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ABSTRACT

A method has been developed for estimating the param-

eters of virtual musical instrument synthesizers to obtain

isolated instrument sounds without distortion and noise.

First, a number of instrument sounds are generated from

randomly generated parameters of a synthesizer. Low-

level acoustic features and their delta features are extracted

for each time frame and accumulated into statistics. Mul-

tiple linear regression is used to model the relationship be-

tween the acoustic features and instrument parameters. Ex-

perimental evaluations showed that the proposed method

estimated parameters with a best case error of 0.004 and

signal-to-distortion ratio of 17.35 dB, and reduced noise to

smaller distortions in several cases.

1. INTRODUCTION

The demand for active music appreciation [1], which is

symbolized by consumer generated media (CGM) and user

generated content (UGC), has been increasing. A lim-

ited number of people have actively appreciated computer

generated music for the past 30-40 years due to its re-

quirements for specific technical knowledge, experience,

and equipment. For example, musical composition and

arrangement may require knowledge of musical structure

and chord progression. A person must have adequate train-

ing to enjoy playing an instrument. Typically, only mu-

sical experts can actively appreciate music. One of the

main CGM activities is imitation and improvement of past

work. Sound source separation [2–6] is an important basic

technique for CGM. These sound source separation meth-

ods separate audio mixtures into sources at a good level

of accuracy under limited conditions. However, separated

sources are generally distorted and contain noise. These

effects degrade the quality of CGM products.

We have developed an alternative way to obtain isolated

instrument sounds without distortion from the input sound

mixtures by using virtual instrument sound synthesizers.

Various virtual instrument sound synthesizers, such as mu-

sical instrument digital interface (MIDI) synthesizers and

virtual studio technology (VST) instruments, have been

developed and used to compose musical pieces. A wide va-

riety of musical instruments have been implemented, e.g.,
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Figure 1. Overview of proposed method.

acoustic instruments such as pianofortes, guitars, and vi-

olins, and electric and electronic instruments such as ana-

log synthesizers and theremins. If we could collect every

virtual instrument sound synthesizer in the world, some

would produce sounds sufficiently similar to the original

sound sources without any distortion or noise in principle.

An overview of the proposed method is shown in Fig. 1.

Related work includes analysis and synthesis methods

that use physical modeling of musical instruments, e.g.,

plucked strings [7, 8] and bowed strings [9]. These meth-

ods explicitly model physical phenomena such as string

vibration and estimate the physical parameters from in-

put sounds without noise and distortion. Similarly, Vo-

caListener [10,11] estimates the parameters of Vocaloid, a

singing voice synthesizer. Using the relationship between

several parameters and the pitch and volume, VocaListener

iteratively estimates the optimal parameters for the input

singing voice without noise or distortion.

Our method has two unique features.

1. It can deal with arbitrary virtual instrument synthe-

sizers. That is, the relationships between the instru-

ment parameters and the audio signals are unknown.

2. It can estimate the parameters of an instrument’s

sound without distortion or noise even if the input

sounds have distortion due to source separation.

The proposed method has two basic steps.

1. Acoustic feature extraction. The low-level acous-

tic features are extracted from each time frame, the

delta features and gradients of the approximated

lines are calculated, and the statistics, including the

mean and variation, are calculated for each dimen-

sion.
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2. Model training. The coefficients of the multiple lin-

ear regression model between the acoustic features

and instrument parameters are iteratively estimated

under the assumption that the parameters are in the

acoustic feature space.

2. ACOUSTIC FEATURES

The extraction of the acoustic features comprises four

steps.

1. Framewise feature extraction: calculates low-level

features for each time frame from the instrument

sounds.

2. Time differentiation: differentiates low-level fea-

tures and obtains delta features.

3. Accumulation: accumulates the features across

frames and obtains the fixed-dimension features for

each instrument sound.

4. Compression: reduces the feature’s dimensions by

using principal component analysis (PCA).

2.1 Extraction of Low-level Features

Acoustic features that represent the timbre of instrument

sounds were designed on the basis of previous studies

on instrument identification and musical mood detection

[12,13]. Input instrument sound signals are segmented into

overlapping short-time frames. Features are extracted from

the segmented signals, and magnitude spectra are calcu-

lated using a short-time Fourier transform. A number of

low-level features are extracted.

Root-mean-square (RMS) Overall energy of the signal.

Low energy Degree of energy concentration in the low-

frequency band.

Zero-crossing rate Intensity ratio between harmonic and

percussive components.

Spectral centroid Centroid of the short-time Fourier

transform spectrum.

Spectral width Amplitude weighted average of the differ-

ences between the spectral components and the cen-

troid.

Spectral rolloff 95th percentile of the spectral distribu-

tion.

Spectral flux 2-norm distance of the frame-to-frame

spectral amplitude difference.

Spectral peak The largest amplitude values in the spec-

trum.

Spectral valley The smallest amplitude values in the

spectrum.

Spectral contrast The difference between the peak and

valley.

Mel-frequency cepstrum coefficients (MFCCs) Overall

timbre of the sounds. We use 12-dimensional

MFCCs.

Harmonic amplitudes Timbre of the harmonic compo-

nents. We use the first to tenth harmonic compo-

nents. This feature is extracted using PreFEst [14].

The dimension of the low-level feature vectors is 32.

The low-level feature vectors can represent the instan-

taneous characteristics of the instrument sounds but not

their time variation. We use three kinds of time deriva-

tives of the features to represent the time variation: the

delta of adjacent frames, the gradient of the line approxi-

mated during the last 50 ms, and the gradient of the line

during the last 100 ms. Additionally, three second deriva-

tives are calculated in the same way. As a result, we obtain

32 × (1 + 3 + 3) = 224 dimensional framewise feature

vectors.

2.2 Accumulation and Compression

The set of framewise feature vectors extracted from each

instrument sound contains an inconsistent dimension be-

cause the sound durations are inconsistent. The dimen-

sions of the feature vectors must be equal to train the re-

gression model. Thus, we accumulate the feature vectors

across the time frames into various statistics to make the

dimensions uniform.

Twenty-five statistical values are calculated for each di-

mension of the feature vectors:

1. Summation, mean, variance, skewness, and kurtosis.

These statistics represent the characteristics of the

distribution of the feature vectors.

2. Minimum, maximum, median, 10th and 90th

percentiles, and their positions (time). These statis-

tics represent another characteristic of the distribu-

tion of the feature vectors and their temporal struc-

ture.

3. Bottom 10 coefficients of discrete cosine transform.

These statistics represent the temporal changes of

the feature vectors.

The characteristics of the instrument sounds vary in the

temporal region, e.g., attack, decay, sustain, and release.

We thus calculate the statistics in three temporal regions:

the entire interval, during excitation (i.e., MIDI note-on to

note-off), and during reverberation (MIDI note-off to si-

lence). In addition, we segment each temporal region into

subregions: beginning to end, begining to {20, 40, 60, and

80} percent points, {20, 40, 60, and 80} percent points to

end, {200, 400, 600, 800, and 1000} ms from the begin-

ning, and {200, 400, 600, 800, and 1000} ms until end (see

Fig. 2).

We thereby obtain 224 × 3 × 19 × 25 = 319, 200 di-

mensional feature vectors for each instrument sound. Al-

though the regression model can be trained even as it is, we

apply PCA to reduce the dimension of the feature vectors

and computational costs for estimating regression model
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Figure 2. 19 temporal subregions.

parameters. The dimension of the compressed feature vec-

tors depended on the number of parameters of the virtual

instrument, which is roughly between 100 and 1000.

3. REGRESSION MODEL

3.1 Parameters of Virtual Instrument

Virtual musical instruments, such as MIDI synthesizers

and VST instruments, have various parameters that are

both dependent and independent of the instruments. Each

parameter is treated as a scalar value within a given range,

such as 0–127 (MIDI) and 0–1 (VST). We assume that the

ranges of all the instrument parameters are normalized to

0–1 in this paper.

The parameters are divided into two types:

1. Continuous parameters. These parameters continu-

ously affect the generated instrument sounds, e.g.,

the volume and reverberation.

2. Selective parameters. These parameters have a dis-

crete effect on the sounds, such as the kind of wave

oscillation (sinusoidal, triangle, sawtooth, square,

etc.). The range of a parameter is segmented into

sub-ranges to enable a discrete value to be specified

from the set.

We assume that the instrument parameters have a linear

relationship with the acoustic features, but the selective pa-

rameters cannot be treated in a linear model. Therefore, we

convert the selective parameters to extended ones that are

suitable for a linear regression model.

Original parameters to extended ones Increase the di-

mensions of the parameters to the number of param-

eter options. Each option can then be described as a

1-of-K representation.

Extended parameters to original ones The original pa-

rameter corresponds to the maximum value of the

extended parameters. For example, (1, 0, 0, 0)
is converted to sinusoidal wave oscillation, and

(0.3, 0.5, 0.8, 0.2) is converted to sawtooth wave os-

cillation.

3.2 Model Training

A multiple linear regression model is used to represent the

relationship between the extended instrument parameters

and the acoustic features. Let x1, . . . ,xn be the acoustic

features, and let y1, . . . ,yn be the extended parameters. A

matrix of regression coefficients A and intercept vector b

are used to define the relationship

y = Ax+ b. (1)

The parameters should be orthogonal in the acoustic fea-

ture space for precise parameter control. This orthogonal-

ity is achieved by minimizing the sum of the dot products

between each pair of the row vectors of A.

Optimal coefficient matrix and vector are obtained by

minimizing the objective

n
∑

i=1

∥yn −Axn − b∥2 + λ
∑

i ̸=j

ai · aj , (2)

where ∥x∥2 and x · y represent the Frobenius norm and

dot product, respectively, λ is a constant that represents

the effect of the orthogonality, and ai is the i-th row vector

of A.

By minimizing the objective function for each row vector,

we obtain the update equations

akm =

∑

n ynkxnm −
∑

m′ ̸=m akm′

∑

n xnmxnm′

∑

n x
2
nm + λ

∑

k′ ̸=k ak′m

and

(3)

bm =

∑

n xnm −
∑

m′ ̸=m bm′

∑

n xnmxnm′

∑

n x
2
nm

. (4)

The optimal coefficients are calculated by iteratively ap-

plying the update equations.

4. EXPERIMENTAL EVALUATION

We conducted two experiments to evaluate the proposed

method. In the first experiment, the effect of the number

of parameters on the accuracy of parameter estimation was

examined. The number of parameters to be estimated was

chosen between one and ten. The unselected parameters

remained at their default values. If an instrument has less

than 10 parameters and the number of parameters to be

estimated exceeds it, the estimation procedure is omitted.

In the second experiment, the robustness of the proposed

method against noise was evaluated. We added white noise

to the sounds. The signal-to-noise ratio (SNR) was chosen

between −20 and 20 dB with 10 dB increments. The num-

ber of parameters to be estimated was fixed to one. The

size of training data was chosen from 1000, 2000, . . . , and

10000 for each experiment. The fundamental frequency

and duration of the sounds were fixed to 440 Hz and 0.8 s.

The experimental procedures are as follows. First, the set

of the parameters to be estimated was randomly extracted

for each instrument. Instrument sounds were synthesized

from randomly generated parameters and divided into ten

subsets for ten-fold cross-validation. The regression mod-

els were trained using the subsets. The parameters were

estimated for each sound of the remaining subset, and the

sounds were re-synthesized from the estimated parameters.

Finally the estimation error of the parameters and signal-

to-distortion ratio (SDR) [15] between the original and re-

synthesized sounds was calculated.
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Table 2. Classification of parameters.

Description # of param.

Volume 20

Envelope (attack, decay, sustain, and release) 47

F0 (vibrato and modulation) 31

Filter and equalizer (e.g., cutoff freq.) 26

Reverberation and delay 23

Effects (e.g., chorus and distortion) 34

Low frequency oscillator 32

Others (e.g., type of oscillators) 69

The estimation error of the parameters is defined as:

e =
ec + es

number of parameters
,

ec =
∑

i

|pest,i − pref,i|, and

es =
∑

i

{

0 if estimated parameter was correct

1 otherwise
,

where ec and es mean the estimation errors for continuous

and selective parameters, respectively, because they must

be calculated for each way. The pest,i and pref,i are the

estimated and randomly chosen parameters, respectively.

4.1 Training Data

The virtual instruments listed in Table 1 were used in the

first experiment. In the second experiment, 4Front R-

Piano, DSK Strings, and Synth1 were chosen from Table 1

because of the limitation of computational resources. Ta-

ble 2 shows the classification of the parameters.

4.2 Results

The results of the first experiment are shown in Figure 3.

We discuss several noted facts.

1. Increasing the size of the training data reduces the

estimation error of the parameters and improved the

SDR. This suggests the estimation error can be used

as the timbre similarity of instrument sounds.

2. Increasing the size of the number of parameters de-

grades the estimation accuracy and SDR.

3. The accuracy has a large gap between the case of

five parameters and the case of six parameters. On

the other hand, the SDR has large gaps between one

and two parameters, and between eight and nine pa-

rameters. It could be caused by diffusion of type of

the parameters to be estimated.

The results of the second experiment are shown in Fig-

ure 4. They show that increasing the noise ratio decreases

the estimation accuracy and SDR. However, except for the

case of 20 dB of SNR, the SDRs of the re-synthesized

sounds increased compared to the SNRs of the original

ones.

Next, we discuss objective criteria of the parameter es-

timation error. The value range of the MIDI synthesizer

parameters is generally 0 to 127 7-bit digits. By assuming

that VSTi synthesizers operate in this way, any errors in the

estimated parameters of less than 0.008, i.e., 1/128, can be

treated as zero. For example, the SDR in the best case was

0.030, i.e., 3.8/128, which can be regarded as sufficiently

accurate for practical purposes.

5. CONCLUSION

This paper describes a method for estimating the param-

eters of a virtual musical instrument synthesizer. Multi-

ple linear regression is used to model the relationship be-

tween the acoustic features and instrument parameters. In

the experimental evaluation, our method estimated accu-

rate parameters under several conditions. Our future work

includes further evaluation using other virtual instruments

and other kinds of noise and distortions and achievement

of noise robustness.
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