated in the 
function does not have to be an integer. This means that 
the order can be continuously varied during decoding. 

The function can be used in both Ambisonics and Ambi-
sonics2D. 
   This system of panning is called Ambisonics Equiva-
lent Panning. It has the disadvantage of not producing a 
B-format representation, but its implementation is 
straightforward and the computation time is short and 
independent of the simulated Ambisonics order. Hence it 
is particularly useful for real-time applications, for pan-
ning in connection with sequencer programs and for ex-
perimentation with high and non-integral Ambisonic or-
ders. The opcode AEP1 calculates ambisonics equivalent 
panning for one speaker. The opcode AEP then uses 
AEP1 to produce the signals for several speakers. In the 
text file AEP_udos.txt AEP is implemented for up to 16 
speakers. The position of the speakers must be written to 
a function table. As the first parameter in the function 
table the maximal speaker distance must be given. 

4. EXAMPLES 

4.1 Basic Encoding 

The first example shows basic encoding 4th order of a 
virtual sound source turning around the listener on a 
semi-circle from the front to the back of the listener. The 
B-format is written to the file B_form1.wav. Then the B-
format (still stored in the zak space) is decoded to a regu-
lar eight-speaker setup in the horizontal plane given in 
the function table 17. 

#include "ambisonics_udos.txt" 
zakinit 25,1 
instr 1  
kaz    line   0,p3,180 
asnd  rand 1 
k0      ambi_encode    asnd,4,kaz,0 
k0      ambi_write_B  "B_form1.wav",4,14 
a1,a2,a3,a4,a5,a6,a7,a8   ambi_decode    4,17 
outc a1,a2,a3,a4,a5,a6,a7,a8    
zacl 0,24 
endin 
... 
f 17 0 64 -2 0 0 0 45 0 90 0 135 0 180 0 225 0  
 
   Figure 4 shows the speaker signals of the first four 
speakers. Figure 5 shows the speaker signals for the same 
sound source but decoded in-phase. 

  
Figure 4. Signals of four speakers for a sound source 
turning around the listener with Ambisonics order 4.  

 
 

A. Georgaki and G. Kouroupetroglou (Eds.), Proceedings ICMC|SMC|2014, 14-20 September 2014, Athens, Greece

- 807 -



 
Figure 5. Signals of four speakers of a sound source 
turning around the listener. In-phase decoding 4th order. 

4.2 Distance Encoding 

The second example shows distance encoding in Ambi-
sonices2D. A virtual sound source approaches the listener 
from the front (az = 0) goes through the origin and re-
cedes in the opposite direction (kdist line 2, p3, -2).   
 
#include "ambisonics2D_udos.txt" 
zakinit 9,1 
instr 1  
kdist  line 2,p3,-2 
asnd  rand 1 
k0  ambi2D_enc_dist asnd,4,0,kdist 
a1,a2,a3 ambi2D_dec_inph 4,0,120,-120 
outc a1,a2,a3 
zacl 0,8 
endin 

 
   Figure 6 shows the speaker signals of three speakers 
positioned at az = 0, 120 and -120 degrees and in the 
fourth track the sum of them. After a fourth of the time 
the sound source reaches the unit circle. The amplitude of 
the first speaker signal now decreases and the amplitudes 
of the other speaker signals increase. In the middle of the 
file all amplitudes are the same and their sum is maximal.  
 

	
  	
    
Figure 6. Speaker signals of three speakers positioned 
at az = 0, 120 and -120 degrees and the sum of them. 

 

4.3 3D-Movement 
In the third example a sound source moves in three di-
mensions. The coordinate functions are x = 10sin(t), 
y = 10sin(.78t) and z = 10sin(.43t). The UDO xyz_to_aed  
then transforms them to the spherical coordinates kaz, kel 
and kdist and the UDO Doppler simulates the Doppler 
effect. ambi_decode decodes for 8 speakers arranged in a 
cube (function table 17). 
zakinit 16, 1  

 
#include "ambisonics_udos.txt" 
#include "ambisonics_utilities.txt" 
 
instr 1 
asnd  buzz  p4,p5,p6,1 
kt line  0,p3,p3 
kaz,kel,kdist      xyz_to_aed \ 
 10*sin(kt),10*sin(.78*kt),10*sin(.43*kt) 
adop  Doppler asnd,kdist 
k0    ambi_enc_dist    adop,3,kaz,kel,kdist 
a1,a2,a3,a4,a5,a6,a7,a8   ambi_decode    3,17 
outc a1,a2,a3,a4,a5,a6,a7,a8 
zacl 0,15 
endin 
... 
f17 0 64 -2 0 -45 35.26 45 35.26 135 35.26 225 35.26 -45 
-35.26 .7854 -35.26 135 -35.26 225 -35.26  
i1 0 40 .5 300 40 

4.4 AEP  

In the last example the speaker signals for a regular octa-
gon speaker setup (function table 17) of a sound source 
moving in the horizontal plain is calculated directly with 
the UDO AEP. Before applying the Doppler effect the 
UDO Absorb, a simple distance dependant low-pass filter 
simulates air absorption. A virtual sound source ap-
proaches the listener from the front (az = 0) goes through 
the origin and recedes in the opposite direction (kdist line 
2, p3, -2).   

 
#include "AEP_udos.txt" 
#include "ambisonics_utilities.txt" 
 
instr 1 
ain  buzz  p4,p5,40,1 
korder  line 1, p3, 17 
kt  line  0,p3,p3 
kx = 14*cos(0.61803*kt)   
ky = 14*sin(kt)  
kz  init  0 
kdist  Dist  kx,ky 
aabs  Absorb  ain,kdist 
adop  Doppler  .2*aabs,kdist 
a1,a2,a3,a4,a5,a6,a7,a8  AEP  adop,korder,17,kx,ky,kz 
outc  a1,a2,a3,a4,a5,a6,a7,a8 
endin 
... 
f1 0 32768 10 1 
f17 0 32 -2 1 .92 -.38 0 .92 .38 0 .38 .92 0 -.38 .92 0 -.92 
.38 0 -.92 -.38 0 -.38 -.92 0 .38 -.92 0 
i1 0 30 .8 300 

5. CONCLUSION 
The presented UDOs hopefully will be useful for spatial 
audio production and as a means for understanding, using 
and teaching Ambisonics. They have been implemented 
in such a way that they can be employed without detailed 
knowledge of the concepts of Ambisonics. In the future, 
enhancements, such as encoding and decoding higher 

A. Georgaki and G. Kouroupetroglou (Eds.), Proceedings ICMC|SMC|2014, 14-20 September 2014, Athens, Greece

- 808 -



than 8th order, conversion between semi-normalized and 
normalized spherical harmonics, conversion between 
different coordinate systems, near field compensation etc. 
will be implemented.   

6. LISTING  
The following listing shows the text files that must be 
included and the syntax of the implemented UDOs. 
 
;#include "ambisonics_udos.txt" (order <= 8)  
k0   ambi_encode     asnd, iorder, kaz, kel   
k0   ambi_enc_dist   asnd, iorder, kaz, kel, kdist   
a1 [, a2] ... [, a8]   ambi_decode  iorder, ifn  
a1 [, a2] ... [, a8]   ambi_dec_inph  iorder, ifn  
f ifn  0 64 -2 p1 az1 el1 az2 el2 ...  (p1 is not used) 
k0   ambi_write_B   "name", iorder, ifile_format  
k0   ambi_read_B    "name", iorder  (only <= 5) 
kaz, kel, kdist   xyz_to_aed    kx, ky, kz 
 
;#include "ambisonics2D_udos.txt"  
k0   ambi2D_encode    asnd, iorder, kazimuth (any order)  
k0   ambi2D_enc_dist  asnd, iorder, kaz, kdist  
a1 [, a2] ... [, a8]   ambi2D_decode   iorder,  
  kaz1[, kaz2] ...[, kaz8]  
a1 [, a2] ... [, a8]  ambi2D_dec_inph  iorder,  
  kaz1 [, kaz2] ... [, kaz8](order <= 12) 
k0   ambi2D_write_B   "name", iorder, ifile_format 
k0   ambi2D_read_B    "name", iorder (order <= 19) 
kaz, kdist   xy_to_ad   kx, ky   
    
#include "AEP_udos.txt" (any real order > 1)  
a1 [, a2] ... [, a16]   AEP_xyz   asnd, korder, ifn,  
   kx, ky, kz, kdist  
f ifn 0 64 -2 max_speaker_dist x1 y1 z1 x2 y2 z2 ...  
a1 [, a2] ... [, a8]   AEP  asnd, korder, ifn, kaz, kel, kdist 
f ifn 0 64 -2 max_speaker_dist az1 el1 dist1 az2 el2 dist2 
...   
 
;#include "ambi_utilities.txt" 
kdist dist kx, ky 
kdist dist kx, ky, kz 
ares Doppler  asnd, kdistance   
ares absorb asnd, kdistance 
kx, ky, kz aed_to_xyz  kaz, kel, kdist 
ix, iy, iz aed_to_xyz   iaz, iel, idist 
a1 [, a2] ... [, a16]  dist_corr a1 [, a2] ... [, a16], ifn 
f ifn 0 32 -2 max_speaker_distance dist1, dist2, ... (in m) 

7. REFERENCES 
[1] M. A. Gerzon, “Periphony: With-height Sound 

Reproduction,” Journal of the Audio Engineering 
Society, Vol. 21 No. 1, 1973, pp. 2-10. 

[2] J. Daniel, Représentation de champs acoustiques, 
application à la transmission et à la reproduction de 
scènes sonores complexes dans un contexte 
multimédia. Ph.D. Thesis, University of Paris VI, 
France, 2000. 

[3] J. Daniel ed. al., “Further Investigations of High 
Order Ambisonics and Wavefield Synthesis for 
Holophonic Sound Imaging,” in AES 114st 
Convention, Amsterdam, 2003. 

[4] M. Neukom, Signals, Systems and Sound Synthesis. 
Peter Lang, 2013. 

[5] B. G. Shinn-Cunningham, “Distance Cues for Vir-
tual Auditory Space,” in Proceedings of the First 
IEEE Pacific-Rim Conference on Multimedia, Syd-
ney, 2000, pp. 227-230.  

[6] G. Kearney ed. al. “Perception in Interactive Virtual 
Acoustic Environments Using Higher Order Ambi-
sonic Soundfields,” in Proc. of the 2nd International 
Symposium on Ambisonics and Spherical Acoustics, 
Paris, 2010. 

[7] M. Neukom, “Ambisonic Panning,” in AES 121st 
Convention, New York, 2007. 

[8] M. Neukom and J. C. Schacher, “Ambisonics 
Equivalent Panning,” in Proceedings of the 
International Computer Music Conference, Belfast, 
2008. 

[9] F. Zotter ed. al., “Ambisonic Decoding With and 
Without Mode-Matching: A Case Study Using the 
Hemisphere,” in Proc. of the 2nd International 
Symposium on Ambisonics and Spherical Acoustics, 
Paris, 2010. 

[10] H. Pomberger ed. al., “An Ambisonics Format for 
Flexible Playback Layouts,” in Proc. of the 1st 
Ambisonics Symposium, Graz, 2009. 

[11] http://en.flossmanuals.net/csound/               
(accessed: 26. June 2014) 

[12] http://www.icst.net/downloads                    
(accessed: 26. June 2014) 

[13] http://ambisonics.ch/   (accessed: 26. June 2014) 

A. Georgaki and G. Kouroupetroglou (Eds.), Proceedings ICMC|SMC|2014, 14-20 September 2014, Athens, Greece

- 809 -




