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ABSTRACT

The Modality Project explores the idea of highly modal

performance instruments i.e., setups where a small set of

controllers can be used to play a wide variety of sound pro-

cesses by changing control constellations on the fly.

The Modality Toolkit is a SuperCollider library which

simplifies the creation of such instruments. To this end,

a common code interface, MKtl, is used to connect con-

trollers from various sources and protocols. Currently, HID

and MIDI are supported; GUI-based interfaces can be cre-

ated on the fly from interface descriptions. Detailed use

cases demonstrate the concepts of working with modality

practically in code.

This paper gives an overview on the concept of modality

as seen by a group of sound artists and researchers, and de-

scribes one interdisciplinary approach to creating a toolkit

written for and by electronic musicians.

1. INTRODUCTION

The Modality project 1 was initiated by Jeff Carey and Bjørnar

Habbestad, who, after several years of collaboration, re-

alised that they, despite playing completely different se-

tups, both had the need to easily switch between function-

alities within performance. While both had custom imple-

mentations of this behaviour, it appeared to be not flexible

enough. Especially extending their setup felt cumbersome,

and original ideas got lost over the hassle of implementa-

tion of mapping rules.

Out of these observations arose the idea to gather a group

of experts in sound and music computing (and specifically

from the SuperCollider community) which eventually formed

the ModalityTeam. Starting with five people at the first

meeting, more people became involved. The group cur-

rently consists of 12 members.

The intention of this paper is two-fold: Firstly, after an

introduction on the concept of modality and related work

(Section 2), it gives insight on work in an interdisciplinary

team of loose collaboration. It is driven mostly by a shared

interest in, on the one hand, sound, music, and perfor-

mance practice, and on the other hand software design and

1 http://modality.bek.no
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development (Section 3). Secondly, it reports on the out-

comes in both conceptual and concrete implementation de-

tails (Section 5 to 6). The paper concludes with a reflection

on the work done over the course of the last 5 years.

Figure 1. Impressions of the Modality meeting (left),

workshop (center), and concert (right) 2014 at STEIM,

Amsterdam.

2. THE MODALITY WAY

The Modality project is dedicated to modal interaction with

synthesis processes for physical control in performance and

musical practice. The name Modality arose from the idea

to investigate the creation and extensive use of modal in-

terfaces. One particular strength of such modal interfaces

is that they allow fast changes and therefore a broader va-

riety for sonic discovery. This can be of benefit when, for

example, improvising with musicians playing acoustic in-

struments. Out of this arouse the question on how HCI

interfaces can be conceptualised and with a small set of

physical controls assigned to a relatively large function set.

We contend that integration of such on-the-fly remapping

features helps to create flexible instruments that are pow-

erful yet interesting and therefore rewarding to play and

listen to.

The primary product of the Modality project is the Modal-

ity Toolkit, a software library that facilitates (a) access to

hardware and software controllers, (b) flexible routing of

control messages to generative processes, and (c) record-

ing, filtering and further processing of controller signals.

The ModalityTeam, an international and transdisciplinary

group of people that see themselves as users and develop-

ers for SC meets at regular intervals to work on the library,

discuss issues around music making, and perform in self-

organised concerts.

Modality, however, can also be understood as a social

descriptor for the ModalityTeam. The fact that a number

of programmers and artists from different (music)cultures

and nationalitirecoges meet up on a more or less regular ba-

sis does not necessarily imply that they share the same un-

derstanding, let alone opinion. It turned out that themes as
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fundamental to the Modality project as “performance prac-

tice”, “control strategies” and even “software paradigms”

were highly ambiguous and interpreted in different ways.

Further, it turned out to be a learning process to not only

listen to other people’s opinions but to also take them into

account during software design and implementation.

As a third interpretation level, the term Modality influ-

ences the structure of the meetings. Reflecting the diver-

gence between participants, most of the meetings consisted

of a broad spectrum of activities, namely (a) developer

phases in which the Modality Toolkit was implemented,

(b) public workshops disseminating knowledge about the

Modality Toolkit, and (c) concerts in which participants

performed with their custom instruments.

2.1 Related work

The Modality Toolkit stands in the tradition of a line of re-

lated systems, dedicated to control data flow and filtering.

Particularly, it is informed by systems like OSCulator [1],

STEIM’s junXion [2], the Digital Orchestra Kit [3] and

SC’s own multiton pattern implementations.

OSCulator Osculator is an OS X GUI based software aimed

at connecting devices and routing messages between

them. It supports multiple protocols such as MIDI,

HID, OSC or TUIO and is capable of creating com-

plex responses to incoming events, including scaling

values, splitting events, merging events, storing val-

ues for later use, enabling or disabling actions and

toggling global presets.

junXion is a “[. . . ] data routing application that can pro-

cess [hardware] ‘sensors’ [. . . ] using conditional pro-

cessing and remapping” [2]. It is a stand-alone pro-

gram to be put in the middle between the control in-

put layer and the synthesis layer. The roots of its

development lay in the advanced sensor input and

data manipulation features of pioneering live sam-

pling software LiSa [2]. 2

In JunXion, data flow is organised in patches with

an input-action-output-logic. Inputs can come from

as many as eight different types of data sources. The

actions process that data by means of user-definable

behaviours such as switching or toggling but also

differentiation, or complex activity measurement and

based on conditional statements incorporate other in-

coming data. Output can be generated and sent in

various formats to listening programs.

Digital Orchestra Toolkit [4] was created as part of the

Digital Orchestra project around “[. . . ] a number of

paradigms for the design, creation and performance

of digital musical instruments in the context of a

long-term interdisciplinary, collaborative environment.

2 As of today, LiSa’s sampling engine is not being further developed,
as many software synthesizer are available to replace its functionality.
Similarly, STEIM’s groundbreaking sensor and interfacing technologies
have become readily available through a host of affordable controllers and
DIY-kits, e.g., those based around the Arduino platform.

Issues related to mapping strategies, notation, the re-

lationship of physical and musical gestures, robust-

ness, responsiveness, and haptic feedback arose dur-

ing the course of the project.”[5]. The toolkit con-

sists of a number of Max/MSP objects implementing

data acquisition and processing for various hardware

devices and protocols.

Multiton design patterns in SC SuperCollider has flexi-

ble proxy objects for tasks, patterns, sound processes,

and functions, which allow replacing the proxy’s ob-

ject while using it. (Modality follows these, e.g.

in the MKtl(<name>) access scheme.) Named

variants of these classes, like Tdef, Pdef, Ndef,

or MIDIdef, OSCdef follow the multiton pattern

by creating named instances only, and keeping them

in a global dictionary. Calling the constructor e.g.,

Ndef(\a), returns an existing instance by that name

or, if not found create it. Supplying a second argu-

ment, Ndef(\a, { LFSaw.ar }), replaces the

proxy’s current object with the new one given. This

is very useful in live coding situations, where re-

membering name-function pairs is much easier than

doing full variable administration by hand.

3. THE MODALITY MEETINGS

To illustrate the Modality way as described in Section 1,

this section reports on the outcomes and discussions within

the four modality meetings held so far.

October 2010, BEK, Bergen Initiated by Jeff Carey and

Bjørnar Habbestad, several experts and sound artists

met to discuss shared ideas about modal control in

performance and rehearsal situations. The attendees

soon agreed that easy access and outlining of modal

control structures is of great interest for all. First

sketches for uniform access were made based on the

then already existing JITMIDIKtl quark 3 , creating

a more uniform access scheme to controllers in the

Ktl quark.

May 2011, STEIM, Amsterdam Discussions revealed the

need for users to abstract from hardware dependen-

cies, and being able to do flexible routings and fil-

tering incoming data. A new SC quark was initiated

and the group started implementing two sets of func-

tionalities:

MKtl objects were intended to connect MIDI and

HID hardware devices. They stored capabilities of

each device in a configuration file. Instead of assign-

ing functions to hardware-specifics, we considered

controllers as a combination of controller elements,

which were given human-readable short names for

semantically simple access (e.g., ’sl1’ instead of

MIDI channel 0 cc 14). This scheme was considered

extensible for OpenSoundControl, serial ports, and

other hardware interfaces, to have a uniform work-

flow, abstracted away from the actual backend.

3 a quark is an extension library in SuperCollider parlance.
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MDispatch objects allowed creating calculation

units; abstract filters that render output from a given

input, like the conversion of a button press (on, off )

to one trigger event (now), or the calculation of slider

speed. Many templates for commonly used func-

tionality were created.

A stumbling block at the time was an OS-dependant

(and, due to changes in the API of Apple’s HID tool-

kit, on the OSX side non-functional) HID implemen-

tation in SC. 4 The project’s state was presented at

the SC.symposium 2012 in London, UK [6].

November 2013, BEK, Bergen After a hiatus of almost

2 years, this meeting focused on practical steps. It

particularly took a while to get back to a productive

working environment. The introduction of an issue

tracker to define and discuss development goals (in

combination with git as a repository for code devel-

opment) helped to get on track again.

In this light, example use cases of different levels

of complexity were noted down in order to define

the demands (and limits) of the Modality toolkit (see

Section 4). It also turned out to help understand, how

complex the user-written code to implement the use

case would be and therefore get insights on how the

toolkit has to be adjusted to facilitate this.

Further, unified functionality to the input layers were

added: Explorer classes for MIDI and HID listen

to incoming messages from a source and generate

initial data to help writing description files. Hier-

archical ordering of elements within these files was

introduced to allow the representation of semantical

grouping.

Proposals for related useful concepts, such as FRP

and Influx, were explored (see Section 6.5).

April 2014, STEIM, Amsterdam Many aspects of the in-

put side were unified and simplified further, thus near-

ing completion of the input layer.

Description file handling was improved in many ways,

and GUIs could be initiated for missing devices. Map-

ping strategies were simplified toward a unified style

with e.g., SoftSet and RelSet (see Section 6.3).

While in the meetings before, writing documenta-

tion was mostly postponed until it was too late, in

this meeting, documentation and examples were writ-

ten in dedicated sessions, and use cases were sketched

in text and implemented in various coding style vari-

ants.

Finally, the OS unification of the HID interface im-

plementation was fixed, pending full tests.

4. EXAMPLES / USE CASES

We created a number of simple to medium-complex uses

cases, which serve both as examples for modality concepts,

4 As of April 2014, this has been solved in SuperCollider 3.7 with a
new cross-platform HID implementation.

and as test cases that show how simply they can be imple-

mented in different coding styles.

4.1 Switching operation mode

This example illustrates a situation where there are multi-

ple global modes of operation. Depending on which mode

the system is in the physical controls perform entirely dif-

ferent actions in the system. This is similar to how com-

puter keyboards perform different actions depending on

which modifier keys (shift, ctrl, alt) are pressed.

Consider 16 buttons in a 4 × 4 grid. The first 3 rows

contain memory buttons, in the last row the first 3 are play

buttons and the last one is the shift button. Sound sources

can be copied from the play buttons to the memory buttons.

Play slots Each play button is assigned one fixed adsr en-

veloped sound sources with a single parameter. De-

pressing a play button turns the sound on, releasing

it causes the sound to decay.

Memory slots Each memory button can be assigned from

one to all three sound sources associated with the

play buttons. Depressing the button activates all as-

signed sound sources simultaneously.

Slider When a sound source is active, the slider controls

one of the synthesis parameters. There is a pickup

mechanism in place such that the slider only causes

the parameter to change once it is close enough to

current value to avoid jumps.

Shift Button Pressing the shift button causes the system

to go into copy mode. When in copy mode, up to

three of the play buttons can be pressed followed

by one of the memory buttons. This will copy the

sources of the selected play slots together with their

current values for the parameter into the selected mem-

ory slot. If the shift key is released mid-way no as-

signment takes place. Copying into an already as-

signed memory slot replaces the existing sources and

parameter values.

The number of different operation modes could be easily

extended by having multiple modifier buttons with differ-

ent combinations of them setting the system to different

modes of operation.

4.2 Exchanging actions

In this example a certain number of control elements are

assigned to an equal number of synth parameters. Upon

pressing a button the system enters remap mode: it waits

for movement from two different elements and then switches

the parameters that they control amongst themselves. This

simple example illustrates the need that often arises in a

performance of freeing a finger or hand, by moving the ac-

tion that it is controlling at that moment to another physical

control (or just disconnecting it momentarily), so that the

hand or finger is now free to control some other parameter

which at that point in the performance has become more

important.
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5. ISLANDS, BRIDGES, UNIFORM SCHEMES

As many home towns of modality members are harbour

cities, Islands and Bridges were chosen as a mental model

for conceiving and understanding highly modal instruments.

Islands are software objects or processes which represent

sources (input devices, control-generating processes), des-

tinations (output processes for sound, visuals), combina-

tions of these, such as transformers (which, like destina-

tions, process incoming control information, and send the

results on like sources). Islands should be as self-sufficient

as possible, and show uniform behavior to allow simple

on-the-fly changes of connections with bridges.

Bridges typically are made by user code that connects is-

lands; conventional digital instruments then contain a fixed

collection of islands and one constellation of bridges be-

tween them. Modal performance instruments achieve their

modes by switching between different combinations of bridges,

adding some, removing others, adjusting settings. Modal-

ity aims to make writing and configuring bridges as simple

as possible.

In other words, Modality shifts the instrument metaphor

from linear chains of command to flexible networks of com-

munication (or further on, of mutual influence).

The uniform communication schemes recommended by

Modality are largely based on existing conventions in SC,

and extend them with only few new methods. Thus many

SC quarks dealing with interface devices or data process-

ing are useful sources for more islands. Beside the modality-

toolkit, the team actively works on other modality-relevant

quarks. These are e.g., SenseWorld supporting sensor de-

vices, Manta accessing an OSC controller, FPLib contain-

ing FRP (see Section 6.5.2), VariousMixedThings contain-

ing Influx (see Section 6.5.3), UnitLib [7], wslib mostly

GUI-related niceties, KeyPlayer contains KtlLoop, and DMX

output to light systems.

5.1 The uniform input device scheme (MIDI, HID,

OSC, GUI, Serial)

Input devices (such as the MKtl class) or other control

sources follow a scheme: They have rich descriptions, with

simple short human-readable element names, which are

hierarchically ordered where applicable. One can access

each element by name or hierarchical indexes. Each ele-

ment can either have a single action, or one can add and

remove multiple actions individually by identity or name.

Every MKtl can be substituted by a Graphical User Inter-

face derived from the corresponding description file. When

operated, it acts identically to the physical device.

Explorers simplify adding new devices or sources: One

activates every possible controller action at least once to

collect specimens of every possible message type. Then

an Explorer can make a description file template from this,

and the user adds the final touches by giving them simple,

short and clear element names, and organising their hierar-

chical order. This is implemented fully for MIDI and HID,

with other protocols to follow.

Transformer islands expect control input from sources,

and know how to create control output for destinations.

E.g. an Influx is a transformer which accepts m bipolar

parameters from a source, and converts them to n process

parameters for a destination with a matrix of weights.

5.2 Proposed uniform destination schema

Modality-compatible sources have containers for config-

urable actions for sending messages to destinations, and

they know how to convert their controller ranges to be unipo-

lar (interval [0, 1]).

Modality-compatible destinations also follow existing SC

schemes: They respond to set messages for control val-

ues; they remember current parameter values, and they of-

ten have specifications for control parameters (i.e., range,

warp, step size, etc). Most objects that are active processes

respond to .play, .stop, .pause and resume messages.

Requiring destinations to know their parameters specs

and current states allows more flexible control in several

ways: The setUni method can be used to set a param

from the controller side’s unipolar value; keeping the Spec

with the destination process is semantically simpler to ar-

gue for, and multiple control sources will immediately use

changed specs if they belong to the object. The RelSet

class method can be used to nudge a parameter relative to

its current value. SoftSet class methods can be used to

take over a parameter only when the physical controller is

close enough to its value, or when the physical controller

knows the object’s previous value well enough (which is

the case when it has set it to that value). If specs are kept

with the object, they can easily be adjusted there (e.g., for

zooming into a subset of the full range), keeping the con-

troller element side code simpler by sending unipolar val-

ues, and letting the object provide the spec:

{ arg el; dest.setUni(\amp, el.value) }

Finally, conforming to the SC convention of play/stop,

pause/resume allows very simple de/activation when

switching newly to or away from a process.

6. SPECIFICATION, DESIGN AND

IMPLEMENTATION OF THE MODALITY

TOOLKIT

The following specification of the Modality toolkit con-

forms to the island/bridges/unification scheme introduced

in Section 5 and respects the use case described in Sec-

tion 4.

6.1 Specification

The Modality toolkit [8] aims to facilitate

• data acquisition from commercially available con-

trollers (e.g, HID and MIDI) by providing a common

software interface,

• processing of control data streams,

• sending control data to these controllers (e.g., fader

positions, LED states),

• graphical feedback of the current state in the form of

a GUI of connected to the device, as well as replac-

ing a controller with a GUI substitute, and finally
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• mapping the output of these data streams to input

parameters of sound engines.

Specific attention is given to the concept of modal con-

trol: the ability to change the mapping on-the-fly from one

control element to another, possibly located on another de-

vice or to change assigned functionality of one control el-

ement based on the state of another.

6.2 Implementation

The Modality Toolkit is implemented as a set of classes

for the SuperCollider language [9]. The control elements

of devices are accessed through the MKtl class. A con-

trol element is a part of a controller that either generates

and/or accepts a one-dimensional stream of events. Each

MKtl object consists of elements such as sliders, knobs,

buttons or encoders. It is possible to assign actions to such

elements that are evaluated every time the value of that ele-

ment gets updated. Elements are instances of MKtlElement

and are kept in a tree-like data structure of nested arrays

and dictionaries which represent the spatial grouping of

control elements in the physical controller.

The elementDescription variable of MKtlElement

contains a dictionary with information about that element

such as its type (e.g., button) and control spec for scaling

incoming values. This dictionary can be used to extract

multiple elements from the data structure by filtering us-

ing a conditional expression, for instance retrieving all el-

ements of type slider.

Using the multiton pattern described in Section 2.1, each

MKtl has a name, and only one MKtl is active with that

name at any given time. MKtl’s can be retrieved from

a global dictionary by name, using the MKtl(’name’)

syntax. The system keeps a global set of auto-generated

names for all the controllers that have description files.

These short names are auto-generated from the name of the

device plus a number starting from zero indexing multiple

identical devices (e.g., ’nnkn0’ from ’nanoKONTROL’).

If a user tries to fetch an MKtl with one of the auto-generated

names and it is not yet created the system will look for the

corresponding device and if it is found an MKtl is created

from the description file and connected to the device by

creating MIDI or HID responders. This feature means the

user can initialize an MKtl for a given device using always

the same single line of code.

k = MKtl(’nnkn0’);

Actions are added to elements by setting the MKtlEle-

ments’ action to a function. It is also possible to add and

remove multiple unnamed actions to the same element us-

ing FunctionList or named functions which can also

be re-ordered using FuncChain.

˜el = MKtl(’nnkn0’)

.elements[\sl][0];

//add action

˜el.action = { |e|

var freq = e.value

.linlin(0.0,1.0,300,3000);

x.set(\freq, freq)

};

//remove action

˜el.action.action = nil

Elements with output capabilities can also send values

back to the device, this is done using the value_ method

of MKtlElement:

MKtl(’bcr20000’)

.elements[\kn][0][0]

.value_(0.3)

6.3 Unifications of interface implementations

The Modality Toolkit works uniformly across multiple pro-

tocols. The base class MKtl provides the generic func-

tionality and the children classes (HIDMKtl, MIDIMktl,

OSCMKtl, etc.) implement the specific back-end for each

protocol. Since the interface for using Modality is defined

in MKtl and MKtlElement, which are protocol agnos-

tic, the syntax and semantics remain uniform across all

protocols. The incoming values from the device are nor-

malized by the MKtl to be in the interval [0, 1] and out-

going values are expected to be in the same [0, 1] interval

and then scaled to the range used by the specific protocol.

This facilitates switching between devices that use differ-

ent protocols while keeping the event logic unaltered.

MKtl also has the useful feature of automatically creating

a GUI representation of a known device from its descrip-

tion file. If the user tries to instantiate an MKtl with an

auto-generated name corresponding to a known device, but

the device is not currently available, an MKtlGui will be

automatically created instead. This makes it trivial to ex-

change a physical controller for a GUI representation with-

out having to change any code at all.

6.4 Description files

In order to use a device within the Modality Toolkit con-

text, a device description file is needed that characterises

each control element and its semantical position in relation

to other elements. It is implemented using one text file per

device containing a dictionary with the fields

protocol currently, HID and MIDI are implemented. Note

that only one protocol per device is allowed,

device the name of the device as provided by the operating

system,

description a dictionary with a tree structure composed of

nested dictionaries and arrays. The value at each leaf

of the tree is an element dictionary with key-value

pairs describing the element at hand. An element

dictionary contains technical specifications of the el-

ement, namely identification information (e.g., for

MIDI, the MIDI number and channel), the physical

type of control (button, slider, etc.) and a ControlSpec

that specifies how to convert the incoming values to

the range [0, 1].
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As an example, the element dictionary for a button of a

MIDI device would look like this:

\rew: (

\midiMsgType: \cc,

\type: \button,

\midiChan: 0,

\midiNum: 47,

\spec: \midiBut,

\mode: \push

)

Elements which are physically (or virtually) grouped on

the device such as with pages, rows or columns are grouped

together in the description file using arrays. For instance,

the third button on the second row of page 4 of a Korg

NanoKONTROL can be accessed with the following code,

assuming zero-based numbering:

MKtl(’nnkn0’).elements[\sl][3][1][2]

The hierarchical grouping of elements also facilitates bulk

addressing of elements by traversing the hierarchy starting

at the desired node. For instance, it is easy to programati-

cally add actions to multiple elements:

MKtl(’nnkn0’).elements[\sl]

.do{ |xs, page|

xs.do{ |xs, row|

xs.do{ |element, column|

element.action =

{[page, row, column].postln}

}

}

}

New devices can be added to the toolkit easily, all that

is needed is to write the corresponding device description

file. If a user tries to access a device for which there is still

no description file available, the toolkit guides the user in

the process of creating the description file. More specifi-

cally, a description file can be generated for HID devices

using the HIDExplorer class, which collects informa-

tion provided by the low-level HID stack. For the less

self-documenting range of devices connected via MIDI,

the user is asked by the MIDIexplorer class to operate

all available physical controls. The captured data stream is

then used to generate a description file. As a last step in

both cases, the user supplies suitable labels and orders the

elements hierarchically according to their physical place-

ment on the device.

6.5 Modality related projects and quarks

6.5.1 MDispatch

The MDispatch class was an initial attempt at creating self-

contained event logic units. MDispatch has similar struc-

ture as MKtl (both inheriting from MAbstractKtl). A

dispatch has output elements (MDispatchOut class) where

actions can be added similarly to MKtlElement. It also

has inputs which are updated by registering callbacks on

the elements of other MAbstractKtls. When an event

is received from a source the input element and its value

are saved and a list of state processing functions is run se-

quentially. These state processing functions have access

to all the internal state of the dispatch which includes the

source element which caused the update, all the values of

the output elements and any other state variables defined

for auxiliary calculations. An MDispatch can be either cre-

ated from a template containing predefined functionality

or explicitly defined. The process for explicitly creating

an MDispatch is to specify outputs, define state process-

ing functions and finally connect the dispatch to sources

of events. In order to facilitate this process it is possible

to first connect to a source and just copy the output names

of the source to the output names of dispatch, in fact mir-

roring the same elements. This makes it straightforward to

create path-through processors which take the value from

each output element of a source MAbstractKtl and send

a processed version through an element with same key. Be-

low is the code for creating a dispatch that only outputs

when incoming values are increasing and takes values from

a midi device:

k = MKtl(’nnkn0’);

d = MDispatch.make(\up, k);

At the time when MDispatch was created several tem-

plates were written for tasks such as for soft paging, getting

velocity values or filtering events.

MDispatch was an interesting experiment that allowed

for some degree of re-usability of event logic code, nev-

ertheless for varied reasons it did not gain wide adoption

amongst users of the Modality toolkit and its development

is currently paused.

6.5.2 FRP

The traditional method of dealing with incoming events

is through callback functions. Functional Reactive Pro-

gramming, or FRP, is an alternative paradigm for program-

ming dynamic and reactive systems using first-class com-

posable abstractions. The two main abstractions are event

streams (sequences of discrete-time event occurrences) and

behaviours or signals (time-varying values). Most of the

original work on FRP was done on the Haskell program-

ming language 5 [10, 11, 12, 13].

The FRP paradigm seemed promising for the construc-

tion of musical digital instruments. An FRP network could

determine how events from physical controllers affect sound

processes. To explore this possibility a set of classes for

doing FRP in SuperCollider, part of the FPLib library [14],

was created based on reactive-web [15] and reactive-ba-

nana [16].

FP-Lib has the same interface as reactive-banana for defin-

ing the event network: outputs are defined in terms of in-

puts using combinators (pure functions) applied to the sig-

nals or event streams in order to construct an event graph.

To get events into the event graph the system has to register

with external sources, the inputs (MIDI,HID,OSC,timers),

5 Haskell is a modern, pure, lazy, statically typed functional program-
ming language.
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and to have any effect on the outside world it must per-

form actions based on the outputs of the event graph. The

event graph together with inputs and outputs form an event

network which can be compiled and activated and deac-

tivated, respectively. The most important transformations

when using combinators are:

• transforming event streams into signals and vice-versa.

• Merging event streams.

• Filtering events streams.

• Maintaining state that can be affected by event streams

carrying state altering functions.

• Merging n signals using an n-ary function.

• Applying a time-varying function (stored in an sig-

nal) to an event stream allowing for recursive graphs.

• Dynamic event switching: changing the event graph

based on an event occurrence.

Since all the functions used to construct the graph should

be pure, it is possible to abstract a subset of the graph into a

single function and be confident that the result will be iden-

tical due to referential transparency. Also, external sources

connected to inputs and actions performed on outputs can

be exchanged without changing the event graph. This facil-

itates building and testing a personal library of event logic

functions that can be re-used for different instruments or

different parts of the same instrument. Several use cases

put forward by the Modality Team have been implemented

using FPLib and so far the system as shown itself capa-

ble of creating complex event graphs to be used in digital

instruments.

6.5.3 Influx - lose control, gain influence

The Influx concept starts from three practical and aesthetic

assumptions: Mapping may be the most flexible part of a

NIME; detailed mental models of the instrument may de-

tract from listening while playing; and generally, surprise

may be desirable for audiences and performers alike.

In Modality terms, Influx and its variants are transformer

islands: Influx maps m named numerical input values

to n output values by creating bipolar weights that deter-

mine how much each input value influences which out-

put value. In the simplest case, each controller parameter

will influence every sound process parameter by a different

weight e.g., a random amount. These weights can be grad-

ually entangled by randomising, or disentangled by blend-

ing toward a known set of weights. This approach allows

heuristic exploration of mappings one would never make

by hand, and gently forces players to really listen to how

the instrument sounds when they play.

InfluxSpread can send these control values to multi-

ple destinations. InfluxMix can receive “influence val-

ues” from multiple sources and can determine how much

influence it accepts from which source.

ProxyPreset allows storing, blending and crossfad-

ing between settings of a process e.g., keeping traces of an

ongoing performance which can be re-used as musical ma-

terial. An Influx can use such a preset as a reference point

as the center of its parameter space. This allows playing

relative to a known setting, where, for example, zooming

allows very subtle explorations of shadings within a known

sweet spot in parameter space.

EventLoop can record any control data as events with

key-value pairs, such as parameter names and values, event

time, and other named values describing the event. This al-

lows capturing algorithmically generated streams, perfor-

mance data from input devices, and many others. One can

modify playback by time-scaling, segment selection, play-

back direction and gradual scrambling of local event order;

one can also go back in the history of recorded loops.

The control data variant KtlLoop also allows on-the-fly

rescaling of numerical control data. The gesture can be

scaled to larger or smaller ranges, and shifted by offsets.

All these modifications can quickly be accessed in perfor-

mance, and the opportunities they create are quite distinct

from audio loops. In performance, a KtlLoop can replace

a live input stream (e.g., realtime-acquired HID data), then

the loop can be reshaped while playing. It allows poly-

phonic layering by letting a loop continue and having it

auto-mutate, so each repetition is slowly shifting.

These heuristics may lead both to finding non-obvious but

interesting mapping strategies which can be built into more

traditionally well-controlled instruments, and to new con-

cepts for playing single-person instruments with a flexible

degree of familiarity or surprise, or multi-player/instrument

ensembles based on networks of influence. In effect, it al-

lows musicians to relinquish some control and gain influ-

ence in exchange.

6.5.4 SenseWorld DataNetwork

The SenseWorld DataNetwork was initially developed for

easy data exchange with other programs [17], but within

SuperCollider can also be used as a central “datahub”. Within

this framework a single data stream is regarded as a DataSlot;

multiple data streams that for some reason belong together

(e.g., the data comes from the same device, or are datas-

treams of a similar type) are organised as a DataNode. The

framework provides methods to query the current value of

a node or slot, to set functions to be performed on the

data, whenever new data comes in, or put the data auto-

matically on a bus on the SuperCollider server (audio en-

gine), where it can be used directly in synthesis processes,

or Unit Generators can be used to process the data further.

The framework also provides various methods for common

data processing methods, such as calculating the mean,

variation, gating, range checking, smoothing, etc. The re-

sult of each data processing unit is made available again

on the DataNetwork, and can be used in the same way as

unprocessed data. The framework also comes with a GUI

that allows visualisation of the data, as well as controls for

switching on printing the data to the post window, enabling

recording of the data, or creating a bus on the server.

Data from devices accessed with Modality can easily be

used as input to the DataNetwork and thus form a DataN-

ode, and then further used in that framework.
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7. CONCLUSIONS

We find Modality an interesting approach toward creating

more fluidly playable performance setups for electronic

music. By providing rich knowledge about known con-

trollers and easy ways to collect and add this information

for new ones, one can create very short controller setup

code. By providing uniform access for many different con-

troller protocols and semantic names for all elements, one

can substitute a specific controller for another (or a stand-in

GUI) rather quickly. In addition, the flexibility provided in

connecting multiple sets of actions with one or more con-

trollers allows creating setups which support more modal

concepts of playing, using a small set of controls for many

different combinations of processes within a single perfor-

mance.

We hope that Modality contributes to making the creation

of more complex performance setups accessible for more

musicians; as more setups get realised with Modality, we

will learn whether they also remain flexible to extension

and change when reaching higher levels of complexity.
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